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Summary
We propose a simple and general resampling strategy to estimate variances for parameter estimators
derived from nonsmooth estimating functions. This approach applies to a wide variety of
semiparametric and nonparametric problems in biostatistics. It does not require solving estimating
equations and is thus much faster than the existing resampling procedures. Its usefulness is illustrated
with heteroscedastic quantile regression and censored data rank regression. Numerical results based
on simulated and real data are provided.
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1. Introduction
The parameters of interest in biostatistics are typically estimated by minimizing a loss function
or more generally by solving an estimating equation. In many nonparametric and
semiparametric situations, such as Huber’s (1964) robust estimation of location (with
nonsmooth loss functions), quantile regression, and rank regression, the estimating functions
are not differentiable. Then, the asymptotic variances of the parameter estimators generally
involve unknown density functions and are thus difficult to estimate directly.

In such situations, it is natural to appeal to resampling techniques. The familiar bootstrap
(Efron and Tibshirani, 1993) estimates variances by resampling from the empirical distribution
function. This approach needs to be justified on a case-by-case basis and may not be appropriate
in complex situations. Parzen and others (1994) proposed a resampling technique by equating
the observed data estimating function to a random vector which generates the asymptotic
distribution of the estimating function. This technique has been applied to numerous
biostatistical problems (e.g. Yao and others, 1998; Chen and Jewell, 2001; Cai and others,
2006). Hu and Kalbfleisch (2000) provided a similar procedure for linear estimating functions
with independent terms by bootstrapping the individual terms. For estimators that can be
written as minimizers of certain U-statistics, Jin and others (2001) developed a resampling
approach by incorporating suitable random variables into the minimand. Their approach was
adapted by Jin and others (2003, 2006) to the rank and least squares regression with censored
data.
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All the aforementioned resampling procedures require solving the perturbed estimating
equations or minimizing the perturbed loss functions a large number of times. This is
computationally very demanding, especially for complex nonlinear functions. In addition, the
perturbed estimating equations or loss functions tend to be associated with extreme solutions
and are thus unstable. As a result, nonsmooth estimating functions are rarely used in practice.

In the present paper, we propose a new resampling strategy to estimate asymptotic variances
of parameter estimators obtained from general nonsmooth estimating functions. Our approach
only requires generation of random numbers and evaluation of estimating functions. It does
not involve solving any perturbed estimating equations or minimizing any perturbed objective
functions; therefore, it is far more efficient and more stable than the existing resampling
methods. With our approach, variance estimation for complex nonsmooth estimating functions
can be accomplished in a matter of seconds or minutes rather than hours or days. We describe
the proposed approach in Section 2. We present simulation results and medical examples in
Sections 3 and 4, respectively. We provide some concluding remarks in Section 5.

2. Methods
Let θ0 denote a d-vector of parameters. We estimate θ0 by solving the estimating equation
Un(θ) = 0, where Un is a function based on n independent observations such that n−1Un(θ0)
→ p 0. Suppose that the solution θ ̂ exists and is consistent. Suppose also that, uniformly in a
neighborhood of θ0,

(2.1)

where Si (i = 1, mldr;, n) are independent zero-mean random vectors, and A is a nonsingular
matrix, which is the asymptotic slope of n−1Un(θ0). This asymptotic expansion holds for a wide
variety of estimating functions and can typically be verified through empirical process
arguments (van der Vaart and Wellner, 1996, Section 3.3). The Si are the influence functions
for Un(θ0). The dependence of Si and A on θ0 is suppressed. Since Un(θ ̂) = 0 and θ ̂ is consistent,
(2.1) implies that θ ̂ is n1/2-consistent and n1/2(θ ̂ − θ0) is asymptotically zero-mean normal with

covariance matrix A−1V (A−1)T, where . For parametric likelihood,

 and V= − A, where Si is the score for the ith observation and A is the negative
information matrix.

We give 2 examples.

Example 1 (Heteroscedastic quantile regression)
For i = 1, mldr;, n, let Yi and Xi denote the response variable and a set of covariates for the ith

subject. Assume that the 100τth percentile of Yi is . We may estimate  by
solving the equation
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where I (·) is the indicator function. The solution θ ̂ can be obtained by minimizing the loss
function

where ρτ (υ) is τυ if υ > 0 and (τ − 1)υ if υ ≤ 0. This minimization can be performed by linear
programing (Koenker and D’Orey, 1987). Under the assumption that ( ) has a
unique 100τth percentile at 0 and has a continuous density function fi such that fi (0) is strictly
positive, the estimator θ ̂ is consistent and the asymptotic expansion (2.1) holds with

 (Jin and others, 2001). The slope matrix A involves the
density functions fi. Buchinsky (1995) compared various bootstrap procedures for estimating
the asymptotic covariance matrix of θ ̂.

Example 2 (Rank regression with censored data)
Assume that

(2.2)

where εi (i = 1, mldr;, n) are independent and identically distributed random variables that are
independent of Xi (i = 1, mldr;, n). Suppose that Yi is subject to censoring by Ci. In survival
analysis, Yi and Ci are usually expressed on the log-scale and (2.2) is referred to as the
accelerated life or accelerated failure time model (Cox and Oakes, 1984, pp. 64–65; Kalbfleisch
and Prentice, 2002, pp. 218–219). The data consist of (Ỹi, Δi, Xi) (i = 1, mldr;, n), where Ỹi =
min(Yi, Ci) and Δi = I (Yi ≤ Ci). It is assumed that Ci is independent of Yi conditional on Xi. One
may estimate β0 by the log-rank estimating equation

(2.3)

It is not a trivial matter to solve this discrete equation, especially when d is large. One may use
bisection search or optimization algorithms, such as simulated annealing (Lin and Geyer,
1992). Recently, Jin and others (2003) showed that linear programing can be used to obtain
an approximation to the log-rank estimate. Under mild conditions (Tsiatis, 1990; Ying,
1993), expansion (2.1) holds with

where
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and Λ0 is the cumulative distribution function of εi. In this case, direct estimation of A would
require estimation of the hazard function or density function of εi.

It is natural to estimate V directly by  ,where Ŝi is obtained from Si by
replacing the unknown quantities by their sample estimators. In Example 1, only θ0 is unknown;
in Example 2, the unknown quantities include β0, Γ0(·), Γ1(·), and Λ0(·). The consistency of
V̂ can typically be established by empirical process arguments.

When the Ŝi have complicated expressions, it is more convenient and perhaps more accurate
to bootstrap from the data. Let  denote the estimating function based on the bootstrap
sample. It follows from (2.1) that

where Mi is the number of times the ith observation appears in the bootstrap sample. Since
Un(θ ̂) = 0 by definition, we obtain

By Lemma 3.6.15 of van der Vaart and Wellner (1996), the conditional distribution of
 given the data is asymptotically zero-mean normal with covariance matrix V

provided that the remainder term in the above display is op(1) uniformly in the bootstrap
samples. It is straightforward to verify the required condition for Examples 1 and 2. The
bootstrap estimator of V is also denoted by V̂.

To avoid nonparametric density estimation, we propose efficient resampling procedures to
estimate A and consequently the asymptotic covariance matrix of n1/2(θ ̂ − θ0). Let θ̃ = θ ̂ +
n−1/2Z, where Z is a zero-mean random vector independent of the data. It follows from (2.1)
that

Since Un(θ ̂) = 0 and θ̃ − θ ̂ = n−1/2Z, we have

(2.4)

Thus, we propose the following resampling procedure based on the least squares.
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LS method
Step 1: Generate B realizations of Z, denoted by Z1, mldr;, ZB.

Step 2: Calculate n−1/2 Un(θ ̂ + n−1/2Zb) (b = 1, mldr;, B).

Step 3: For j = 1, mldr;, d, calculate the least squares estimate of n−1/2 Ujn(θ ̂ + n−1/2Zb) (b =
1, mldr;, B) on Zb (b = 1, mldr;, B), where Ujn denotes the jth component of Un. Let Â be the
matrix whose jth row is the jth least squares estimate.

Step 4: Estimate the covariance matrix of n1/2(θ ̂ − θ0) by Â−1V̂ (Â−1)T.

In many situations, A is symmetric, in which case a simpler resampling procedure can be
obtained. If the covariance matrix of Z is V −1, then (2.4) implies that Cov (n−1/2 Un(θ̃)|data)
= AV−1 AT + op(1). The inverse of this covariance matrix is equal to A−1V (A−1)T when A is
symmetric. Thus, we propose the following resampling procedure based on the sample variance
of n−1/2Un(θ̃).

SV method
Step 1: Generate θ̃b ≡ θ ̂+ n−1/2Zb (b = 1, mldr;, B), where Zb is a zero-mean random vector
with covariance matrix V̂−1.

Step 2: Calculate the sample covariance matrix of n−1/2Un(θ̃b) (b = 1, mldr;, B) and denote it
by Σ ̂.

Step 3: Estimate the covariance matrix of n1/2(θ ̂ − θ0) by Σ ̂−1.

Unlike the existing resampling methods, the least squares (LS) and sample variance (SV)
methods do not require solving estimating equations. This is an important advantage since it
is computationally intensive to solve complex nonsmooth estimating equations. Although we
have suggested the possible use of bootstrap to estimate V, that procedure is different from
bootstrap estimation of the variance of θ ̂ and does not involve solving equations.

3. Simulation studies
We conducted extensive simulation studies to assess the performance of the proposed
resampling methods. For both the LS and the SV methods, we estimated V either by direct
evaluation or by bootstrap. We set Z to V̂−1/2Z*, where Z* is either a d-variate standard normal
random vector or a d-vector of independent centerd Bernoulli random variables with equal
probabilities at −1 and 1. Thus, 8 different variants of the methods were considered.

The first set of studies mimics the simulation studies on median regression reported in Section
3 of Parzen and others (1994). We generated data from the model Yi = X1i + X2i + εi, where
X1i and X2i are independent standard normal and Bernoulli with 0.5 success probability,
respectively, and εi is normal with mean 0 and variance |X1i|. We obtained the parameter
estimates through linear programing.

The second set of studies is similar to those of Jin and others (2003). We generated survival
times from model (2.2) in which X1 and X2 are independent Uniform(0, 1) variable and
Bernoulli variable with 0.5 success probability, β0 = (1, −1)T, and the error distribution is either
extreme-value or zero-mean normal with standard deviation 0.5. We generated censoring times
from a uniform distribution to yield a censoring rate of 25%. We obtained the log-rank estimates
through bisection search.
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The results from the above 2 sets of studies are summarized in Tables 1 and 2. The results of
Table 1 pertain to the continuous covariate. Each entry in the tables is based on 10 000 simulated
data sets and B = 10 000. Clearly, all 8 variants of the resampling methods work well in that
the variance estimators accurately reflect the true variations and the associated confidence
intervals have proper coverage probabilities. There are virtually no differences between the LS
and SV methods or between the direct and bootstrap estimation of V. For the rank regression
under the normal error distribution, the Bernoulli sampling appears to be slightly better than
the normal sampling. For median regression, the new resampling method is approximately 100
times faster than bootstrap (with 10 000 resamples); for rank regression, it is approximately
1000 times faster.

4. Applications
4.1 Multiple myeloma study

We applied the proposed resampling methods to a multiple myeloma study (Krall and
others, 1975). Out of the 65 patients who were treated with alkylating agents, 48 died during
the study. Following Jin and others (2003), we fitted model (142.2) with hemoglobin and the
logarithm of blood urea nitrogen as the covariates by using both the log-rank and the Gehan
estimators. The Gehan estimator is obtained by incorporating the weight function

 into (2.3). We considered the 8 variants of the resampling
methods evaluated in the simulation studies. The differences are negligible between the LS
and the SV methods and between the direct and the bootstrap methods of estimating V.

The results based on the SV method and direct evaluation of V are shown in Table 3. These
results are comparable to those of Jin and others (2003) but were obtained with much less time.

4.2 Atherosclerosis Risk in Communities Study
We also applied our methods to the Atherosclerosis Risk in Communities Study (The ARIC
Investigators, 1989), which is an epidemiologic cohort study of 15 792 subjects aged 45–64
years to investigate the etiology of atherosclerosis and other diseases. We considered all
incident coronary heart disease (CHD) cases occurring between 1987 and 2001. We focused
on the Caucasian sample, which consists of 11 526 subjects with 774 cases. We used model
(2.2) to study the effects of 5 covariates, including smoking status (ever smoke = 1, never
smoke = 0), 2 dummy variables contrasting Minnesota and Washington states to North
Carolina, gender (male = 1, female = 0), and standardized age at the baseline, on the time to
the occurrence of CHD. For large data sets such as this one, the methods of Jin and others
(2003, 2006) are not computationally feasible. We used the Nelder–Mead algorithm as
implemented in MATLAB to calculate the log-rank and Buckley–James estimates. The results
based on the LS and SV methods with direct evaluation of V and 10 000 normal random samples
are displayed in Table 4. For comparison, we also report the results of the method of Parzen
and others (1994) with B = 10 000. The standard error estimates are very similar between the
LS and the SV methods, whereas those of the method of Parzen and others tend to be slightly
larger. The larger standard error estimates by the method of Parzen and others are likely due
to the unstabilities of the perturbed estimating equations. Indeed, the method of Parzen and
others produced 7 extreme estimates in the Buckley–James estimation of the gender effect,
which were excluded in the standard error calculations. For the new resampling approach, it
took approximately 1 and 3 min on an IBM BladeCenter HS20 machine to estimate the standard
errors for the log-rank and Buckley–James estimators, respectively, whereas the method of
Parzen and others consumed 10 and 24 h, respectively.
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5. Discussion
The existing resampling methods require solving estimating equations or minimizing loss
functions repeatedly, whereas the proposed methods only involve the evaluation of estimating
functions. In complex situations, such as rank regression and least squares regression with
censored data, the amount of time required to evaluate an estimating function is negligible as
compared to solving the corresponding estimating equation. Then, the proposed methods are
orders of magnitude faster than the existing resampling methods. Despite the continuing
improvement in computer power, this degree of saving is very important, especially for large
data sets and for simulation studies. Adopting the proposed resampling procedures will not
only enhance the utilities of many existing nonparametric and semiparametric estimators but
also facilitate the development and evaluation of new methods for complex biostatistical
problems.

The approach of Hu and Kalbfleisch (2000) does not require solving estimating equations
repeatedly in order to construct confidence intervals but requires to do so for estimating the
variances of parameter estimators. It is restricted to linear estimating functions with
independent terms and thus would be applicable to quantile regression, but not to rank
regression or Buckley–James estimation.

Our method can be viewed as a version of Monte Carlo numerical differentiation. In contrast
to the usual numerical differentiation that uses fixed step sizes, the new method generates
random step sizes Z, exploring a broad range of step sizes and producing stable estimates.
Numerical results indicate that our method is not sensitive to the choice of the distribution of
Z.

The proposed methods have very broad applications and are particularly applicable to the
situations in which the method of Parzen and others has been used. We have focused our
attention on nonsmooth estimating functions. In some situations, the estimating functions are
differentiable, but the derivatives are difficult to calculate. Then, the proposed resampling
methods would also be appealing.

The results of Section 2 continue to hold if (2.1) is replaced by the more general expansion

where G is a zero-mean random vector whose covariance matrix can be consistently estimated.
Thus, the proposed resampling methods can be applied to multivariate responses, biased
sampling, and time series data among others. Indeed, the n1/2 convergence rate is not essential.
Furthermore, our approach can potentially be extended to semiparametric situations in which
infinite-dimensional parameters are part of θ.
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Table 4
Accelerated failure time regression for the Atherosclerosis Risk in Communities
data

Covariate Estimate
Standard error estimate

LS SV Parzen

Smoking status

 Log-rank −0.411 0.060 0.060 0.060

 Buckely–James −0.363 0.087 0.090 0.092

Minnesota

 Log-rank 0.121 0.064 0.064 0.065

 Buckely–James 0.093 0.065 0.065 0.068

Washington

 Log-rank −0.165 0.061 0.061 0.062

 Buckely–James −0.147 0.067 0.067 0.070

Age

 Log-rank −0.292 0.028 0.028 0.028

 Buckely–James −0.264 0.055 0.054 0.058

Gender

 Log-rank −0.893 0.065 0.065 0.067

 Buckely–James −0.842 0.176 0.172 0.195
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