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Abstract

Background: Breast cancer in young women tends to have a natural history of aggressive disease for which rates of
recurrence are higher than in breast cancers detected later in life. Little is known about the genetic pathways that underlie
early-onset breast cancer. Here we report the discovery of DEAR1 (ductal epithelium–associated RING Chromosome 1), a novel
gene encoding a member of the TRIM (tripartite motif) subfamily of RING finger proteins, and provide evidence for its role
as a dominant regulator of acinar morphogenesis in the mammary gland and as an independent predictor of local
recurrence-free survival in early-onset breast cancer.

Methods and Findings: Suppression subtractive hybridization identified DEAR1 as a novel gene mapping to a region of
high-frequency loss of heterozygosity (LOH) in a number of histologically diverse human cancers within Chromosome
1p35.1. In the breast epithelium, DEAR1 expression is limited to the ductal and glandular epithelium and is down-regulated
in transition to ductal carcinoma in situ (DCIS), an early histologic stage in breast tumorigenesis. DEAR1 missense mutations
and homozygous deletion (HD) were discovered in breast cancer cell lines and tumor samples. Introduction of the DEAR1
wild type and not the missense mutant alleles to complement a mutation in a breast cancer cell line, derived from a 36-year-
old female with invasive breast cancer, initiated acinar morphogenesis in three-dimensional (3D) basement membrane
culture and restored tissue architecture reminiscent of normal acinar structures in the mammary gland in vivo. Stable
knockdown of DEAR1 in immortalized human mammary epithelial cells (HMECs) recapitulated the growth in 3D culture of
breast cancer cell lines containing mutated DEAR1, in that shDEAR1 clones demonstrated disruption of tissue architecture,
loss of apical basal polarity, diffuse apoptosis, and failure of lumen formation. Furthermore, immunohistochemical staining
of a tissue microarray from a cohort of 123 young female breast cancer patients with a 20-year follow-up indicated that in
early-onset breast cancer, DEAR1 expression serves as an independent predictor of local recurrence-free survival and
correlates significantly with strong family history of breast cancer and the triple-negative phenotype (ER2, PR2, HER-22) of
breast cancers with poor prognosis.

Conclusions: Our data provide compelling evidence for the genetic alteration and loss of expression of DEAR1 in breast
cancer, for the functional role of DEAR1 in the dominant regulation of acinar morphogenesis in 3D culture, and for the
potential utility of an immunohistochemical assay for DEAR1 expression as an independent prognostic marker for
stratification of early-onset disease.

Please see later in the article for the Editors’ Summary.
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Introduction

Breast cancer is the most common cause of cancer-related death

in women with an early onset of the disease (#45 years of age) [1].

Although breast cancer occurs less frequently in young women

than in older women, it is often associated with a poorer prognosis.

Compared with older women, young women with breast cancer

have decreased overall survival and disease-free survival rates, and

a higher percentage of tumors with pathologic features reflective of

aggressive disease [2–6]. In early onset breast cancers without

nodal involvement, approximately one-fourth will recur up to 12

years postsurgery [6]. In addition, younger age is recognized as a

risk factor for local–regional recurrence and for distant metastases

after either breast conservation treatment or mastectomy [5,6].

Biomarkers are urgently needed to identify young women who

have an increased risk of breast cancer recurrence and would

therefore benefit from heightened surveillance and adjuvant

therapy. However, in order to stratify early-onset cancers, the

genetic mechanisms that underlie breast cancer in young women

must first be elucidated.

The initiation and progression of breast cancer is thought to

involve not only a disruption of cellular pathways that underlie

proliferation, differentiation, and death, but also perturbation of

extracellular signaling pathways that influence differentiation and

tissue architecture. The architecture of the human mammary

gland is an elaborate branched ductal lobular network terminating

in individual acinar units composed of an inner layer of polarized,

luminal epithelial cells surrounding a hollow lumen and an outer

layer of myoepithelial cells separated from the stroma by an intact

basement membrane [7]. Concomitant with initiation of tumor-

igenesis, the mammary gland loses tissue polarity and increases

cellular proliferation [8]. Cell growth, differentiation, and death in

the mammary epithelium are therefore in an intricate balance, the

regulation of which is, at least in part, governed by microenvi-

ronmental signals from the extracellular matrix (ECM) [9].

Experimental modeling of the ECM using 3D basement

membrane culture recapitulates the architecture of mammary

ductal epithelium in vitro [9–11]. Human mammary epithelial

cells (HMECs) as well as the immortalized mammary epithelial cell

line MCF10A form polarized, growth-arrested acini in 3D culture

[11,12]. In sharp contrast, breast tumor cell lines propagated in

3D culture form nonpolarized clusters of cells without acinar

formation and with limited differentiation [9]. Utilization of the

3D culture system has elucidated the importance of ECM

signaling in the control of differentiation and in the initiation

and progression of breast tumorigenesis [9–17]. Manipulation of

the extracellular milieu by activation of key ECM signaling

pathways results in the loss of differentiation associated with

malignant progression [11–13]. Likewise, partial or complete

restoration of acinar formation in breast cancer cell lines grown in

3D culture has also been documented [14–16]. Phenotypic

restoration of acinar morphogenesis in 3D culture was observed

irrespective of the accumulation of genetic alterations in the tumor

cells, suggesting that the differentiation state in the breast

epithelium is in a dynamic state, amenable to therapeutic

intervention in the case of breast cancer, and that the regulation

imposed by the ECM is dominant to tumor-specific mutational

events in the control of breast cancer progression.

However, RNAi-mediated knockdown of BRCA1 in MCF10A

cells results in a failure of acinus formation and increase in

proliferation in 3D culture, suggesting that critical genes that are

mutated in human breast cancer could function in the dominant

regulation of acinar morphogenesis and differentiation in the

mammary epithelium [17]. Here we report the discovery of

DEAR1, a novel gene that undergoes genetic alteration in breast

cancer, and the investigation of DEAR1’s role in regulation of

acinar morphogenesis and its potential to aid in the clinical

management of early-onset disease.

Materials and Methods

Cell Lines and Tumor Samples
The 21NT, 21PT, and 21MT lines were propagated in

Dulbecco’s modified Eagle medium/F12 (DMEM/F12) supple-

mented with 10% fetal bovine serum, 1 mg/ml insulin, 12.5 mg/ml

epidermal growth factor, and 1 mg/ml hydrocortisone. HMECs

(ATCC, Manassas, Virginia, United States) and the immortalized

breast epithelial line MCF10A were propagated in MEGM

medium (Clontech Laboratories, Mountain View, California,

United States) according to ATCC protocols. The remainder of

the breast carcinoma cell lines (T47D, BT474, MCF-7, H38,

Zr75T, MDA-MB-157, HBL100, HS578T, BT20T, MDA-MB-

231, and MDA-MB-436) used for mutation screens and expression

studies were grown in DMEM/F12 supplemented with 10% fetal

bovine serum.

PCR Select Subtractive Hybridization
Total RNA was isolated with TRIzol (Invitrogen, Carlsbad,

California, United States) with subsequent isolation of the poly-A+

population using oligo dT cellulose. The PCR-Select suppression

subtractive hybridization assay (Clontech Laboratories, Palo Alto,

California, United States) was used to identify cDNAs differentially
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expressed between the microcell hybrid lines SN19(3)EEE [driver]

and SN19(3i)YY [tester] [18–21] (as described in Figure S1 and

Text S1). PCR products from the secondary PCR reactions were

cloned into the pCRII vector (Invitrogen).

Library Screening
To identify a full-length cDNA clone of DEAR1, a human

retinoic acid induced neuroepithelial cell library cloned into the

ZAP Express XR vector (Stratagene, La Jolla, California, United

States) was screened with a 32P end-labeled oligonucleotide

corresponding to the 59 end of the partial cDNA (DEAR1-FOR,

59-TTGATCCAAGGATGTGACATG-39). Positive plaques were

excised and confirmed by PCR using DEAR1-FOR with DEAR1-

REV (59-GTGACCACTGTGGACTGGG-39). The ExAssist

helper phage was used to excise the pBK-CMV expression

vector–positive ZAP Express clones according to the manufactur-

er’s protocol. Sequencing of this phagemid identified an

alternative splice form of DEAR1 (exons 1–3 and 5). Screening

of the RPCI 4 PAC library (Children’s Hospital Oakland

Research Institute, http://bacpac.chori.org/) using the phagemid

insert end-labeled with 32P was performed to identify a genomic

clone of DEAR1.

Generation of a Full-Length Expression Construct
To obtain a cDNA with all exons, one through five, the IMAGE

clone 3355572 was obtained from ATCC. Using this clone as a

template, the open reading frame was amplified by PCR (forward

primer, M13, 59-GTAAAACGACGGCCAGT-39; reverse primer,

7b5-2032-AS, 59-GTCTTAGGCCATGGGACATAAGAG-39).

This amplification yielded a 1,972 bp product that was subse-

quently ligated into pBK-CMV digested with EcoRI/XhoI.

FISH Mapping
FISH mapping of PAC clones was performed according to

previously published protocols [18].

Promoter Methylation and Deletion Analysis
Pyrosequencing-based methylation analysis (PMA) was per-

formed according to the method of Colella et al. [22]. Primers for

deletion studies and promoter analysis by PMA are available upon

request.

Mutation Screening
For exons two through five, 100 ng of genomic DNA was

amplified with AmpliTaq Gold Taq polymerase (Applied

Biosystems, Foster City, California, USA). Since the amplification

of exon 1 proved difficult and inconsistent under standard

conditions (due in part to its G-C content), alternative conditions

were used [23]. The intronic primer sequences are as follows: exon

1 forward, 59-GCTCCTACCCCTGCCTGT-39 and exon 1

reverse, 59-CCCCACCTCCAGCCC-39; exon 2 forward, 59-

GCAGTGGTCAGGGCTGAATG-39 and exon 2 reverse, 59-

CCTTCTTCCCCAGCTGGC-39; exon 3 forward, 59-

CTGTGGTGTCAAGGCTCTCGA-39 and exon 3 reverse, 59-

CTCTGCTAAGGATCCCATCTG-39; exon 4 forward 59-CA-

CATCCTATGCCAGCTGC-39 and exon 4 reverse, 59-CAAGG-

CACTCAGCACATTC-39; exon 5 forward, 59-CTGGAAG-

GACCTTAACCACCA-39, and exon 5 reverse 59-CTAT-

CTTCCGGGCAGGGCTC-39. The expected product sizes are:

585 bp for exon 1, 250 bp for exon 2, 420 bp for exon 3, 329 bp

for exon 4 and 800 bp for exon 5. PCR products were treated with

ExoSAP (USB, Cleveland, Ohio, United States) and submitted to

the M. D. Anderson DNA core facility for sequencing or

denaturing high-performance liquid chromatography (DHPLC).

Electropherograms were analyzed using either Sequencher or

Lasergene software packages.

Antibody Production
Lasergene sequence analysis software was utilized to identify

nonconserved regions of DEAR1 that also scored highly for

antigenicity. Peptide synthesis and polyclonal antibody production

was performed by Bethyl Laboratories (Montgomery, Texas,

United States). Rabbits were immunized with the DEAR1 peptide

conjugated to keyhole limpet hemocyanin. DEAR1 antibodies were

affinity-purified.

Transient Transfection, Whole Cell Extracts, and Western
Blotting

For detection of exogenous HA-DEAR1, 293T cells were

seeded in a 24-well plate at 46104 cells/well overnight before

transfection. To each well, 0.2 mg of pCMV-HA/DEAR1 plasmid

and FuGene6 transfection reagent (1 mg:3 ml) (Roche Applied

Science, Indianapolis, Indiana, United States) were added. After

24 h of culture, the cells were scraped into 60 ml of 16 SDS

sample buffer. For whole cell lysates, cell lines were grown

exponentially, harvested, and lysed in 16 SDS sample buffer.

Equal amounts of protein per lane were loaded on 4%–20% SDS–

PAGE gradient gels (Pierce, Rockford, Illinois, United States),

transferred to membranes, and analyzed using antibodies against

DEAR1 and b-actin (Sigma, Saint Louis, Missouri, United States).

For peptide-blocking experiment, DEAR1 antibody was mixed

with 56 peptide of DEAR1 (v/v) for 2 h at room temperature,

prior to incubation with membrane.

Stable Transfection
Transfection of the pBK-CMV/D187DEAR1 and the pBK-

CMV/DEAR1 constructs into 21MT cells was performed using

Lipofectamine 2000 (Invitrogen). Stable transfectants were isolated

as single colonies following selection in G418 (500 mg/ml).

DEAR1 Stable Knockdown
MISSION shRNA lentiviral vectors expressing nontarget

control shRNA or DEAR1 shRNAs and packaging vectors were

purchased from Sigma (NM_018207). Cotransfection of retroviral

and packaging vectors into HEK293T packaging cells for

production and packaging of retroviruses was performed accord-

ing to the manufacturer’s recommendations. The supernatant

containing virus was harvested and filtered 48–72 h after

transfection. For infection, viral supernatant was added to 76N-

E6 cells in the presence of 8 mg/ml hexadimethrine bromide.

Stable clones were selected using puromycin (2 mg/ml).

Three-Dimensional Culture
Three-dimensional culture assays for acinus formation were

performed as described by Debnath et al. [24].

Immunohistochemistry
Immunohistochemistry was performed on 5 mm sections cut

from formalin-fixed, paraffin-embedded tissue. Following depar-

affinization and rehydration, sections were subjected to antigen

retrieval in either 10 mM sodium citrate, pH 6.0, for 15 min in a

microwave pressure cooker for the DEAR1 antibody, or incubation

with protease XXIV (BioGenex, San Ramon, California, United

States) for 10 min at room temperature for the a-laminin-5

antibody (Millipore, Billerica, Massachusetts, United States).

Subsequent staining procedures were performed according to
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the Super Sensitive Non-Biotin HRP/DAB Detection System

(BioGenex) with the primary antibodies diluted 1:200 in Common

Antibody Diluent (BioGenex). Sections were counterstained with

Mayer’s hematoxylin and mounted with Permount (Fisher

Scientific, Pittsburg, Pennsylvania, United States). Human tissue

was obtained with appropriate institutional review board approval.

DEAR1 expression was scored as negative expression when there

was no detectable staining and positive expression when the

staining was diffuse positive, focal positive, or strong positive.

Statistical Analysis
A database containing DEAR1 status and relevant covariables

was assembled and analyzed using SAS Version 9.1 (SAS Institute,

Cary, North Carolina, United States). All tests of statistical

significance were two-sided. p-Values less than 0.05 were

considered statistically significant. Bivariate analyses for the

association between covariables and DEAR1 status included the

Chi-square and Fisher’s exact tests. Bivariate analyses for the

associations between predictor variables and local and distant

recurrence, and overall survival were conducted using the Kaplan

Meier log-rank test and the Chi-square test for linear trend. In the

multivariate analysis, DEAR1 proportional hazards regression

determined significant predictors of disease-free survival and

overall survival at a p = 0.05 level in the final model.

Results

DEAR1 Is a Novel RBCC/TRIM Family Member Mapping to
a Region of LOH in Breast Cancer within Chromosome
1p35.1

One of the most studied genomic intervals in human cancer lies

within the short arm of human Chromosome 1 in which LOH,

within three separate intervals, occurs at high frequency in a

variety of epithelial cancers, including both sporadic breast cancers

and breast cancers with inherited predisposition [25–28]. LOH

within Chromosome 1p has been shown to predict poor prognosis

in node-negative breast cancers, and allelic deletions in the 1p36

and 1p32 region have been found to correlate with poor survival

[28]. In screening cDNAs obtained from a suppression subtractive

hybridization library (Figure S1 and Text S1), we identified a

700 bp partial cDNA with significant sequence similarity to a

family of RING finger proteins (3.9610218) and that mapped by

fluorescence in situ hybridization (FISH) to one of the Chromo-

some 1p genomic intervals with LOH in breast cancer within

Chromosome 1p34-35. Subsequent screening of the human

reference sequence (UCSC version hg18, based on NCBI Build

36 using the BLAT tool on the UCSC Genome Bioinformatics

Web site, http://genome.ucsc.edu) unambiguously mapped the

novel gene, DEAR1 (ductal epithelium–associated RING Chromosome 1),

to human Chromosome 1p35.1 (Figures 1A and S2).

The complete DEAR1 open reading frame was identified by

sequencing of additional cDNAs obtained from an NT2

neuroepithelial cDNA library screen and reverse transcription

PCR of placental RNA. DEAR1 is composed of five exons

encoding a 475 amino acid protein with a predicted tripartite

sequence motif associated with the RBCC (RING-B-box-Coiled-

Coil)/TRIM (tripartite motif) subfamily of RING finger proteins

with PRY and SPRY domains present within the carboxyl

terminus (Figure 1B) [29–35]. The RBCC/TRIM family of

RING finger proteins has been shown to play critical roles in the

formation and architecture of multiprotein complexes within both

the cytoplasm and nucleus, and has been implicated in the

regulation of differentiation, development, and oncogenesis in

multiple cell types and species [29–31]. Human family members

have been associated with initiating events in oncogenesis, due to

either loss of growth/tumor suppressor functions (PML) or gain of

oncogenic functions (RFP, Efp) in addition to participating as

oncogenic fusion partners in specific chromosomal translocation

events, such as PML, TIF1, and RFP [33–36]. BLAST compar-

isons to the nonredundant peptide sequence databases indicated

that DEAR1 was a unique member of the RBCC/TRIM gene

family (hypothetical protein FLJ10759, later annotated as TRIM

62) with the closest similarity to other human RBCC/TRIM

family members being a 29% identity with the human Ret finger

protein RFP, originally identified as a fusion partner with the RET

tyrosine kinase proto-oncogene [33]. DEAR1 is essentially identical

(98%) to mouse and rat sequences (NP_835211 [Mus musculus] and

XP_232757 [Rattus norvegicus]) (Figure S3) as well as RBCC/TRIM

proteins from diverse species, including Xenopus laevis XNF7 (33%

identity) and TRIM39 (32% identity in mouse, rat, and human)

[32,33].

DEAR1 Expression Is Limited to the Ductal and Glandular
Epithelium in Normal Tissues

DEAR1 is detected as a 4.4 kb primary transcript in multiple

tissues on Northern analysis, with other smaller transcripts

expressed in either a developmental or tissue-specific pattern in

skeletal muscle, placenta, brain, and heart (Figure 1C). Affinity

purified anti-peptide antibodies were generated to the amino

terminus of the DEAR1 protein. Peptide blocking experiments,

performed in HMECs to confirm the specificity of the novel

antibody, indicated that the amino-terminal DEAR1 antibody

detects the predicted 54 kDa full-length protein and that binding is

specifically competed away in the presence of excess DEAR1

peptide (Figure 1D). In addition, transient transfection assays using

HA-tagged DEAR1 constructs introduced into 293T cells specif-

ically detected the appropriate sized transcript (Figure 1E).

Western analysis confirmed that DEAR1 is expressed in all normal

tissues analyzed (Figure 1F). However, DEAR1 expression is

localized to the ductal and glandular epithelium. Immunohisto-

chemical analysis of a normal-tissue microarray (Biogenex)

detected DEAR1 expression limited to the epithelial lining of the

ducts and glands in the majority of normal tissues examined,

including bladder, gall bladder, kidney, prostate, pancreas, and

salivary gland (Figure 1G [i–vi, respectively]).

DEAR1 Expression Is Down-regulated in Breast
Carcinoma Cell Lines and in Transition to Ductal
Carcinoma In Situ

DEAR1 expression was examined by immunohistochemistry on

a series of 14 DCIS samples with associated adjacent normal

epithelium and the corresponding invasive cancer from the same

individual. High levels of staining were observed in normal

mammary ductal structures consistent with normal tissue micro-

array data (Figure 2A [i] and 2B). However, 10/14 (71%)

specimens showed loss or down-regulation of DEAR1 expression in

the transition from normal epithelium to DCIS (Figure 2A and

2B). In high-grade DCIS, DEAR1 expression was diminished at

the basement membrane, with focal positivity in the center of the

DCIS lesions (Figure 2A [ii]). In specimens demonstrating down-

regulation of DEAR1 in DCIS transition, 5/10 specimens (50%,

for which invasive carcinoma was available for analysis) showed

loss or down-regulation in the adjacent invasive carcinoma

(Figure 2A [iii]) with the remaining five of ten invasive lesions

positive for DEAR1 staining (unpublished data). DEAR1 expres-

sion was also examined in normal HMECs, immortal HMEC

variants, and breast carcinoma cell lines by Western blot analysis.
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Figure 1. DEAR1 structure, mapping, and expression in normal tissues. (A) Chromosomal localization of DEAR1 as determined by FISH
analysis using the DEAR1 P1-derived artificial chromosome (PAC) clone. (B) Graphical representation of DEAR1 exonic and protein structure. (C) DEAR1
multiple tissue Northern analysis detects a predominant 4.4 kb band in all tissues examined. Additional, lower molecular weight bands were
observed in a number of tissues, including heart, placenta, skeletal muscle and brain. (D) DEAR1 peptide competition with 56peptide specifically
detects the predicted 54 kDa full-length protein in the immortalized HMEC line 76N-E6. (E) Transient transfection of HA-tagged DEAR1 into 293T cells
(which do not express endogenous DEAR1) detects the appropriate sized protein. (F) Western blot analysis of normal tissue protein lysates using the
a-N DEAR1 antibody identifies a strong band of approximately 54 kDa corresponding to the predicted full-length DEAR1 protein molecular weight.
(G) Localization of DEAR1 protein in normal tissue assessed by immunohistochemistry using the a-N DEAR1 antibody on a multiple tissue microarray.
Staining (dark brown, identified by arrow) is plainly visible in epithelial cells found in a wide range of tissues, including (i) bladder, (ii) gall bladder, (iii)
kidney, (iv) prostate, (v) pancreas, and (vi) salivary gland.
doi:10.1371/journal.pmed.1000068.g001

DEAR1 Regulates Acinar Morphogenesis

PLoS Medicine | www.plosmedicine.org 5 May 2009 | Volume 6 | Issue 5 | e1000068



Results indicated that DEAR1 expression was absent or down-

regulated in six of eight (75%) breast carcinoma cell lines including

two of three 21T series cell lines derived from a 36-year-old female

with infiltrating ductal adenocarcinoma as compared with normal

or immortalized HMECs (Figure 2C) [37,38].

DEAR1 Is Mutated and Deleted in Breast Cancer
Mutational analysis was conducted on 12 breast cancer cell lines

(itemized in Materials and Methods) and three cell lines of the 21T

series (21NT, 21PT, and 21MT) by DHPLC and direct

sequencing. All of the cell lines in the 21T series contained

identical nonconservative missense mutations in exon 3 within

codon 187 (CGGRTGG, R187W) in the coiled-coil domain not

observed in 136 normal alleles or the SNP database (Figure 3A,

Table S1). The mammary epithelial cell strain (H16N-2) derived

from normal breast epithelium of the same patient as the 21T

series lines, did not contain the codon 187 mutation, indicating

that the genetic alteration in the 21T series is not a rare

polymorphism, but rather a tumor-derived mutational event

(Figure 3A). The R187W mutation falls between the two coils of

the coiled-coil domain based on Parcoil (http://paircoil.lcs.mit.

edu/cgi-bin/paircoil) and therefore might be predicted to affect

protein binding to DEAR1. The mutation, however, does not

affect protein stability following cycloheximide treatment (Figure

S4). In addition to the 21T series mutations, breast cancer cell line

MDA-MB-468 contained an intronic alteration not observed in

the SNP database or in control lymphocytes (Table S1).

Sequence analysis of 55 primary breast tumors obtained from

The University of Texas M. D. Anderson Cancer tumor bank

revealed that 13% contained genetic alterations in DEAR1,

Figure 2. Down-regulation of DEAR1 in breast cancer cell lines and in transition to DCIS in the breast epithelium. (A) and (B) show
immunohistochemical staining of two examples from 14 cases for which normal ductal structures, DCIS, and invasive carcinoma from the same
individual are located within the same histologic section. Normal ducts are indicated by solid arrows, and representative foci of DCIS are indicated by
an open arrowhead. Immunohistochemical staining using the a-N DEAR1 antibody appears as a dark brown precipitate. Panel (A) indicates (i) intense
staining of DEAR1 in normal mammary ducts; (ii) diffuse, low level staining of DEAR1 observed in this single focus of DCIS. Note the slight increase in
DEAR1 staining toward the center of the focus; (iii) diffuse, low level staining of DEAR1 is observed throughout much of this region composed of
invasive carcinoma. Panel (B) shows intense staining of DEAR1 noted in the normal duct, with a dramatic decrease in expression in adjacent foci of
DCIS. (C) DEAR1 expression on Western blot analysis of HMEC cultures (normal HMECs and immortalized HMECs 76N-E6 and 76N-F2v) and breast
carcinoma cell lines.
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including three missense mutations, three intronic alterations, and

a silent mutation not observed in screening controls or the SNP

database (Table S2). One missense mutation was observed in a

breast tumor derived from a 36-year-old female, occurring one

nucleotide downstream of the 21MT mutation and thereby

altering the same codon 187 (CGGRCAG, R187Q) as the

21MT cell line mutation (Table S2). This mutation was observed

in adjacent tissue but not in 136 normal alleles or the SNP

database. Two missense mutations were identified in later-onset

breast tumor samples, both affecting exon 5 (GTCRATC, V473I

and GTCRATC, V350I) (Table S2) and present in both tumor

and adjacent normal samples but not in controls or the SNP

database. In addition, the exon 5 mutation was not observed in

normal lymph node from the same individual whose tumor

contained the codon 473 mutation, indicating that the sequence

alteration in the tumor was a somatic mutation of the DEAR1

sequence (Figure 3B). We also identified a HD in a primary tumor

(9BT) obtained from a 39-year-old with triple-negative breast

Figure 3. Mutation and microdeletion analysis of DEAR1. (A) Direct genomic sequencing identified a codon 187 missense mutation (CRT) in
exon 3 in the 21MT cell line but not in the cell line H16N-2, derived from the normal mammary epithelium from the same patient. (B) A missense
mutation in codon 473 of exon 5 (GTCRATC, V473I) detected in a breast tumor sample as well as adjacent normal tissue, but not in the normal lymph
node from this individual, indicating that the sequence alteration in the tumor was a somatic mutation of the DEAR1 sequence. (C) Diagram of
genomic structure and core promoter and exon 1 of DEAR1 indicating the location of assays and primers by which HD in tumor 9BT was identified
(indicated by *) as well as those used for deletion mapping in DEAR1 and flanking genes. (D) Schematic of homozygous deletion in 9BT. (E) STS
mapping analysis indicates retention of MS1, deletion of MS2, and retention of MS3 in primary tumor sample (9BT).
doi:10.1371/journal.pmed.1000068.g003
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cancer. The deletion maps within the core promoter region of

DEAR1 using PMA (assays 1 and 2, Table S3) on bisulfite-treated

DNA (Figure 3C and 3D). Genomic PCR confirmed the HD using

STS markers that spanned microsatellite sequences MS1 and

MS2, located upstream of the DEAR1 core promoter and in the

first intron, respectively (Figure 3C and 3D; Table S3). Results

indicated that the MS1 region upstream of the 59 UTR was

retained in the 9BT sample (Figure 3D), thus mapping the

breakpoint distal to MS1 and spanning the region identified by

PMA. The distal boundary of the deletion was identified using

primers that detected microsatellite sequence MS3 downstream of

MS2 in intron 1, indicating that the HD encompassed the

promoter and exon 1 with retention of exon 2 (MS3). Subsequent

PMA detected a deletion of both the CHD5 and p73 genes, which

lie distal to DEAR1 in Chromosome 1p, suggestive of a terminal

deletion of one allele with a breakpoint within the DEAR1

promoter, which then resulted in LOH encompassing two distal

candidate tumor suppressors on Chromosome 1p (Figure 3E).

Importantly, the HD was detected by two separate methodologies,

indicating a breakpoint in both alleles within the DEAR1 promoter

region. Thus, within a region of LOH for breast cancer and

multiple epithelial tumors, we have identified a HD in an early-

onset breast tumor. Additionally, because PMA detected hetero-

zygous deletion of distal genes to DEAR1, and genomic PCR

detected the HD limited to the DEAR1 promoter and exon 1, our

results are consistent with a microdeletion in one allele and a

terminal deletion with a breakpoint in the promoter of DEAR1 in

the second allele, thereby deleting the entire DEAR1 coding region

as well as the distal arm (Figure 3D). The PMA analysis of 14

breast cancer cell lines and 20 tumor samples did not reveal

promoter methylation in any of the samples.

DEAR1 Restores Acinar Morphogenesis in 3D Basement
Membrane Culture

In order to determine if the mutations in DEAR1 are important

to the genesis or progression of breast cancer and are not mere

‘‘passenger’’ mutations, we performed functional assays. To

determine the effect of genetic complementation of the missense

mutation affecting codon 187 in the breast cancer progression

model as well as in a breast tumor sample, full-length DEAR1 wild

type and R187W mutant cDNA were introduced into 21MT to

generate stable transfectants. Quantitative RT-PCR confirmed

up-regulation of DEAR1 RNA levels following stable transfection

(Figure 4A). cDNA sequencing confirmed expression of predom-

inant wild-type DEAR1 transcripts in 21MT/J and 21MT/L

transfectants and as well as the R187W mutant transcripts in

control 21MT/D (unpublished data). Protein expression levels on

Western analyses were very similar among transfectants and

controls, including HMECs (Figures 2C and S4). 21MT cells,

wild-type transfectants (21MT/J) and (21MT/L), and R187W

transfectant 21MT/D were then plated in 3D basement

membrane culture. Results indicated that over 60% of 21MT

cells in 3D culture formed large, disorganized structures as

determined by staining with propidium iodide followed by

visualization using confocal microscopy (Figure 4B). Introduction

of the tumor-associated R187W missense mutation in 21MT/D
also resulted in a similar percentage of large, irregularly shaped

multiacinar structures as observed in 21MT cells (Figure 4B).

However, introduction of wild-type DEAR1 into 21MT cells

resulted in acinar morphogenesis with .80% of wild-type

transfectants producing small, spherical acini. Forty percent of

these structures contained a central lumen surrounded by a single

layer of polarized epithelial cells (Figure 4B and 4D [i]) unlike the

vast majority of multiacinar structures observed in 21MT and

missense mutant controls as visualized by confocal and differential

interference contrast (DIC) microscopy (Figure 4B, 4C, and 4D

[i]). Thus, the morphological appearance of wild type transfectants

was strikingly similar to normal acini formed by HMECs in 3D

culture.

On day 9 of 3D culture, DEAR1 transfectants (n = 50) had a

median diameter in 3D culture of 71.0 mm (interquartile range,

58.6 to 91.9 mm; range, 43.2 to 167.3 mm) for full-length DEAR1

transfectant J and 69.8 mm (interquartile range, 60.2 to 85.0 mm;

range, 40.7 to 139.8 mm) for transfectant (L). The diameter of

21MT structures in 3D culture measured 108.6 mm (interquartile

range, 81.3 to 166.6 mm; range, 48.8 to 394.1 mm; n = 50) which

was significantly different from acini formed by transfectants with

DEAR1 (using a Mann-Whitney statistical analysis, p,0.0001).

Similarly, transfectant 21MT/D containing the codon 187

missense mutation resulted in structures (median, 128.5 mm;

interquartile range, 88.9 to 176.0 mm; range, 38.1 to 304.6 mm;

n = 50), which by size and morphology closely resembled 21MT

cells in basement membrane culture and were significantly

different from DEAR1 wild-type transfectants (p,0.0001). Staining

with E-cadherin allowed the visualization of cell–cell contacts and

emphasized the distorted cell structures in 21MT and 21MT/D in

which cells of various sizes and shapes were observed with many

misshapen cells visualized by confocal microscopy (Figure 4D [ii]).

21MT and 21MT/D transfectants in 3D culture also showed

diminished polarized expression of alpha-6-integrin, which is

normally expressed on the basolateral surface at the cell

membrane (Figure 4D). In contrast to 21MT and 21MT/D, E-

cadherin staining in wild-type DEAR1 transfectants was properly

localized at cell–cell contacts. Furthermore, acini displayed

uniform cell size and clear basal orientation of nuclei with

increased basal localization of alpha-6 integrin, indicating a

restoration of ordered acinar architecture (Figure 4D [iii]).

Furthermore, caspase 3 staining detected active luminal apoptosis

in day 13 acinar structures in wild-type transfectant clones,

recapitulating a defined event in normal mammary acinar

morphogenesis (Figure 4D [iii]). In addition, results indicated no

discernible difference in Ki67 staining in 3D cultures of 21MT

versus wild-type or mutant transfectants at day 13 when wild-type

transfectants were undergoing active luminal apoptosis (Figure S5),

suggesting that DEAR1’s influence on apoptotic rather than

proliferative pathways is more evident in this model system. Thus,

the introduction of wild-type DEAR1 resulted in restoration of

normal epithelial acinar architecture, a reinitiation of apicobasal

polarity, and a clearing of luminal space, providing evidence for

the role of DEAR1 in the dominant regulation of acinar

morphogenesis and indicating that the 21MT missense mutant

phenotype could be rescued by the introduction of wild-type

DEAR1. Similar results were obtained by transient transfection of

DEAR1 into MCF-7, which has very low to undetectable DEAR1

expression (Figure 2C), in which transient expression of DEAR1

could partially restore acinar morphogenesis in this cell line

(Figure S6).

Knockdown of DEAR1 in Human Mammary Epithelial
Cells Recapitulates the Phenotype of 21MT in 3D Culture

To determine the effect of loss of function of DEAR1 in normal

mammary differentiation, we silenced DEAR1 expression in

immortalized human mammary epithelial cells (76N-E6 cells)

using lentiviral short hairpin RNA (shRNA). Three shDEAR1

clones as well as control shRNA clones were examined by Western

analysis (Figure 5A) and for growth in 3D culture (Figure 5B).

Results indicated that DEAR1 stable knockdown clones (3/3),

which were extensively silenced for DEAR1 expression (Figure 5A),
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failed to form normal acini in 3D culture with irregular,

asymmetric structures visible following 16 days in 3D culture

(Figure 5B). Furthermore, cells within asymmetric structures

appeared disorganized with ubiquitous staining for alpha-6

integrin, indicating loss of apical–basal polarity. Diffuse low to

moderate staining for caspase 3 was also observed in shDEAR1

clones at day 16, during which time control HMECs demonstrated

active luminal apoptosis. These results indicate that without

Figure 5. DEAR1 is a dominant regulator of acinar morphogenesis in HMECs. (A) Western analysis of shRNA control clones (C1 and C2) and
shRNA knockdown clones (sh1, sh2, and sh3). (B) Confocal images of 3D cultures of control clones (C1 and C2) and DEAR1-knockdown clones (sh1,
sh2, and sh3) showing representative acinus stained with alpha6-integrin (red), caspase 3 (green), or DAPI (blue), which shows the clear lumen in
controls as opposed to shRNA knockdown clones (B i, ii, and iii are results at day 16; iv is at day 22).
doi:10.1371/journal.pmed.1000068.g005

Figure 4. Introduction of DEAR1 mediates acinar morphogenesis in 3D culture. 21MT, control 21MT/D187, and wild-type transfectant
21MT/J and 21MT/L analyzed (A) by quantitative RT-PCR and (B) in 3D culture for the percentage of acinar structures. (C) Propidium (red)-staining
structures were photographed by confocal microscopy after 11 d in 3D culture. The lumen can be clearly seen in the DIC photomicrograph to the
right of the fluorescent image. (D) Confocal images of 21MT, 21MT/D, and wild-type transfectant 21MT/J and 21MT/L (i) at low magnification
(bar = 200 mm) illustrating the dramatic size differences in acini from transfectants with and without wild-type DEAR1 and compared with 21MT cells;
(ii) after staining with propidium (red), and E-cadherin (green) discriminated the basal orientation of nuclei and expression of E-cadherin at cell–cell
contacts in wild-type transfectant structures propagated in 3D culture as compared with the large, disorganized apolar structures in 21MT and 21MT/
D cells (bar = 100 mm); (iii) introduction of wild-type DEAR1 into 21MT cells resulted in acinar morphogenesis with epithelial cells surrounding a lumen
illustrated by staining with propidium (blue), which denotes basal orientation of nuclei, basal orientation of alpha-6-integrin (red), and increased
caspase 3 (green) staining in luminal structures in wild-type transfectants as opposed to 21MT and 21MT/D.
doi:10.1371/journal.pmed.1000068.g004
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DEAR1, apoptosis is not restricted to the lumen of acinar structures

and moreover, three separate shDEAR1 clones failed to form

lumens even after 22 d in culture as compared with control

knockdown clones, which formed discrete lumens by the same

time point (Figure 5B [iv]). In addition, BrdU incorporation in day

10 acinar structures indicated no apparent difference in prolifer-

ation between knockdown and control clones (Figure S5). Thus,

stable silencing of DEAR1 in immortalized, nontransformed

human mammary epithelial cells disrupted normal acinar

morphogenesis and recapitulated the phenotype observed in

21MT.

Loss of DEAR1 Expression in Early Onset Breast Cancers
Correlates with the Triple-Negative Phenotype of Breast
Cancers with Poor Prognosis and Strong Family History
of Breast Cancer

Because both DEAR1 mutations and a homozygous deletion

were observed in primary tumors from young women, and

because we herein demonstrate the functional importance of

complementation of a tumor-derived mutation and in vitro

silencing of the gene, these data indicate that DEAR1 is

involved in the underlying genetic etiology of early-onset breast

cancer. To address the clinical significance of DEAR1 in early-

onset breast cancer, a well characterized tissue array from a

cohort of 158 premenopausal women with onset of breast

cancer between the ages of 25–49 years was screened by

immunohistochemistry for DEAR1 expression [39]. All of the

tissue array samples were from stage I or II breast cancers

treated with breast conservation surgery and postsurgical

radiation therapy (Table 1). All progressed to invasive disease

even though 72% of samples were from node-negative breast

cancers. Interrogation of this array using the N-terminal

DEAR1 antibody that we developed identified 56% of the

tumor samples with complete loss of DEAR1 expression, while

44% retained expression.

Clinical parameters for the cohort under study were analyzed

for statistical significance with DEAR1 expression. The analysis

included two groups: samples scored as either focal or diffusely

positive in the positive group and all samples scored as total

absence of staining in the negative group. Thirty-five of the 158

total samples were not scorable due to loss of tissue. Results on

123 samples indicated that DEAR1 loss of expression did not

correlate significantly with tumor size (correlation coefficient:

r = 0.15), lymph node metastasis (r = 0.01), race (r = 20.03), ER

(r = 0.09), HER-2 (r = 0.03), or p53 (r = 20.01) expression status

(Table 1). DEAR1 loss of expression did not correlate with

BRCA1 or BRCA2 mutation, but rather, loss of expression

correlated with a strong family history of breast cancer in this

young cohort (r = 20.24, p = 0.0139). Seventeen of 21 individuals

represented on the tissue array with a strong history of breast

cancer in their families were negative for DEAR1 staining.

Furthermore, loss of DEAR1 expression correlated significantly

with loss of progesterone receptor expression and with the triple-

negative phenotype (ER2, PR2, HER-22) of breast cancers

(r = 0.21, p = 0.0362), a subgroup common in BRCA1 mutation

carriers and identified by gene expression profiling as breast

cancers of poor prognosis and for which few treatment options

exist (Table 1) [40]. Together, the loss of expression of DEAR1 in

the majority of early-onset cases examined and its correlation

with family history and the triple-negative phenotype strongly

supported further investigation of this gene as a candidate

biomarker in early-onset breast tumors.

DEAR1 Expression is an Independent Predictor of Local
Recurrence-Free Survival in Early Onset Breast Cancer

Although loss of DEAR1 expression did not correlate with

distant metastasis or survival in this young cohort of women with

early stage breast cancer, loss of DEAR1 expression on

immunohistochemical staining significantly predicted local recur-

rence. At 5-y follow-up, DEAR1-positive expression correlated

significantly, with a 95% local recurrence-free survival and this

survival rate did not change in our cohort for over 15 y

postsurgical follow-up. In contrast, for samples demonstrating loss

of expression of DEAR1, recurrence-free survival fell to 80% at

10 y and 58% at 15 y (p = 0.034) (Figure 6). Thus, these data

indicate that DEAR1 expression is an independent predictor of

local recurrence in early-onset breast cancers and suggest that

Table 1. Patient and tumor characteristics stratified by DEAR1
expression.

Features Number DEAR1 Expression p-Value

Negative Positive

Histology 0.6582

Ductal 100 55 (83%) 45 (88%)

Lobular 5 2 (3%) 3 (6%)

Others 12 9 (14%) 3 (6%)

Tumor size 0.1463

T1 75 47 (75%) 28 (61%)

T2 34 16 (25%) 18 (39%)

Nodal status 1.0000

Negative 74 43 (73%) 31 (72%)

Positive 28 16 (27%) 12 (28%)

ER 0.4253

Negative 71 41 (68%) 30 (60%)

Positive 39 19 (32%) 20 (40%)

PR 0.0321

Negative 68 43 (70%) 25 (49%)

Positive 44 18 (30%) 26 (51%)

HER-2 0.7526

Negative 103 57 (92%) 46 (90%)

Positive 10 5 (8%) 5 (10%)

Triple negative 0.0362

No 58 26 (43%) 32 (64%)

Yes 52 34 (57%) 18 (36%)

p53 1.0000

Negative 85 46 (75%) 39 (76%)

Positive 27 15 (25%) 12 (24%)

Strong family history 0.0139

No 92 46 (73%) 46 (92%)

Yes 21 17 (27%) 4 (8%)

BRCA1 mutation 0.6347

No 47 28 (88%) 19 (95%)

Yes 5 4 (12%) 1 (5%)

BRCA2 mutation 0.5173

No 50 30 (94%) 20 (100%)

Yes 2 2 (6%) 0 (0%)

doi:10.1371/journal.pmed.1000068.t001
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DEAR1-negative staining on immunohistochemistry could be an

important marker to stratify early-onset breast cancer patients for

increased vigilance in follow-up and adjuvant therapy.

Discussion

Herein we describe the identification of the novel gene DEAR1

and provide evidence for its role in the dominant regulation of

acinar morphogenesis in three-dimensional culture. DEAR1

undergoes mutation and deletion in breast cancer. Furthermore,

by complementation of a somatic tumor-derived missense

mutation, wild-type DEAR1 restored acinar structures that, by

size, polarity, and presence of luminal apoptosis, resembled

normal mammary acini grown under similar conditions. Stable

knockdown of DEAR1 in immortalized HMECs recapitulated the

phenotype in 21MT cells with disruption of tissue architecture, loss

of polarity, and lumen formation, indicating that DEAR1 is

required for normal acinar morphogenesis in 3D culture.

Together, these data define DEAR1 as a critical link between the

control of tissue architecture via ECM remodeling and a tumor-

specific mutational event in breast cancer.

DEAR1 is also a new member of the RBCC/TRIM family of

RING finger proteins, which have been intimately associated with

development, differentiation, and oncogenesis. Although RBCC/

TRIM family members are functionally diverse, these proteins are

considered critical regulators of the cellular architecture of large

protein complexes [29–32]. To date, mutations in RBCC/TRIM

family members have been shown to be causal in hereditary

disorders of development, including mutation of MUL in mulibrey

nanism, an autosomal recessive disorder involving defective

development of several mesodermal tissues and MID1, in X-linked

Opitz/GBBB syndrome, an inherited disorder primarily affecting

midline structures as well as PYRIN/MARENOSTRIN, which is

specifically mutated in familial Mediterranean fever [41–45]. The

tumor suppressor PML is the only RBCC/TRIM family member

of which we are aware for which cancer-specific mutations have

been observed [46]. DEAR1, thus, represents the second example

of an RBCC/TRIM family member that is specifically mutated in

cancer and the only family member for which functional studies

link loss of differentiation to a cancer-specific mutation.

A number of published reports have elucidated the critical role

of microenvironmental signaling in the maintenance of epithelial

cell differentiation. Elegant studies using 3D culture have allowed

the experimental targeted manipulation of key signaling pathways

that dramatically altered the differentiation state of invasive tumor

cells to one resembling a more normal cell phenotype irrespective

of the genetic alterations in the tumor cell genome. Thus, although

it is experimentally feasible to phenotypically alter the ECM and

the growth of tumor cells in vivo and in vitro, we now have

genotypically complemented a tumor-associated mutation, indi-

cating that replacement of a single gene can restore epithelial

differentiation despite multiple genetic abnormalities in a breast

cancer cell line and, furthermore, that DEAR1 is a dominant

regulator of an important pathway to tumorigenesis in early-onset

breast cancer.

In that regard, critical pathways underlying transformation and

malignant progression in mammary tumorigenesis involve a

disruption of normal controls on proliferation, on epithelial

architecture and polarity [7–9]. In mammalian cells, mechanisms

governing polarity and proliferation have been shown to involve

separate pathways. Phosphatidylinositol 3-kinase (PI3K) signaling

through AKT drives proliferation in mammary acini, whereas

PI3K–RAC signaling is necessary for loss of tissue organization

[47]. The oncogene ErbB2, overexpressed in 25%–30% of breast

cancer, has been shown to disrupt polarity by associating with the

Par6 polarity complex [48]. Integrin b4–ErbB2 association has

Figure 6. DEAR1 is an independent predictor of local recurrence free survival in early onset breast cancer. Immunohistochemical
staining of an early onset tissue array resulted in a significant correlation between the expression of DEAR1 and the probability of local recurrence
free survival (p = 0.0334). At 15 y post diagnosis, recurrence-free survival in DEAR1-negative patients was 58% compared to 95% in those patients
whose tumors were positive for DEAR1 expression.
doi:10.1371/journal.pmed.1000068.g006
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also been shown to disrupt polarity and growth control by separate

mechanisms involving activation of STAT3, controlling polarity

and c-Jun, resulting in proliferation [49]. In addition, loss of

function of the polarity protein Scribble cooperates with c-myc to

drive mammary tumorigenesis [50]. Our results in 3D culture

suggest that there is no discernible difference in Ki67 staining of

acini in the DEAR1 knockdown HMECs compared with wild-type

HMECs, suggesting that DEAR1 mediates its effects more by

regulation of polarity than by proliferation, although additional

experimentation will be required to dissect the pathways regulated

by DEAR1. DEAR1’s role in regulating polarity and its loss of

function in breast cancer provides an intriguing glimpse into a

novel regulatory circuitry that goes awry in early onset breast

cancer.

DEAR1 maps within one of the most frequent regions of LOH

in breast cancers with poor prognosis in node negative breast

cancers as well as a genomic interval associated with LOH in

many histologically diverse epithelial cancers, suggesting that it

could be a candidate tumor suppressor in the region [25–28]. Also

of importance is the recent finding of Bagchi et al. in which

chromosome engineering identified CHD5 as a candidate tumor

suppressor within Chromosome 1p36, distal to DEAR1 at 1p35.1

[51]. CHD5 maps to a region associated with LOH in epithelial

tumors, as well as brain tumors and hematopoietic neoplasms,

suggesting that CHD5 is a critical player in many types of cancer.

Interestingly, in the breast tumor sample showing HD for DEAR1,

one copy of Chromosome 1p contains a microdeletion of DEAR1,

while the second copy deletes the entire short arm, including

CHD5, but the breakpoint for the deletion lies within DEAR1.

CHD5 maps to a genomic interval associated with LOH in late-

stage tumors; thus, the finding that DEAR1 seems to play a role in

the earliest stages of breast tumorigenesis would suggest a

mechanism for mutation or deletion of DEAR1 as an initiating

event that could lead to the LOH for distal Chromosome 1p loci

and thus haploinsufficiency of CHD5.

The present study also describes the potential clinical signifi-

cance of DEAR1 genetic alteration and loss of expression in breast

tumorigenesis. Mutation and homozygous deletion of DEAR1 were

discovered in young women. We therefore examined the 21T

series as a model to determine if DEAR1 could be functionally

linked to early onset disease. Our data indicate that DEAR1

mutation and loss of function play a role in early-onset disease.

These data do not indicate, however, that DEAR1 does not play a

role in breast cancer in older women or that DEAR1 discriminates

breast cancers by age. Rather, these data highlight that DEAR1

plays a role in the etiology of breast cancer in young women.

Intriguingly, DEAR1 maps to a genomic interval for which both

linkage and LOH in familial breast cancers have been reported

[26]. Our data demonstrate that in our young cohort, DEAR1

correlates significantly with triple-negative cancers as well as a

strong family history of breast cancer. Thus, it is a formal

possibility that DEAR1 loss of function and mutation might play an

important role in germline predisposition to breast cancer or that

DEAR1 lies in a critical genetic pathway involved in both inherited

and sporadic breast cancer. The loss of function of upstream

pathway members could inactivate DEAR1 expression, a potential

explanation for the higher frequency of loss of expression than

mutation that we observed.

DEAR1 expression was also a statistically significant prognostic

marker for local recurrence-free survival over 20 y postsurgery.

Previously, this cohort had been examined for markers that might

predict local recurrence, including ER, PR, HER-2/neu, p53, and

cytokeratin 19; however, only cytokeratin 19 was statistically

significant for predicting local recurrence [39]. The finding that

DEAR1 expression independently predicts local recurrence in early

onset disease is important given that local recurrence following

breast conservation surgery in younger women is a major clinical

issue. Young women with breast cancer have significantly higher

rates of local recurrence than older women, with local recurrence

following breast conservation therapy and radiotherapy occurring

earlier and with a worse prognosis in many studies than in older

cohorts [52–55].

Thus, there is an urgent need to identify prognostic markers to

identify women with a heightened risk of recurrence for which

more aggressive surveillance and treatment might be warranted, as

well as individuals with favorable prognosis who might be spared

rigorous therapeutic regimens and for whom breast conservation

treatment might be the preferred surgical option. Our data suggest

that DEAR1 loss of function may play an important role in the loss

of differentiation and the poor outcome associated with a high

frequency of early-onset cancers. The finding that DEAR1

correlates with the triple-negative breast cancer subtype also

suggests an impact of loss of DEAR1 expression on the

differentiated state in this subtype of basal tumors of the breast.

Thus, the clear delineation between DEAR1 expression and

recurrence, and the correlation of DEAR1 expression with the

subtype of breast tumors with poor prognosis, suggest that DEAR1

is an important biomarker for stratifying early-onset disease; and

these data in conjunction with its role as a dominant mediator of

differentiation in 3D culture point to a critical role for DEAR1 in a

genetic pathway that is important in early-onset breast cancer, the

elucidation of which could have an important impact on early

detection and targeted therapy for malignancies of the breast.

Supporting Information

Figure S1 Suppression subtractive hybridization cloning of

DEAR1. Microcell hybrids were constructed by the introduction

of a normal copy of Chromosome 3 or fragments of Chromosome

3p into a renal cell carcinoma (RCC) cell background [18–21,56].

Microcell hybrids were injected subcutaneously or orthotopically

in athymic nude mice. Results indicated that the entire

Chromosome 3 suppressed the formation of tumors and that a

small centric fragment (3p12-q11) also suppressed tumors;

however, a fragment containing a deletion in the 3p12 region

(3p12-q24) failed to suppress tumors, mapping a functional tumor

suppressor locus to a 4.75 Mb interval within chromosome 3p12.

Microcell hybrids were used as starting materials for SSH library

construction. DEAR1 was isolated as one of the cDNAs present in

the SSH library.

Found at: doi:10.1371/journal.pmed.1000068.s001 (9.98 MB

TIF)

Figure S2 FISH mapping of DEAR1. (A) Chromosomal

localization of DEAR1 as observed by FISH analysis using the

DEAR1 P1-derived artificial chromosome (PAC) clone. Strong

signal was observed in the distal region of Chromosome 1p. Based

on physical mapping, DEAR1 was mapped to the 1p35.1 interval.

(B) The 420 kb region harboring DEAR1 is shown in the center of

the figure with flanking genes identified. As denoted by the bracket

on the Chromosome 1 ideogram, the 1p34-35 region has been

shown to have high frequency LOH in sporadic breast cancers

with poor prognosis as well as familial breast cancers.

Found at: doi:10.1371/journal.pmed.1000068.s002 (0.18 MB

TIF)

Figure S3 DEAR1 is a highly evolutionarily conserved protein.

Alignment of the human, mouse, and rat DEAR1 protein

sequences demonstrates significant similarity. Amino acid identity
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is denoted by ‘‘*’’ in the consensus line, a conserved substitution is

denoted by ‘‘:’’, and a non-conserved substitution is indicated with

a blank space.

Found at: doi:10.1371/journal.pmed.1000068.s003 (2.49 MB

TIF)

Figure S4 Effect of cycloheximide on DEAR1 protein levels in

the 21MT series cell lines. Lysates from 21MT, 21MT/D, 21MT/

J, and 21MT/L cells treated with 50 mg/ml cycloheximide were

analyzed by immunoblotting. The p21 control shows loss of

stability following the same treatment.

Found at: doi:10.1371/journal.pmed.1000068.s004 (3.24 MB

TIF)

Figure S5 Effect of DEAR1 on cell proliferation markers in 3D

culture. Top panel: Ki-67 expression in 21MT series. Bottom

panel: BrdU incorporation in DEAR1-KD clones and control

clones.

Found at: doi:10.1371/journal.pmed.1000068.s005 (9.84 MB

TIF)

Figure S6 Effect of DEAR1 on restoring acinar morphogenesis

in MCF-7 cells in 3D culture. (A) DEAR1 expression was detected

from cell lysates on Western blots after DEAR1 transient

transfection into MCF7. (B) Acinar morphogenesis of MCF7 cells

transiently expressing DEAR1 compared with vector at day 19.

Found at: doi:10.1371/journal.pmed.1000068.s006 (9.68 MB

TIF)

Text S1 Experiments and methods.

Found at: doi:10.1371/journal.pmed.1000068.s007 (0.05 MB

DOC)

Table S1 DEAR1 genetic alterations in breast cell lines.

Found at: doi:10.1371/journal.pmed.1000068.s008 (0.02 MB

DOC)

Table S2 DEAR1 genetic alterations in breast tumors.

Found at: doi:10.1371/journal.pmed.1000068.s009 (0.03 MB

DOC)

Table S3 Primers used to identify a homozygous deletion in

breast tumors.

Found at: doi:10.1371/journal.pmed.1000068.s010 (0.04 MB

DOC)
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Editors’ Summary

Background. Each year, more than one million women
discover that they have breast cancer. This type of cancer
begins when cells in the breast that line the milk-producing
glands or the tubes that take the milk to the nipples
(glandular and ductal epithelial cells, respectively) acquire
genetic changes that allow them to grow uncontrollably and
to move around the body (metastasize). The uncontrolled
division leads to the formation of a lump that can be
detected by mammography (a breast X-ray) or by manual
breast examination. Breast cancer is treated by surgical
removal of the lump or, if the cancer has started to spread,
by removal of the whole breast (mastectomy). Surgery is
usually followed by radiotherapy or chemotherapy. These
‘‘adjuvant’’ therapies are designed to kill any remaining
cancer cells but can make patients very ill. Generally
speaking, the outlook for women with breast cancer is
good. In the US, for example, nearly 90% of affected women
are still alive five years after their diagnosis.

Why Was This Study Done? Although breast cancer is
usually diagnosed in women in their 50s or 60s, some
women develop breast cancer much earlier. In these women,
the disease is often very aggressive. Compared to older
women, young women with breast cancer have a lower
overall survival rate and their cancer is more likely to recur
locally or to metastasize. It would be useful to be able to
recognize those younger women at the greatest risk of
cancer recurrence so that they could be offered intensive
surveillance and adjuvant therapy; those women at a lower
risk could have gentler treatments. To achieve this type of
‘‘stratification,’’ the genetic changes that underlie breast
cancer in young women need to be identified. In this study,
the researchers discover a gene that is genetically altered (by
mutations or deletion) in early-onset breast cancer and then
investigate whether its expression can predict outcomes in
women with this disease.

What Did the Researchers Do and Find? The researchers
used ‘‘suppression subtractive hybridization’’ to identify a
new gene in a region of human Chromosome 1 where loss of
heterozygosity (LOH; a genetic alteration associated with
cancer development) frequently occurs. They called the gene
DEAR1 (ductal epithelium-associated RING Chromosome 1) to
indicate that it is expressed in ductal and glandular epithelial
cells and encodes a ‘‘RING finger’’ protein (specifically, a
subtype called a TRIM protein; RING finger proteins such as
BRCA1 and BRCA2 have been implicated in early cancer
development and in a large fraction of inherited breast
cancers). DEAR1 expression was reduced or lost in several
ductal carcinomas in situ (a local abnormality that can
develop into breast cancer) and advanced breast cancers,
the researchers report. Furthermore, many breast tumors
carried DEAR1 missense mutations (genetic changes that
interfere with the normal function of the DEAR1 protein) or

had lost both copies of DEAR1 (the human genome contains
two copies of most genes). To determine the function of
DEAR1, the researchers replaced a normal copy of DEAR1
into a breast cancer cell that had a mutation in DEAR1. They
then examined the growth of these genetically manipulated
cells in special three-dimensional cultures. The breast cancer
cells without DEAR1 grew rapidly without an organized
structure while the breast cancer cells containing the
introduced copy of DEAR1 formed structures that
resembled normal breast acini (sac-like structures that
secrete milk). In normal human mammary epithelial cells,
the researchers silenced DEAR1 expression and also showed
that without DEAR1, the normal mammary cells lost their
ability to form proper acini. Finally, the researchers report
that DEAR1 expression (detected ‘‘immunohistochemically’’)
was frequently lost in women who had had early-onset
breast cancer and that the loss of DEAR1 expression
correlated with reduced local recurrence-free survival, a
strong family history of breast cancer and with a breast
cancer subtype that has a poor outcome.

What Do These Findings Mean? These findings indicate
that genetic alteration and loss of expression of DEAR1 are
common in breast cancer. Although laboratory experiments
may not necessarily reflect what happens in people, the
results from the three-dimensional culture of breast
epithelial cells suggest that DEAR1 may regulate the
normal acinar structure of the breast. Consequently, loss of
DEAR1 expression could be an early event in breast cancer
development. Most importantly, the correlation between
DEAR1 expression and both local recurrence in early-onset
breast cancer and a breast cancer subtype with a poor
outcome suggests that it might be possible to use DEAR1
expression to identify women with early-onset breast cancer
who have an increased risk of local recurrence so that they
get the most appropriate treatment for their cancer.

Additional Information. Please access these Web sites via
the online version of this summary at http://dx.doi.org/10.
1371/journal.pmed.1000068.

N This study is further discussed in a PLoS Medicine
Perspective by Senthil Muthuswamy

N The US National Cancer Institute provides detailed
information for patients and health professionals on all
aspects of breast cancer, including information on genetic
alterations in breast cancer (in English and Spanish)

N The MedlinePlus Encyclopedia provides information for
patients about breast cancer; MedlinePlus also provides
links to many other breast cancer resources (in English and
Spanish)

N The UK charities Cancerbackup (now merged with
MacMillan Cancer Support) and Cancer Research UK also
provide detailed information about breast cancer
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