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ABSTRACT A new class of experiments that probe folding
of individual protein domains uses mechanical stretching to
cause the transition. We show how stretching forces can be
incorporated in lattice models of folding. For fast folding
proteins, the analysis suggests a complex relation between the
force dependence and the reaction coordinate for folding.

Several experimental groups recently have succeeded in moni-
toring the unfolding of individual protein domains (1–3), by
measuring the forces exerted when stretching titin, a giant mul-
tidomain protein molecule. Single molecule experiments hold
unique promise to give information about the mechanisms of
biomolecular reactions. They can, in principle, confirm the co-
operative character of some conformational transitions, which
often is only indirectly inferred by observations of ensembles of
molecules. Also they can yield information about the intermit-
tency of transitions arising from the ruggedness of the energy
landscapes of proteins, which has been predicted recently (4).
Stretching experiments also provide direct information about the
mechanical forces and therefore the free energies involved in
protein folding. Indeed the authors of those experimental papers
made several intriguing inferences about the folding mechanism
and energy landscape of the domains on the basis of their results.
In this paper we want to further discuss the interpretation of such
single molecule mechanochemical experiments by using the en-
ergy landscape theory of protein folding and lattice model
simulations.

There are two aspects of the mechanochemical experiments
that require special attention. The first of these is that from the
point of view of a protein chemist the stretching experiment
perturbs the energy landscape for folding in an unusual way.
The dominant energies that guide a protein to fold quickly are
correlated strongly to the specific structure of the protein, that
is, the energy landscape is a funnel (5, 6). The reaction
coordinate for folding is a collective coordinate measuring, to
a first approximation, the fraction of interactions that are
native-like. This reaction coordinate is a scalar, i.e., it is
rotationally invariant. Most perturbations used to probe the
folding energy landscape therefore are also scalars. In contrast,
the stretching force is a vector. Until the molecule is suffi-
ciently polarized by stretching, the stretching force acts very
ineffectually on the reaction coordinate. Within the linear
response regime, the Curie principle, in fact, would require
there to be no effect of stretching on folding. On the other
hand, the single molecule stretching experiments generally
were performed under extreme tension, which greatly distorts
the energy landscape, favoring highly expanded configura-
tions. This feature leads to the second unusual aspect of the
perturbation—it is very large on the scale of folding energies.
Energy landscape theory allows us to estimate the effects of
these strong perturbations on the free energy surface that
controls the folding rate.

A Minimalist Approach to Stretch Experiments

According to the energy landscape theory, folding mechanisms
can be classified into several scenarios depending on the shape
and character of the free energy surface. In the most common
regime, folding is described by an exponential process whose rate
is limited by the time it takes to reach an entropic bottleneck,
which consists of an ensemble of many structures. In this regime
the rate is a smooth function of the protein stability. For a
restricted range of stabilities the relationship between activation
free energy and stability is linear. Nevertheless when the protein
is very stable, folding can occur by a downhill mechanism or
conversely when very unstable, unfolding can be a downhill
near-barrierless process. Deviations from exponential kinetics are
expected in the downhill scenario. Also, when the process is not
dominated by a single bottleneck, the ruggedness of the landscape
is more apparent because events are much faster.

This framework suggests that the way in which the force
affects stability is paramount. Because the force is a vector,
stability is a quadratic function of it for small magnitudes. In
this regime, models that treat the reaction coordinate as a
length can be misleading. Once the chain is polarized, the
stability of the molecule will change more linearly with the
additional force, and models that use length as the reaction
coordinate may become more appropriate, although as we
shall see some care is needed in interpreting them too literally
as giving geometrical information about the transition state.
For very large extension forces, unfolding can become down-
hill in character and again will vary slowly with tension. In this
regime, undoing specific traps can be the rate-limiting step. In
addition, in the downhill regime, the force dependence of even
the elementary events of local conformation isomerization
may become rate controlling (7).

We now illustrate these ideas with the help of a lattice
simulation. The system used is a minimally frustrated three-
letter code 27-mer on a cubic lattice (8–10). The energy
landscape of this model system in a renormalized sense
corresponds to a fast-folding (millisecond time scale) small
helical (around 60 aa) protein (5). Without any stretching force
the energy is given by a sum of contact terms‡‡. The proper
incorporation of the stretching force into the model requires
some subtlety because of the inherent rotational anisotropy of
any lattice. In reality, a configuration with any given end-to-
end length can be oriented in any direction. If the rotational
motions of the chain are taken to be rapid, a contribution to
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‡‡A detailed description of the model can be found in refs. 8–10. The
energy function used is a contact energy in which monomers that are
nearest neighbors on the lattice are considered in contact. There are
two terms, one of which is the number of like contacts, Nl, (i.e.,
contacts between monomers of the same type) and the other of
which is the number of unlike contacts, Nu. The contact part of the
energy is then: Econt 5 NlEl 1 NuEu. El and Eu set the strengths of
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21, respectively. The sequence used was ABABBBCBACBAB-
ABACACBACAACAB.

2031



the potential of mean force caused by the tension can be
obtained by averaging over all orientations. This rotational
averaging gives a contribution to the free energy of the chain
given by

^~lend! 5
21
b

logF 4p

bFlend
sinh~bFlend!G . [1]

F is the force on the ends, lend is the distance between the ends
of the chain, and b is the inverse temperature. (The unit of
distance is the separation of points in the lattice. Therefore two
neighboring beads in the chain are a distance 1 apart.) This
free energy contribution was first obtained by Wall in his
theory of rubber elasticity (11).

Lattice simulations were carried out with Monte Carlo
kinetics (8, 9) using the sum of the internal (contact) energies
and the stretch free energy contribution given by Eq. 1. The
simulations were run at a temperature for which 76% of the
time the system was in the ground state with no applied force.
(In our simulation units, this condition represents a temper-
ature of 1.4. Energies are measured in units of temperature,
i.e., kb 5 1. Again, the unit of length is the distance between
neighboring residues in the chain.) Both folding and unfolding
runs were performed. In addition, the multiple histogram
method was used to evaluate the protein stability as well as free
energy profiles as a function of the external force. In Fig. 1 we
exhibit the unfolding times of the model protein as a function
of the tensile force. The three regimes described in the
beginning of these sections are clearly evident. For small and
large forces, the logarithm of the unfolding time is roughly
independent of the force, whereas for intermediate values it
has a linear dependence on force. In Fig. 2 the stability of the
lattice protein is plotted. Folding rates are related to the
stability through an extrathermodynamic relationship, which is
illustrated in Fig. 3. The location of the transition state in the
Q coordinate is given by the slope of this curve (shown in Fig.
3). Q is a measure of the number of native contacts for any
given conformation. For the 27-mer model, its maximum value
is 28. This transition state plot can be compared with the plots
of free energy as a function of Q (Fig. 4). There is very good

agreement between both methods in locating the transition
state and both concur that as the force is increased the
transition state moves toward the folded (native) state. By the
time the force as reached a value of 4 the unfolding is downhill,
with a barrier at Q ' 22.

Additionally, there seems to be two separate transitions as
the force is increased. Fig. 5 shows both the native state
stability and the end-to-end distance as a function of the
pulling force. One interesting point is that the system actually
becomes more stable as the force increases initially. This
surprising effect arises from the relation of the end-to-end
distance of the native state (lnat) and the average end-to-end
distance of collapsed molten globule states (lMG). In our
particular structure lnat 5 =8 is greater than lMG '2.71, so
there is a slight stabilization with small forces. Other structures
in the collapsed molten globule (before the force is strong
enough to break bonds) could have lnat less than or equal to
lMG. Indeed it is often the case for real proteins that the two
ends often are found near each other. This initial counterin-
tuitive stabilization should be rarely observed in the labora-
tory. However, the important point here is not the initial
stabilization at small forces (which might not happen for other
structures or proteins) but that it indicates the unfolding
transition is from the native state to an ensemble of compact
states with relatively small end-to-end separation, not a tran-
sition from the native state to fully stretched-out states probed
by large forces. Again, examining Fig. 5 we see that substantial
unfolding is reached (i.e., when half of the molecules have
unfolded) whereas the end-to-end length is still relatively short
('5). It is not until much larger forces that the chain fully
stretches out.

FIG. 1. Unfolding and folding times versus end-to-end stretching
force. The simulation temperature was 1.4, which is slightly below the
folding temperature for this sequence (Tf 5 1.51). The unfolding time
was defined as the time (in Monte Carlo steps) it took to reach a state
of Q ,6. We see three different regimes. At very low and very high
force the unfolding time is roughly independent of the force. At
intermediate forces the relation between the unfolding time and the
force appears linear. Also shown is the equilibrium folding time, which
is calculated from the unfolding time and the equilibrium constant (tf
5 Kutu). Once the force becomes large enough to destabilize the
compact state the folding time grows rapidly.

FIG. 2. Stability vs. stretching force. (Upper) The probability of
being in the native state Pnat as a function of the stretching force. We
can define an equilibrium unfolding force, the force at which Pnat 5
0.5, which is approximately 2.7. (Lower) The free-energy difference
(DG0) as a function of force.
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In the spirit of the landscape theory for protein folding, we
now present a simple model that accounts for the mechanism
observed in these simulations. In our earlier work for this
lattice model, we have shown that the ‘‘protein’’ folds as a
two-state system with a folded minimum and a collapsed
molten globule minimum. We call the latter state a molten
globule because it has only a modest degree of nativeness
(around 25%). For a careful discussion of this model, the

nature of the folded, transition, and molten-globule states as
well as for the connection between this model and the folding
of real proteins, the reader is referred to ref. 5. The unfolded
state substantially changes in the presence of the force. It may
not be collapsed any more, because contacts get broken as the
force is increased. In the most simplified way, the unfolded
state can be represented by a partially collapsed globule plus
extended tails of the chain. The size of these extended tails and
of the globule changes with the strength of the applied force.
In this model, the partition function can be written as

Z@F# 5 exp$ 2 b~Enat 1 ^~lnat, F!!%

1 O
N50

N0

expH 2 bSFmgF N
N0
G 1 ^~ld~N!,F!DJ , [2]

where N0 is the total number of chain residues and N is the
number of residues of the partial globule. ld(N) is the end-to-
end length of the partial globule plus extended tails and is a
function of N. For n 5 N0, ld is the average end-to-end distance
for the collapse molten globule, while for n 5 0, it is the full
length of the chain (N0 2 1). For simplicity, we treat the energy
of the globules as a linear function, although its energy
depends on the number of contacts, which is not exactly
proportional to N. Within the capillarity approximation, suit-
able for much longer chains, an additional surface term giving
rise to cooperativity, at least, could be added (12, 13).

The thermodynamic behavior observed in the simulations is
well described with the simple partition function described
above. The corresponding fit to the stabilization free energy as
function of stretching force is shown in Fig. 2. The results are
presented in Fig. 6, and the agreement is excellent considering
the simplicity of the underlying picture. The energy for the
folded state (Enat 5 284) is the exact value for the lattice
model and (Fmg 5 282.2) is chosen to give the appropriate
folding temperature for the system in the absence of forces. A
simple function is used to represent the length of a stretched
globule with appended tails

ld~N! 5 ~1 1 lmg!
3ÎN

N0
1 N0 2 1 2 N, [3]

but the results are not too sensitive to this choice as long as the
limits for large and small N are preserved. lmg is fitted to a value

FIG. 4. Free energy as a function of Q for various pulling force
strengths. For weak forces the transition state remains fixed, but for
moderately high forces the transition state moves closer to the native
state, changing from an initial value of '16 to '22 by the time the
force reaches 4.

FIG. 3. The unfolding time versus stability plot (Upper) and its
negative slope (Lower) vs. Kunfold. The extra point (■) was determined
by using a denaturant simulation without any force (17). a corresponds
with the transition state ensemble location, a 5 Q†yQnative.

FIG. 5. Stability and end-to-end distance as a function of pulling
force. One interesting point, the system becomes more stable as the
force increases initially. This effect is not universal, but is the result of
the relation of the end-to-end distance of the native state (lnat) and the
average end-to-end distance of collapsed molten globule states (lMG).
Note the protein unfolds before a substantial increase of the end-to-
end distance occurs, indicating that there are possibly two overlapping
transitions: an unfolding event and then an elongation event.
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2, which is very close to the actual value. The fact that the
transition to an extended unfolded state occurs at the same
force as the simulation result supports the theoretical picture
of the unfolded state. In our units, the energy to break a strong
contact is equal to 3. Breaking one of the end contacts should
increase the end-to-end length by a distance around unit.
Therefore, if we set denergy 5 force 3 Dl, a force of '3 is
obtained, exactly where the transition is observed. Therefore,
as expected, as soon as the force crosses the threshold of 3, the
transition state rapidly moves toward the folded state (see Fig.
4). These estimates are at least qualitatively in line with what
has been observed in the experiments for titin, where the
typical forces for unfolding transitions are reported around
20–30 pN (3). A typical noncovalent contact in a protein is of
the order of 2 Kcalymol, i.e., around 20 pNnm. As contacts are
broken, the protein tails should start to increase by lengths in
the range of nm (14, 15), leading to forces with the intensities
just described above.

In the experiments on the unfolding of titin (1–3), each of
the domains resembles Ig or fibronectin and are 89–100 aa
long. Entropically these proteins are of similar size to the fast
folding proteins that have landscapes modeled by the 27-mer
lattice model, but unfortunately, for making faithful compar-
isons of the present simulation with experiments, at the
stability midpoint, these domains fold much slower than our
model (16). This finding suggests that there may be additional
sources to the thermodynamic free energy barrier beyond the
entropic contribution important in the simulation. Indeed this
particular protein must be more resistant to unfolding than
most to have appropriate mechanical responses in the cell.
Schulten and collaborators (7) recently have simulated the
unfolding of a titin domain under strong forces. They have
concluded the transition state ensemble is nearly completely
native-like consistent with what would be found in the lattice
model. Under these conditions, the first contacts to be broken
apparently are close to the two ends of the molecule, which
suggests that evolution has increased the number or strength-
ened the contacts in this region. It would be interesting to
perform similar experiments on a fast folding helical protein
not involved in mechanical functions in the cell. Here the
expected variation of transition state location with force
should be more readily observed.

It has become common to use force experiments to plot free
energy curves for folding with end-to-end length as the reac-
tion coordinate. This way of presenting the results can give a
very different picture from the reaction profile based on order
parameter tied to the degree of nativeness. Fig. 4 plots the free
energy profile as a function of Q for various forces. Notice the
barriers are quite broad. In contrast, in Fig. 7, the free energy
barrier seems quite sharp and well defined, but the profile
changes dramatically with stress. The force dependence of the
rate often is written by using an Eyring-like expression where
the displacement in the transition state dl† 5 2dDG†yd(force).
This effective transition state displacement in the Q coordinate
can be obtained from Figs. 3 and 4. For forces larger than 3 or
4, we notice that the transition state is located very close to the
folded state, while, in the absence of forces, this transition state
is halfway between the folded and unfolded states. The con-
sequences of this shift are illustrated in Fig. 8, where the values
for dl† are shown. For small forces, dl† '0 because the free

FIG. 7. Free energy as a function of the end-to-end separation
(lend) for several different values of the pulling forces. The curves were
calculated by using the Monte Carlo histogram technique. Note, the
ruggedness at a larger separation is the result of sampling error.

FIG. 8. Effective transition state displacement (dl) versus force.
The plot is computed from the transition state free energy barrier by:
dl 5 2 DG‡yF. The barrier height was estimated by using the data
in Fig. 1 assuming a simple Kramer’s form for the unfolding time, DG‡

5 Tlogtu 1 C. The slight negative values at small force are the result
of the fact that this particular native state is stabilized by a small
stretching force. The dotted line is a polynomial fit to the data as an
aid to the reader.

FIG. 6. A comparison between the simulated results (see Fig. 2)
and the theoretical model discussed in the text (see Eq. 3). The energy
for the folded state (Enat 5 284) is the exact value for the lattice model
and Fmg 5 282.2 is chosen to give the appropriate folding temperature
for the system in the absence of forces. A simple function is used to
represent ld(N) 5 (1 1 lmg)(NyN0)1/3 1 N0 2 1 2 N. A exact value is
used for lnat 5 2.7 and lmg is fitted to a value 2, which is very close to
the actual value.
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energy barrier is very insensitive to the force. When the forces
are sufficiently large to start to be able to break contacts (F '
3), dl† is close to the unit lattice length. For very large forces,
where the reaction becomes downhill, dl† again falls to zero.
Although this is a model system, it illustrates a possible
difficulty in interpreting the effective displacement inferred in
the laboratory as a literal geometrical parameter of a particular
member of the transition state ensemble. That the apparent dl†
is so small (3.0 Å) is entirely to be expected because in the
presence of large forces, as soon as one or very few contacts
are broken, the entire protein unfolds. Again, this can be easily
seen in Figs. 4 and 8.

Conclusion

As we can see, stretching provides a powerful experimental
tool to explore the protein folding energy landscape. In
combination with a careful study of the time dependence of
unfolding and the use of different thermodynamic conditions
that can tune the stability of contacts, we believe that a
comprehensive view of the forces involved in folding will arise.
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