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Many common chemical potential equalization ��Eq� methods are known to suffer from a
superlinear scaling of the polarizability with increasing molecular size that interferes with model
transferability and prevents the straightforward application of these methods to large, biochemically
relevant molecules. In the present work, we systematically investigate the origins of this scaling and
the mechanisms whereby some existing methods successfully temper the scaling. We demonstrate
several types of topological charge constraints distinct from the usual single molecular charge
constraint that can successfully achieve linear polarizability scaling in atomic charge based
equilibration models. We find the use of recently employed charge conservation constraints tied to
small molecular units to be an effective and practical approach for modulating the polarizability
scaling in atomic �Eq schemes. We also analyze the scaling behavior of several �Eq schemes in the
bond representation and derive closed-form expressions for the polarizability scaling in a linear
atomic chain model; for a single molecular charge constraint these expressions demonstrate a cubic
dependence of the polarizability on molecular size compared with linear scaling obtainable in the
case of the atom-atom charge transfer �AACT� and split-charge equilibration �SQE� schemes.
Application of our results to the trans N-alkane series reveals that in certain situations, the AACT
and SQE schemes can become unstable due to an indefinite Hessian matrix. Consequently, we
discuss sufficient criteria for ensuring stability within these schemes. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2872603�

I. INTRODUCTION

For atomistic molecular dynamic �MD� simulations that
seek to model biochemical systems to the level of “chemi-
cal” accuracy, nonadditive polarizable force fields offer sig-
nificant advantages over additive fixed-charge potentials.
Chemical potential equalization ��Eq� methods represent
one promising approach for the efficient inclusion of explicit
molecular polarizability in these simulations. Such methods
typically redistribute charge �possibly in addition to higher
order multipole moments� within a molecule in an effort to
realistically model the polarization response to conforma-
tional and environmental changes. These methods may also
be flexibly incorporated into existing MD algorithms at mod-
est computational cost using an extended Lagrangian frame-
work or as a set of simultaneous equations in matrix form.
Another attractive �though frequently underexploited� feature
of �Eq methods is their intrinsic ability to model intermo-
lecular charge transfer without any additional modifications.
Thus, accurately parametrized force fields based on such
methods are expected to become increasingly desirable for
improved accuracy in chemical simulations.

It is equally important that such force fields be straight-
forward to parametrize and easily transferable to new sys-
tems. Concerning the former, a number of excellent param-
etrization approaches for �Eq models have been described in

the literature;1–4 however, achieving broad transferability to
new or larger systems remains a considerable challenge for
�Eq models. Recently, Chelli et al.5–7 have demonstrated
that parameters accurately tuned to small hydrocarbon mol-
ecules can egregiously overestimate the linear polarization
response in larger molecules depending on the specific �Eq
method8–12 employed. While ab initio calculations7,13 and
experimental results14 for the N-alkanes demonstrate a linear
increase in molecular polarizability with molecular size,
Chelli et al.5–7 have observed superlinear scaling for some
�Eq methods. This behavior also poses serious problems re-
garding the development of polarizable �Eq potentials for
large biomolecules since the atomic parameters are not trans-
ferable among molecules of different sizes.

These issues have led Chelli et al. to propose an alter-
nate �Eq scheme, the atom-atom charge transfer �AACT�
model,5 in an effort to eliminate this superlinear scaling of
the polarizability in the N-alkane series through topological
control of charge transfer. Given the ongoing refinement and
development of �Eq methods, such as those incorporating
distance-dependent charge transfer,15 it is timely to precisely
characterize the specific origins of this scaling problem so
that it may be systematically controlled in all future models.

Our interest in the present work lies in clearly elucidat-
ing the source of the superlinear polarizability scaling by an
analysis of simple model systems and in assessing the
mechanisms by which existing methods moderate this scal-
ing in nonconducting molecules. In Sec. II, we first review
pertinent details of �Eq methods expressed in one- and two-
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body charge variable representations. A systematic examina-
tion of the scaling behaviors of four �Eq schemes in the
context of a linear atomic chain system is pursued in Sec. III.
In the process, we derive closed-form expressions for the
polarizability scaling in a few simple cases and suggest some
additional approaches for controlling the scaling. Section IV
extends the discussion to more realistic examples including
the fully interacting linear atomic chain and the N-alkane
series which incorporates additional components of the po-
larizability tensor. We also discuss conditions under which
certain �Eq schemes exhibit instabilities arising from an in-
definite Hessian matrix. We conclude in Sec. IV with a sum-
mary of our findings and some recommendations regarding
the practical control of the polarizability scaling in current
�Eq methods and in the development of future �Eq models.

II. THEORY AND METHODS

A. Atomic representations

The charge equilibration �QEq� or electronegativity
equalization approach, first described in seminal work by
Mortier et al.8 and later by Rappé and Goddard9 as a way of
predicting charge distributions within molecules from atomic
ionization potentials, electron affinities, and atomic radii, is
based on the electrostatic energy of a molecule expanded to
second order in atomic charge variables as

E�Q� = �
i=1

N

�i
0Qi +

1

2�
i=1

N

�i
0Qi

2 + �
i=1

N

�
j�i

N

JijQiQj . �1�

Here, the singly indexed uppercase charge variable Qi repre-
sents an atomic charge, and the parameters �i

0 and �i
0 may be

identified as an atomic electronegativity and atomic hard-
ness, respectively. In the above expression, the terms Jij rep-
resent screened Coulomb interactions between atoms i and j
that are often taken to be the molecular Coulomb integral
over atomic Slater or Gaussian orbitals located on the respec-
tive nuclei. In the QEq formulation, the diagonal atomic
hardness terms �i

0 represent the self-Coulomb repulsion or
idempotential Jii evaluated at zero internuclear separation;
however, these terms along with the corresponding atomic
electronegativities may also be treated as adjustable model
parameters. Differentiation of the energy expression �Eq. �1��
with respect to each atomic charge yields a set of N simul-
taneous equations

�E

�Qi
= �i

0 + �i
0Qi + �

j�i

N

JijQj = 0, �2�

which, when set to zero, may be solved for a set of charges
which minimize the energy subject to the condition that the
second derivative Hessian matrix defined by the elements

�2E

�Qi
2 = Jii = �i

0 �3�

and

�2E

�Qi�Qj
= Jij �4�

be positive definite. Cast in matrix form, these equations may
be written as

JQ = − � , �5�

where �= ��1
0 ,�2

0 , . . . ,�N
0 � and Q= �Q1 ,Q2 , . . . ,QN� are vec-

tors formed from the atomic electronegativities and atomic
charges, respectively, and the symmetric matrix J �which we
also refer to as the atomic hardness matrix� is assembled
from the Hessian elements described above. In practice, the
above set of equations must be augmented by an additional
charge conservation constraint such as

�
i=1

N

Qi = 0 �6�

to guarantee molecular charge neutrality. One way in which
this constraint may be enforced is through the use of the
modified system of equations2,5,16

J�Q = − ���, �7�

in which J� is the charge-constrained atomic hardness matrix
having elements J1j� =1 and Jij� =Jij −J1j for all i�1. Here, we
have chosen to take differences with respect to the first atom
for convenience, but this choice is not unique and suggests
numerous alternate definitions of the charge-constrained
hardness matrix J�. The vector ��� is composed of differ-
ences of atomic electronegativities relative to the first atom
so that ���= �0,�2

0−�1
0 , . . . ,�N

0 −�1
0�. Components of the po-

larizability tensor � are computed as

��� = R�
t J�−1�R�� , �8�

where R� denotes the � Cartesian components of the atomic
position vector. �R�� is formed from the corresponding �
components but relative to an origin placed on the first atom
according to �R��=R�−R�

1. Polarizabilities computed using
the above expression are origin independent since the vector
R� may be defined with respect to any origin.

In keeping with the origins of the QEq scheme, many
implementations retain the original formulation in terms of
atomic charge variables, electronegativities, and hardnesses.
This one-body representation, which we will refer to as the
atomic representation �AR�, is frequently employed because
of intrinsic compatibility with existing fixed-charge MD ma-
chinery and the relatively small number of parameters re-
quired.

B. Bond representations

To better describe the perturbative effects of the local
chemical environment within the context of a distance-
dependent framework and to overcome some methodological
shortcomings of AR schemes, recent investigations have
found it advantageous to work in a bond representation �BR�
built on two-body parameters corresponding to pairs of at-
oms �bonds�. In contrast to the AR which employs atomic
charges as the independent variables, the BR charge vari-
ables are written with two indices and represent the amount
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of charge transferred between a given pair of atoms. Thus, a
“bond” in this formalism does not necessarily represent a
literal chemical bond, but rather the capacity for two atoms
to engage in charge transfer; however, in many instances
there exists a one-to-one correspondence between BR bonds
and actual chemical bonds. A wide variety of nomenclatures
for these BR variables exist including bond charge
increments,2,3 atom-atom charges,5 charge transfer
variables,15 and split charges.17 For the sake of consistency
and clarity throughout, we will refer to the variables in AR
schemes as atomic charge variables and those corresponding
to BR schemes as bond charge variables �BCVs� where the
labels “atomic” and “bond” signify one-body �singly in-
dexed� and two-body �doubly indexed� charge variables, re-
spectively.

The AR and BR representations may be connected by
the use of the projection

Qi = �
j

qji, �9�

where the sum runs over all atoms j for which charge trans-
fer to atom i is allowed given that the BCVs �denoted by the
lowercase variables qji� satisfy the antisymmetry relation
qij =−qji and that qii=0 so that charge transfer from an atom
to itself is disallowed. Thus, different projection operators
are required depending on the specific charge transfer topol-
ogy employed. Consequently, the number of BCVs may vary
from N−1 to N�N−1� /2. For BRs isomorphic with the
atomic QEq representation �all BRs related to the AR by the
simple change of variables of Eq. �9��, the BR will be rank
deficient for all but the minimum number of BCVs and will
contain zero eigenvalues.15 This problem may be avoided by
performing a singular value decomposition2,15 or by restrict-
ing the charge transfer topology a priori which is the ap-
proach used in the present work.

The BR of the atomic QEq method, which we will refer
to as the QE scheme, may be constructed from Eqs. �1� and
�9� to yield the general energy expression

E�q� = �
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By exploiting the antisymmetry of the BCVs �qij =−qji� and
letting Jii=�i

0, this expression may be recast2,15 in the form
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�Jik − Ji� − Jjk + Jj��qjiq�k �11�

for which pairs of indices are subject to the summation con-
ventions j� i and ��k. Differentiating the above energy ex-
pression with respect to each BCV in the active topology, we
obtain a set of N−1 independent, simultaneous equations

�E

�qji
= �� j

0 − �i
0� + �

k=1

N

�
��k

N

�Jik − Ji� − Jjk + Jj��q�k = 0,

�12�

which may be set to zero for the condition of a stationary
point in the energy. A minimum in the energy is guaranteed
by a positive-definite Hessian matrix which has elements
given by

�2E

�qji
2 = �Jii + Jjj − 2Jij� �13�

and

�2E

�qji�q�k
= �Jik − Ji� − Jjk + Jj�� . �14�

We may now write this system of N−1 linear equations in
matrix form as Gq=−�X where elements of the square,
symmetric bond hardness matrix G �counterpart to the
atomic hardness matrix J� are given by the corresponding
elements of the Hessian matrix2,15,17 described above in Eqs.
�13� and �14�. The vector q is formed from the N−1 BCVs
while components of the vector �X are assembled from dif-
ferences in the corresponding atomic electronegativities �� j

0

−�i
0� for each pair of atoms i and j associated with a particu-

lar BCV.
In this representation, components of the molecular po-

larizability tensor � are computed from G−1 as

��� = �r�
t G−1�r�, �15�

in which components of the vectors �r�
t and �r� represent

the projection of each bond vector along the Cartesian direc-
tions � and �. The resulting polarizabilities are origin inde-
pendent for neutral molecules and identical to polarizabilities
obtained in the atomic QEq representation �Eq. �8��. Since
the above expression differs from that previously employed
by Chelli et al.5 �Eq. �2.13��, we have included a derivation
of Eq. �15� which may be found in the Appendix.

Using a split-charge formulation �described below�, Nis-
tor et al.17 have demonstrated that to obtain the QE scheme
as a limiting case of the general split-charge scheme, all
doubly indexed BR parameters �ij and �ij must be written in
terms of linear combinations of the singly indexed, one-body
AR parameters �i

0 and �i
0. Thus, there are no contributions in

the QE scheme originating from intrinsic or irreducible two-
body parameters ��ij

0 and �ij
0 � as is clear from Eq. �10�. The

introduction of specific two-body parameters and/or the ne-
glect of certain atomic contributions in the QE scheme leads
to two other distinct approaches: The split-charge equilibra-
tion �SQE� and AACT schemes.

The AACT scheme5 is specifically designed to alleviate
the superlinear scaling of the polarizability as a function of
molecular size. To accomplish this, contributions to G aris-
ing from the diagonal elements of J �the second set of terms
in Eq. �10�� are removed and are replaced with terms involv-
ing two-body bond hardness parameters �ij

0 . This procedure
yields a corresponding AACT energy expression of
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where �for correspondence with the QE scheme� we may
choose � ji

0 = ��i
0−� j

0� /2 so that � ji
0 =−�ij

0 . The off-diagonal
elements of J �the third set of terms in the above equation�
are not modified and are identical to those used in the QE
scheme �Eq. �10��. The two-body bond hardness terms �the
second set of terms in Eq. �16�� are important for describing
the diagonal BCV restoring forces that cannot be expressed
within the corresponding AR.17 These terms permit more ef-
fective localization of molecular charge and are similar in
spirit to constraining the overall molecular dipole moment as
in more recent �Eq models proposed by Chelli et al.18,19 and
Kaminski and co-workers.3,4 The direct modification of the
structure of the G matrix in the AACT approach appears
sufficient to convert the superlinear scaling of the polariz-
ability into linear scaling. However, we remark that by the
explicit introduction of two-body hardness terms, the AACT
scheme is no longer isomorphic with the atomic QEq
scheme; this implies an implicit dependence of the AACT
energy on the choice of bonding or charge transfer topology.
Thus, to eliminate these additional topological considerations
we employ the same chemical bonding topology as was used
for the QE scheme.

The split-charge or SQE scheme17 has been developed as
a generalization �or linear combination� of the QE and
AACT methods. The SQE energy expression is given by
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where by comparing the QE and AACT energy expressions
�Eqs. �10� and �16��, we see that the parameters � and 	
control the relative magnitudes of AACT and QE character.
In the limit 	=0 and �=1, SQE behavior resembles that of
AACT. Similarly, setting 	=1 and �=0 recovers the QE en-
ergy expression with the assumption that the terms �ij

0 are
defined in terms of the atomic electronegativities as � ji

0

= ��i
0−� j

0� /2. As with the AACT and QE schemes, we again
employ the same chemical bonding charge transfer topology
so that appropriate correspondence is maintained in the SQE
energy expression as we tune from QE to AACT behavior.
Since no analysis of the polarizability scaling has been re-
ported for the SQE method, it is a priori unclear whether the
scaling of this hybrid method should be superlinear �QE-
like� or linear �AACT-like� for the general SQE case inter-
mediate between these limiting behaviors.

III. SCALING IN A LINEAR ATOMIC CHAIN

A. QEq scheme

In an effort to better elucidate the mechanism governing
the superlinear polarizability scaling, we first consider a
simple model system that consists of a linear chain of N
atoms aligned in the z direction �all colinear� having unit �Å�
spacing. Such a geometry is advantageous for two reasons.
First, alignment of the system along the z direction conve-
niently eliminates all but the �zz component of the molecular
polarizability tensor. Second, this geometry conceptually
simplifies the relationship between the scaling of the molecu-
lar polarizability and the number of atoms in the molecule.
Since the interatomic spacing is uniform, the vector �Rz�
�from Eq. �8�� that describes the z components of the atomic
positions relative to the first atom equals �0,1 , . . . ,N−1�,
leading to a simplification of the polarizability calculation.

For the moment, let us restrict the structure of J to be an
order N diagonal matrix having no off-diagonal entries �only
self-Coulomb terms�. Such a matrix having negligible off-
diagonal terms could practically arise from a distance-
dependent electrostatic cutoff shorter than a bond length; this
leads to the isolated-atom case in which the molecular polar-
izability should nominally scale as the sum of atomic polar-
izabilities. If we arbitrarily choose the diagonal terms to all
be the same �equivalent atom types� and equal to 1 ��i

0

=1 Å−1�, then J corresponds to the identity matrix.
With J defined as above, we may now compute the po-

larizability of our linear chain system using Eq. �8�. The
results are plotted in panel A of Fig. 1 �filled circles� as a
function of the number of atoms N and clearly demonstrate
superlinear scaling of the polarizability with increasing mo-
lecular size despite the isolated-atom structure of the under-
lying J matrix. Similar scaling of the polarizability is ob-
tained for a fully interacting linear chain system
incorporating all off-diagonal elements of J. Consistent with
common practice5,9,15,16 we evaluate the matrix elements Jij

as molecular Coulomb integrals over Slater-type atomic
orbitals.20,21 At large internuclear separations, the repulsion
of the atom-centered electron densities rapidly approaches
the standard 1 /R form characteristic of classical Coulomb
repulsion. However, at short distances where the electron
densities overlap, charge screening allows these integrals to
take on finite values as R→0. For our model linear atomic
chain, we use the same geometry described above and model
the atomic charge densities using only 1s Slater functions
having unit exponents. Diagonal hardness terms �i

0 are de-
termined from the Jii elements in the limit R→0. The result-
ing polarizabilities are plotted in panel B of Fig. 1 �filled
circles� as a function of molecular size and demonstrate a
scaling trend similar to that observed for the isolated-atom
case above. Thus, the presence of off-diagonal Coulomb
terms does not significantly alter the observed scaling behav-
ior with respect to the case where J is strictly diagonal. Con-
sequently, we will make considerable use of the diagonal J
case throughout our investigation for reasons of simplicity.

It has been observed5 that the overestimation of the po-
larizability in the QEq approach results from the fact that
QEq globally treats a molecule as a conductor rather than as
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an insulator; charge may move unhindered across the entire
molecule in response to an external perturbation. This under-
standing has prompted some studies7,12,22 to adopt additional
charge constraints in an attempt to localize the charge redis-
tribution. The constrained charge approximation of Shimizu
et al.12 places charge conservation constraints on chemically
dissimilar motifs such as side chains and head groups of
amino acid residues. For small chemical units consisting of a
few atoms, this approach is successful in moderating the
scaling. However, as pointed out by Chelli and Procacci,7 as
the length of the side chains grows, the scaling problem re-
turns. Thus, even large chemically similar units must be bro-
ken down into smaller units optimally consisting of perhaps
five to seven atoms. This has been the approach of Patel and
Brooks,22 and, as we demonstrate below, is sufficient for
modulating the scaling behavior with molecular size.

Returning to the isolated-atom case described above in
which J is by construction diagonal and equal to the identity
matrix, the charge-constrained hardness matrix J� of Eq. �7�
�which we have arbitrarily referenced with respect to the first
atom� has the structure

J� = �
1 1 1 . . .

− 1 1 0 . . .

− 1 0 1 . . .

] ] ] �

� . �18�

Thus, the isolated-atom structure of J is not preserved in J�
due to explicit introduction of the charge constraint which
introduces off-diagonal matrix elements into J�. In fact, we
comment that the structure of J� appears to model a starlike
charge transfer topology in which the first atom functions as
a locus through which nonlocal charge transfer may occur.
Since all atoms in this topology are treated as “nearest neigh-
bors” to the first atom, the distance dependence of the charge
transfer effect is ignored and nonlocal charge transfer occurs
with no penalty. In the linear chain geometry, this permits
direct charge transfer between the first and last atoms in the
chain despite the large physical separation. Such issues have
prompted Martinez and co-workers15,23,24 to propose a
distance-dependent charge transfer attenuation function to
penalize charge transfer over large interatomic distances such
as those occurring in the context of molecular dissociation.

The nonlocal charge transfer effect may be practically
controlled by partitioning the molecule into smaller disjoint
subunits of length NU and applying charge conservation con-
straints to each unit rather than to the full system. This is
illustrated in Fig. 2 for charge-constrained units �CCUs� con-
taining two atoms. This approach inhibits interunit charge
transfer while simultaneously allowing intraunit charge
transfer and is an effective means for localizing charge
within a molecule. This leads to the full system matrix

Jsys = �
J11 J12 . . . J1M

J21 J22 . . . J2M

] ] � ]

JM1 JM2 . . . JMM

� , �19�

where the off-diagonal matrices Jmn of dimension NU de-
scribe the electrostatic coupling between the individual
moleculelike subunits themselves characterized by the diag-
onal submatrix elements Jmm. For the isolated-atom chain,
there is no coupling between units so Jsys becomes block
diagonal where each diagonal submatrix element Jmm has the
same structure as J� in Eq. �18�. The polarizability for the
full system may be computed using Eq. �8� by applying the
appropriate set of M auxiliary charge constraints which re-
quires modifying �Rz� to be relative to the position of the
first atom of each corresponding unit so that �Rz�
= �0, . . . ,NU−1, . . . ,0 , . . . ,NU−1�. The corresponding atomic

FIG. 1. Scaling of �zz as a function of the number of atoms N for the QEq
method in a linear atomic chain. Panel A shows the isolated-atom �unit
diagonal J� case for a single molecular charge constraint �filled circles� and
for charge constrained units consisting of eight atoms �open circles�. Panel B
shows the fully interacting �Slater J� case for a single molecular charge
constraint �filled circles�, for CCUs consisting of eight atoms �stars�, for
noninteracting CCUs of length NU=8 defined by a block diagonal Slater J
matrix �open circles�, and for OCCUs in which charge transfer is restricted
to pairs of atoms �plus symbols�.

FIG. 2. Panel A: A linear atomic chain comprised of three disjoint CCUs.
Panel B: A linear atomic chain partitioned into five OCCUs.
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position vector R� is not modified. Doing this, we obtain
polarizabilities as a function of N for units of length NU=8
which are plotted in panel A of Fig. 1 �open circles�. We
observe that while the scaling within each unit is superlinear,
the overall polarizability scales linearly with the number of
CCUs validating current QEq implementations that employ
local charge constraints over small chemical units. Extension
of this approach to a fully interacting chain having off-
diagonal Coulomb elements leads to qualitatively similar lin-
ear scaling of the polarizability �Fig. 1, panel B, stars� dem-
onstrating that the additional Coulombic interactions do not
qualitatively affect the scaling behavior with respect to the
noninteracting case. For comparison, we also consider the
block diagonal �isolated-molecule� case for the fully interact-
ing atomic chain in which all off-diagonal elements connect-
ing pairs of CCUs are zeroed �Fig. 1, panel B, open circles�.
Since in this isolated-molecule case the CCUs are noninter-
acting, the polarizability of the system must scale linearly
with the number of CCUs according to a sum of individual
molecular polarizabilities.

However, despite the success of these constrained charge
approaches in controlling the overall scaling of the polariz-
ability, the arbitrary partitioning of a molecule into such sub-
units offers no specific guidance into how these units should
be constructed, particularly if one is concerned about pre-
serving transferability. Ambiguities arise when the unit size
is varied to accommodate specific chemical moieties or when
the chosen unit size does not evenly divide the molecular
size. �This may be seen in Fig. 1, panels A and B for which
the addition of a new CCU containing a single atom does not
lead to an increase in polarizability.� Moreover, even well
chosen partitioning schemes are ultimately unphysical �and
more so the smaller the unit size� since charge transfer is
ultimately present in all real chemical bonds �albeit negli-
gible in some cases�. For units that are not too small, this
problem may be practically overcome with well chosen
model parameters that compensate for the errors introduced
by the partitioning scheme.

Therefore, it seems reasonable to consider other gener-
alizations of these constrained-charge approaches designed
to alleviate some of the above concerns. We note that all the
constrained-charge approaches discussed above employ dis-
joint partitions which inhibit charge transfer at the unit
boundaries. An alternate possibility is to consider overlap-
ping constrained-charge units �OCCUs� in which interior
CCUs share constraints with neighboring CCUs. In the sim-
plest case, we might choose to constrain the charge across all
nearest neighbor pairs �Fig. 2� so that each constrained pair
could polarize along the bond vector connecting both atoms
in a manner analogous to induced dipole models but having
limited orientational freedom. In the case of chains with odd
numbers of atoms, we may relax one pair constraint and
include the odd atom in a single constraint containing three
atoms instead of two. Applying these bond constraints and
solving for the polarizabilities as a function of N, we obtain
linear scaling of the polarizability as indicated by the plus
symbols in panel B of Fig. 1. Thus, a true topological change
in the nature of the charge constraints is sufficient to alter the
scaling behavior. This is a strong indication that the usual

single-molecule charge conservation constraint explicit or
implicit in a given set of atomic QEq equations is ultimately
the source of the superlinear polarizability scaling problem.

While the above bond constraints confine charge flow to
within each bond, the approach may be further generalized to
permit charge redistribution over larger overlapping units.
This introduces an effective means to control the size extent
of the conductivity within a molecule; the single-molecule
constraint defines the fully conducting limit while the indi-
vidual bond constraints represent the fully insulating limit. In
addition to linear scaling behavior, OCCUs also provide a
reasonable solution to the problem of partitioning of units
since the effects of charge transfer are continuous across the
CCU boundaries. In the case of overlapping two-atom charge
transfer constraints �which can be chosen to mimic a chemi-
cal bonding topology�, all units are of the same size and each
atom belongs to at least one unit. Unit assignment is then
determined by the topology rather than arbitrarily. Thus, the
OCCU approach appears to offer several advantages over
currently employed CCU approaches and is similar to meth-
ods employed by certain BR schemes �which we discuss
next� for manipulating charge locality in large molecules.

B. QE scheme

Since the QE scheme is simply the atomic QEq scheme
mapped into a BR, the scaling properties are expected to be
identical. However, the structure of the QE hardness matrix
yields some unique insights not easily elucidated in the cor-
responding AR. To perform the mapping, it is necessary to
a priori restrict the charge transfer topology to include ex-
actly B=N−1 bonds so that the QE system is nonsingular.
�Corresponding AACT and SQE schemes do not share this
limitation and may include additional bonds up to a maxi-
mum of B=N�N−1� /2.� The minimal �N−1� number of QE
bonds reflects the fact that with a molecular charge con-
straint, there are only N−1 independent charge variables in
the AR. For convenience, we select a charge transfer topol-
ogy which consists of physically realistic nearest neighbor
bonds, mimicking a reasonable chemical bonding topology.
Surprisingly, we note that for the QE scheme with a single
molecular charge constraint, the choice of topology will not
affect any of the computed physical or scaling properties as
long as the topology contains exactly the minimum number
of bonds �N−1�. However, the choice of topology will affect
the AACT and SQE results. Starlike topologies �analogous to
that of the charge-constrained QEq approach� appear to al-
ways yield a conductinglike molecular response regardless of
the method �QE, AACT, or SQE� since charge transfer is
restricted to be nonlocal. Therefore, to limit the effects of
topology, we will consistently employ the same chemical
bonding topology for all BR schemes �QE, AACT, and SQE�
that is appropriate for describing nonconducting molecules.

In analyzing the polarizability scaling of the QE scheme,
we again invoke the isolated-atom linear chain geometry de-
scribed above in which all atoms are uniformly spaced on the
z axis and J is diagonal and equal to the identity matrix.
Since all bonds are of the same length and have identical z
projections, the vector �rz in Eq. �15� that describes the z
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components of all B bond vectors equals �1,1,…,1�, again
leading to a simplification of the polarizability calculation.

If we now transform the resulting set of atomic QEq
equations into the QE BR, we find that the bond hardness
matrix G assumes a tridiagonal form having entries �−1,2 ,
−1	. Thus in the BR, we note that there are off-diagonal
elements connecting adjacent bonds that originate solely
from the diagonal elements of J so that charge transfer is
permitted between adjacent bonds in the corresponding BR
despite the apparent isolated-atom structure of the underlying
atomic J matrix. This illustrates that the molecular charge
conservation constraint is also built into the corresponding
BR approach since the BR is expressed in terms of N−1
�rather than N� independent variables.

In seeking a closed-form dependence of the polarizabil-
ity on N or B, the presence of the matrix inverse in Eq. �15�
presents a formidable roadblock. However, from the Appen-
dix, the polarizability may be conveniently rewritten as

�zz = �rz · sz, �20�

where sz is a solution of the system Gsz=�rz. Progress may
now be made in the specific case where G is tridiagonal by
exploiting the isomorphism between the system of equations
Gsz=�rz and the finite difference method for the solution of
second order differential equations having the form −sz��b�
=rz�b�. Thus, we may reinterpret G as the discretization of
this specific differential equation over a grid consisting of B
points. In keeping with the isomorphism, we restrict the con-
tinuous bond index variable b� �1,B�, interpret the grid
spacing as the bond length, and invoke the Dirichlet bound-
ary conditions sz�0�=sz�N�=0. These particular boundary
conditions are justified by the physical interpretation of sz�b�
which, as will be demonstrated, is related to the differential
change in polarizability with respect to molecular size. Thus,
these boundary conditions reflect the physical restriction that
there can be no change in molecular polarizability when
there are zero atoms and no further contributions once we
have accounted for all the atoms in the molecule.

Identification of the matrix system with an explicit dif-
ferential equation in the continuous variable b now permits
us to extract a closed-form solution for sz�b� by solving the
corresponding differential equation. Doing so, we obtain

sz�b� = −
1

2
b2 +

N

2
b , �21�

which indicates that sz�b� is quadratic in the bond index vari-
able b and linear in N. The validity of Eq. �21� is explicitly
verified by numerical experiments for N=10 and 50 and is
plotted in panels A and B of Fig. 3 along with the numerical
results �solid circles�. The N dependence of sz�b� is a direct
consequence of the associated boundary condition sz�N�=0
and implies that we should expect a larger contribution to the
molecular polarizability for a given bond in a larger mol-
ecule than for the same bond in a smaller molecule. Based on
ab initio results and experimental evidence for the N-alkanes,
this is clearly unphysical since each interior bond should
contribute a roughly constant amount to the polarizability so
that the total polarizability increases linearly with molecular
size. Likewise, the quadratic scaling of sz�b� with b is also

counterintuitive by physical reasoning since it indicates that
specific bonds near the center of the molecule will dispropor-
tionately contribute to the polarizability in a nonlocal way
that depends sensitively on the total number of bonds.

The structure of sz�b� further aids in understanding how
the CCA of Shimizu et al.12 and related methods22 help to

FIG. 3. A plot of the function sz�b� for the AACT, SQE, and QE methods for
a linear chain of isolated atoms. Points are taken from numerical experi-
ments while the lines correspond to the corresponding theoretical predic-
tions of Eqs. �21� and �30� for the QE and SQE methods. Panels A and B
correspond to chain lengths of N=10 and N=50, respectively. All SQE
values were obtained using parameters of 	=1 and �=1. Panel C demon-
strates the effect of eliminating bond-bond charge transfer between specific
pairs of bonds. The dashed curve represents the weighted average of neigh-
boring units each individually defined by the QE NU=7 case. For convenient
comparison, all QE results have been rescaled to have a maximum value of
1 at b=N /2. A bond length ��� of 1 Å has been employed in all cases.

144110-7 Origin and control of polarizability scaling J. Chem. Phys. 128, 144110 �2008�



alleviate the polarizability scaling problem. In treating mac-
romolecules as collections of smaller units that do not en-
gage in interunit charge transfer, these methods effectively
“cut” interior bonds, eliminating corresponding charge trans-
fer through those bonds. While we cannot sever a bond in the
BR without altering the dimensionality of G, we may
achieve a similar result by selectively disallowing bond-bond
charge transfer by zeroing specific off-diagonal elements of
G. In terms of sz�b�, this is equivalent to imposing auxiliary
boundary conditions that fix the value of sz�b� at specific
values of the bond index variable b. This is illustrated in
panel C of Fig. 3 �open circles� where we have partitioned a
molecule of length B=49 into seven subunits by restricting
bond-bond charge transfer. We see that over each unit, sz�b�
is quadratic as expected and that each unit contributes iden-
tically to the overall molecular polarizability. At the edges of
each unit, the polarizability contributions do not decay to
zero as we might expect for a cut bond, but instead decrease
to some finite value dictated by the diagonal bond hardness
terms of G which we have not modified. This approach is
most effective when bond-bond charge transfer near the cen-
ter of the molecule is disrupted since these bonds dispropor-
tionately contribute to the overall molecular polarizability.

To determine the polarizability scaling of this model sys-
tem, we consider the dot product between �rz and sz �Eq.
�20�� which may be represented in integral form as

�zz = �rz · sz = 

0

N−1

db sz�b�rz�b��
i=1

N−1


�b − i� , �22�

where the Dirac delta functions pick out the values of sz�b�
and rz�b� at integer values of b. In the above form, this inte-
gral may be viewed as a left Riemann sum which, for large N
�fine discretization�, may be approximated by the integral

�zz � 

0

N−1

db sz�b�rz�b� . �23�

This relationship allows us to make a connection between the
product sz�b�rz�b� and the derivative of the polarizability
with respect to the bond index variable, indicating that sz�b�
has units of Å2 �polarizability area� per bond. Similarly, rz�b�
may be viewed as a weighting function which in the present
case weights all bonds uniformly.

Now, taking rz�b�=1 for all b and performing the inte-
gration, we obtain a polarizability scaling of

�zz �
N3

12
−

N

4
+

1

6
, �24�

which may be compared with a result of

�zz =
N3

12
−

N

12
�25�

derived from a fit to explicit numerical experiments. The
difference corresponds to the error of the integral approxima-
tion to the discrete sum which is equal to �N−1� /6 in this
case. Due to the symmetry of sz�b�, the same error results
when approximating the right Riemann sum by integration
from 1 to N. To minimize the error of the approximation, we

may instead integrate from 1 /2 to N−1 /2 according to a
central Riemann sum which is known to have an error bound
of

error �
�N − 1��sz��b��max

24
=

N − 1

24
. �26�

Performing the integration, we find that the central Riemann
integral approximation leads to an approximate polarizability
scaling of

�zz �
N3

12
−

N

8
+

1

24
, �27�

which has an error of exactly �N−1� /24 relative to the exact
result, consistent with the prediction of Eq. �26�. This error is
a factor of 4 smaller than that obtained from either the left or
right Riemann sum approximations. Yet, irrespective of the
particular integral approximation employed, we obtain a mo-
lecular polarizability for this model system that scales cubi-
cally with the number of bonds �or atoms� in the molecule.
This is shown in Fig. 4 �panel A� along with the correspond-
ing numerical results �filled circles� as a function of molecu-
lar size; from Fig. 4 it is clear that the current theoretical
prediction accurately describes the data points. We point out

FIG. 4. Scaling of �zz �panel A� and �zz / �N−1� �panel B� as a function of
the number of atoms N for the AACT �solid squares�, QE �solid circles�, and
SQE �open symbols� methods for a linear chain of isolated atoms. Points
correspond to the results of numerical experiments while the lines are the-
oretical predictions of Eqs. �28�, �29�, and �31�. QE, AACT, and SQE po-

larizabilities are evaluated using scaling parameter values of 	̃=1, �̃=1, and
	=1, respectively. A bond length ��� of 1 Å is employed in all cases.
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that this cubic scaling is formally worse than the supposed6

quadraticlike scaling obtained from standard QEq methods.
It is also clear from Figs. 1 and 4 that the polarizabilities
computed in the QE scheme are identical to those obtained
from the corresponding atomic QEq scheme as expected.

Having now demonstrated an analytical formulation for
accurately estimating the polarizability of a linear chain as a
function of the number of bonds, we may now generalize to
arbitrary bond lengths � and to scaled �i

0 terms by solving

the modified differential equation −	̃2sz��b�=�rz�b�. Here, we

have introduced the scaling parameter 	̃ which performs a
similar function as 	 in Eq. �17� and may be used to control
the magnitude of the diagonal hardness terms. By including
these scaling factors and employing the central Riemann in-
tegral approximation �Eq. �27��, we obtain a polarizability
scaling of

�zz
QE � 
�

	̃
�2
N3

12
−

N

8
+

1

24
� . �28�

From this model, we may predict that the introduction of an
explicit N dependence into the parametrized �i

0 values pro-
portional to N2 should be sufficient to guarantee linear scal-
ing of the polarizability with chain length in this system. To
within the previously discussed approximation error, this is
exactly what is observed in numerical experiments �data not
shown� where 	=N and illustrates that size dependent hard-
ness terms may provide a possible alternative route for ma-
nipulating the molecular size scaling of the polarizability at
large Ni; however, the unphysical quadratic behavior of sz�b�
is not altered by this approach and indicates that the molecu-
lar physics is still not correctly modeled despite the correct
molecular size dependence exhibited by the polarizability.

C. AACT scheme

Extension of this analysis to the AACT scheme is pos-
sible by considering how the AACT formalism modifies the
G matrix relative to the pure QE scheme. The matrix G is
first built from a modified J matrix in which the diagonal has
been zeroed. Second, some diagonal matrix G0 containing
the desired two-body bond hardness parameters is added to
G. Since all bonds are identical in our model linear chain
system, we let all bonds have a scaled hardness of �̃2�ij

0 so
that the matrix G0 is equivalent to �̃2I, where I is the order
N−1 identity matrix. The scaling parameter �̃ is analogous to
the parameter � in Eq. �17�. A finite difference interpretation
of the modified G matrix yields the linear �nondifferential�
equation �̃2sz�b�=�rz�b�. Solving, we obtain the function
sz�b� for the AACT model which is plotted in Fig. 3 for
chains of length N=10 and 50 �solid squares�. Integrating,
we find a corresponding polarizability scaling of

�zz
AACT � 
�

�̃
�2

�N − 1� �29�

that is linear in the number of bonds, quadratic in bond
length, and inversely proportional to the magnitude of the
scaled bond hardness �̃2. We plot this function in Fig. 4
�panel A� along with corresponding numerical observations

�solid squares�; the theoretical prediction exactly matches the
observed polarizabilities since, by Eq. �26�, sz��b� is zero for
all b and leads to an error of zero. Thus we observe that the
AACT scheme yields the physically correct linear scaling of
the polarizability that we would expect from a collection of
isolated bonds and is similar in mechanism to the OCCU
approach discussed above.

D. SQE scheme

Again relating the structure of G to a differential equa-
tion, we may also extend our analysis to the generalized SQE
method which introduces an additional term, linear in sz�b�
�corresponding to the AACT case above�, to yield the second
order differential equation −	2sz��b�+�2sz�b�=�rz�b�. The
scaling parameters 	 and � used here correspond to those of
the underlying energy SQE energy expression �Eq. �17��. By
invoking the usual boundary conditions sz�0�=sz�N�=0 on
the interval b� �1,B� and solving, we find

sz�b� =
�

�2�1 −
e�b/	

e�N/	 + 1
−

e−��b−N�/	

e�N/	 + 1
� . �30�

This function is plotted in panels A and B of Fig. 3 for N
=10 and 50, respectively, along with corresponding numeri-
cal results �open triangles�. Interestingly, we see that moder-
ate scaling of the diagonal relative to the pure QE scheme
�by a factor of approximately 1.5 for �=1� significantly al-
ters the behavior of sz�b�, most noticeably at larger N. More
specifically, sz�b� transitions from a quadraticlike function
into one that is constant for most intermediate values of b.
This behavior is qualitatively distinct from that of the pure
QE method which �from Fig. 3� remains exactly quadratic
for all N. The behavior of sz�b� in the SQE scheme has
profound implications for the scaling of the polarizability
which will smoothly transition from cubic to linear behavior
as N increases. In Fig. 3 we also observe the presence of
edge effects which decrease systematically as the ratio of
AACT to QE character is increased. Extension to longer
chains �not shown� reveals that the shape of sz�b� near the
ends of the molecule is independent of N. Thus, once the
chain becomes long enough, the two ends become fully de-
coupled from each other and the overall polarizability is
dominated by local rather than nonlocal contributions.

The polarizability scaling of the SQE method is com-
puted from sz�b� �Eq. �30�� by the integral approximation of
the central Riemann sum and yields

�zz
SQE � 
�

�
�2

�N − 1� + 
2	�2

�3 �� e�/2	 − e��2N−1�/2	

e�N/	 + 1
� .

�31�

This function is plotted in Fig. 4 �panel A� for the values �
=1 /10, 1 /3, 1 /2, and 1 at 	=1 relative to the QE and AACT
predictions and the results of explicit numerical simulations
�open symbols�. In the limit of large N, the second term in
Eq. �31�, which describes the nonlinear scaling of the polar-
izability, approaches a constant and yields a linear polariz-
ability scaling due to the first term. At small N, the polariz-
ability is dominated by the second term and approaches
cubic scaling. At no point is the scaling predicted to be qua-
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dratic in N. We also observe that the QE result is indeed
recovered in the limits �→0 and 	→1 and that the AACT
result is obtained when �→1 and 	→0. In fact, we observe
that the first term in Eq. �31� is identical to that obtained for
the AACT scheme �Eq. �29��. In the mixed limit �→1 and
	→1, the slope of the SQE polarizability increase ap-
proaches that of the AACT model though the curve has been
shifted vertically by a small amount.

Thus, for a model one dimensional case, we have dem-
onstrated that the polarizability scaling versus chain length
may be continuously tuned in the SQE formalism from cubic
to linear behavior, reproducing the correct QE and AACT
scaling in the respective limits. This indicates that the cubic
scaling does not arise from specific J terms which are absent
in AACT but present in the QE and SQE forms since SQE
�like AACT� is predominantly linear for all but small N. Nor
in this case may the polarizability scaling be directly as-
cribed to any particular N dependence of the bond vector �rz

in the polarizability formula �Eq. �15�� as has been previ-
ously suggested5,6 since the same formula and corresponding
bond vectors are shared between all BR schemes. Rather, we
find that the polarizability scaling of BR schemes �in con-
junction with a chemical bonding topology� is controlled by
the structure of G; specifically, the degree of diagonal domi-
nance in G �adjustable through the ratio of � to 	� appears to
tune the insulator or conductorlike response of the molecular
model. In the limiting case where G is strictly diagonal, we
find the total polarizability to be described as a sum of indi-
vidual bond polarizabilities that increases linearly with the
number of bonds as in the AACT scheme and in the bond
constrained OCCU QEq approach. The transition from cubic
to linear scaling in the general SQE scheme intermediate
between the AACT and QE limits indicates that the SQE
scheme preferentially models smaller molecules as conduc-
tors and larger molecules as insulators. Thus the SQE ap-
proach has introduced the physically appealing notion of a
length scale dependent conductivity in which the intrinsic
length scale may be tuned by the relative diagonal and off-
diagonal contributions of G. In the specific QE and AACT
limiting cases of SQE, fully conducting or insulating mo-
lecular responses may also be modeled. In this way the SQE
approach appears to provide similar control of the polariz-
ability scaling as in the general OCCU QEq approach, but in
a more continuously tunable fashion.

One important implication concerning the introduction
of a length scale modulated conductivity in the SQE ap-
proach is that even highly conjugated polymeric systems
such as polyacetylene will be modeled as insulators at larger
length scales. This behavior is illustrated in panel B of Fig. 4
where we have plotted the polarizability per bond as a func-
tion of increasing molecular size. As N→�, the conductor-
like response saturates and levels off demonstrating that all
additional monomers contribute equally to the total polariz-
ability. This behavior is not observed with the AACT
method, for which each monomer always contributes a con-
stant amount even at small N. Similarly, the per bond polar-
izability of the QE model increases quadratically with in-
creasing molecular size and continues to increase without
bound as N→�. We comment that the response of the SQE

model �relative to the AACT and QE models� appears to
more closely follow that of real conjugated polymers and
molecular chains for which ab initio results25–28 indicate a
similar asymptotic saturation of the per monomer polariz-
ability. Thus we expect well parametrized SQE models to
exhibit improved quality �and perhaps better transferability�
over existing AACT and QE models.

IV. ADDITIONAL APPLICATIONS

A. Fully interacting linear chain in the BR schemes

Having thoroughly investigated the polarization re-
sponse of a simplified linear atomic chain model in the BR
containing only diagonal atomic hardness matrix elements,
we now extend our analysis to include the case of the full
bond hardness matrix. As before, we evaluate the matrix el-
ements Jij as molecular Coulomb integrals over atomic 1s
Slater orbitals having unit exponents. While the presence of a
dense G matrix does not invalidate the previously discussed
isomorphism between the matrix system and a corresponding
differential equation, the added complexity precludes us
from easily determining closed-form solutions a priori as in
the previous sections. Thus, we will rely on numerical evi-
dence to demonstrate that the observed scaling behavior of
the polarizability with chain length is qualitatively un-
changed from the trends described above.

In Fig. 5 we plot numerically computed polarizabilities
as a function of chain length for the AACT, SQE, and QE
schemes. In the case of the AACT and SQE schemes, the
diagonal elements of G are scaled to be twice the value of
the corresponding elements of G in the QE scheme. From
Fig. 5, it is clear that the resulting scaling behavior qualita-
tively resembles that derived from the isolated-atom linear
chain system, again indicating that the presence of the off-
diagonal Coulomb terms does not significantly alter the in-
trinsic scaling behaviors of the respective �Eq schemes. For
small to intermediate N, the QE results are again well fitted

FIG. 5. Scaling of �zz as a function of the number of atoms N for the AACT,
QE, and SQE methods for a linear chain of interacting atoms using the full
hardness matrix J computed from Slater Coulomb integrals. For the AACT
and SQE cases, bond hardness parameters are applied so that the diagonal of
the resulting G matrix is equal to twice the diagonal that would be obtained
from the pure QE method.
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by a cubic polynomial. Similarly, the results for the AACT
and SQE schemes are linear at intermediate and large N as
expected.

To more fully characterize the conductivity length scale
imposed by the SQE method, we have investigated polariz-
abilities as a function of bond length by compressing and
expanding the linear chain with respect to the reference bond
length of 1 Å. For comparison, the results of all three BR
methods are presented in Fig. 6. Overall, the QE and AACT
schemes behave as expected from the theoretical predictions
of Eqs. �28� and �29�, yielding a quadratic dependence on
bond length. The SQE method also yields quadratic depen-
dence, but only at very short ��
0.25 Å� or large ��
�0.5 Å� bond lengths. The unique behavior at moderately
short bond lengths �0.25
�
0.5 Å� results from the con-
comitant change in the prefactor of the polarizability which
transitions from cubic �QE� to linear �AACT� scaling in N
over this region. This region signifies the transition from
insulatorlike to conductorlike character as we compress the
bonds. At short bond lengths, the conductivity length scale is
large enough to encompass several adjacent bonds. In the
limit that the conductivity length scale is large compared to
the length scale of the whole chain, the fully conducting
response is achieved.

For the AACT results, we observe dramatic instabilities
in the computed polarizabilities as we compress the chain. To
a minor degree, these instabilities are also noticeable in Fig.
5 for a few specific values of N. These instabilities do not
appear in the QE or SQE results or in the AACT results for
the isolated-atom case. Closer investigation reveals that un-
der these particular conditions, the AACT G matrix is singu-
lar �or near singular� and in some cases contains negative
eigenvalues. This indicates that in throwing away select con-
tributions from the diagonal elements of J, the AACT
scheme has inadvertently destroyed the positive-definite
character of G. To see how this problem arises, we investi-
gate specific elements of the Hessian matrix which must lead

to a positive-definite Hessian for the condition of a minimum
in the energy to be satisfied. For the QE scheme, both Chelli
et al.5 and Nistor et al.17 have derived expressions relating
the BR and AR gradient operators:

�

�qij
=

�

�Qi
−

�

�Qj
. �32�

Elements of the Hessian are constructed by twice applying
the BR gradient operator to the energy. In the case of the
diagonal Hessian elements, we find

Hij,ij
QE =

�2E

�qij
2 =

�2E

�Qi
2 +

�2E

�Qj
2 − 2

�2E

�Qi�Qj
. �33�

From Eqs. �3� and �4�, the first two terms may be associated
with �i

0 and � j
0 while the third term is equal to −2Jij, consis-

tent with Eq. �13�. In the AACT scheme, the corresponding
Hessian elements are

Hij,ij
AACT = 2�ij

0 − 2Jij . �34�

The first term, 2�ij
0 , is given by the second derivative of the

second term of Eq. �16� after applying the antisymmetry re-
lation qij =−qji for the two cases i� j and i
 j. The second
term in the above equation, −2Jij, may be obtained from the
third term �quadruple summation� of Eq. �16� by explicitly
considering cases where k= j and �= i for both i� j and i

 j. Since the origin of this contribution is identical for both
the QE and AACT cases, it may also be obtained from diag-
onal elements of the QE Hessian matrix by explicitly remov-
ing all QE contributions Jii arising from diagonal elements of
J, e.g., by throwing out the first two terms of Eqs. �13� and
�33� and retaining only the last term.

Thus, unless the two-body bond hardness terms �ij
0 are

greater than Jij so that the diagonal Hessian elements are at
least positive, the Hessian cannot be positive definite. How-
ever, positive diagonal elements which satisfy this criterion
are not a sufficient condition to guarantee that the Hessian
will be positive definite. This is particularly important since
the mixed second derivative terms Hij,i� which share an in-
dex will also be modified by the AACT scheme �again
through removal of all Jii contributions�. Yet, it is clear that
large enough bond hardness parameters can ultimately re-
store the positive definiteness of the Hessian. Unfortunately,
it is not obvious a priori how large these elements must be
without explicitly examining the corresponding AACT ma-
trices for each application. Perhaps most troubling is that for
the current choice of Slater orbital exponent ��=1.0 a.u.� the
observed instabilities cover a wide range of chemically rel-
evant bond lengths. Given these considerations, which could
adversely affect the parametrization, usage, and transferabil-
ity of AACT models, it seems preferable to employ the more
general SQE approach. However, we also comment that
since the SQE scheme contains the AACT scheme as a lim-
iting case we should expect the SQE scheme to suffer from
this problem as well. This may be seen from the diagonal
terms of the SQE Hessian:

Hij,ij
SQE = 2�2�ij

0 + 	2��i
0 + � j

0� − 2Jij . �35�

Therefore, it is necessary in the SQE scheme to restrict 	 so

FIG. 6. Polarizability �zz as a function of bond length for various �Eq
methods in the N=50 interacting linear chain system. For the AACT and
SQE cases, bond hardness parameters are applied so that the diagonal of the
resulting G matrix is equal to twice the diagonal that would be obtained
from the pure QE method. A value of 	=1 is employed in the SQE case. The
vertical asymptotes appearing in the AACT curve are a result of ill-
conditioned systems at these bond lengths.
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that 	�1. This restriction forces the SQE scheme to retain
all QE terms which are guaranteed to yield a positive-
definite Hessian so long as the underlying QE Hessian is
positive definite. Since for positive � we introduce only posi-
tive diagonal terms, the positive-definite character of the
SQE Hessian can only be further strengthened. We also note
that a similar problem may arise in the QE and QEq cases if
the diagonal terms �i

0 are treated as free parameters and are
chosen too small �such as zero�. In such a case, the QEq
Hessian will not be positive definite. However, it appears that
a positive-definite QEq or QE Hessian matrix may be ob-
tained by always choosing �i

0 to be greater than or equal to
the corresponding self-Coulomb integral consistent with the
definition of the remaining off-diagonal elements Jij. In this
way, a well conditioned SQE polarizability response may
also be guaranteed.

B. The trans N-alkane series

To verify that our observations are consistent with more
general systems involving all components of the polarizabil-
ity tensor �, we have investigated the polarization response
of the trans N-alkanes as a function of the number of carbon
atoms �NC�. Geometries for arbitrary length trans alkanes are
extrapolated from the bond lengths and angles of an energy
minimized CHARMM structure for hexane. In all cases, we
employ the exponents of 0.70 and 0.78 a.u. for C and H used
by Chelli et al.5 Atomic hardness parameters �i

0 are taken to
be the screened Coulomb idempotential Jii values rather than
the optimized hardness parameters of Chelli et al.5 For the
AACT and SQE cases, bond hardness parameters are applied
so that the diagonal of the resulting G matrix is equal to
twice the diagonal that would be obtained from the pure QE
method. Since our purpose is to illustrate the scaling behav-
ior only, we have made no attempts to further optimize the
model parameters or scaling parameter � �which will affect
the curvature of the polarizability scaling at small NC�. For
the SQE case, 	 has been set to 1.0 to guarantee stability.

Plotting the resulting isotropic polarizabilities �̄ derived
from the trace of � �Fig. 7�, we see that the QE scaling
remains superlinear and is reasonably well fitted by a cubic
polynomial. For the current choice of parameters reflecting a
strengthened diagonal in G, the SQE and AACT schemes
deliver the expected linear scaling. To test for AACT insta-
bility in this system, we systematically reduce the bond hard-
ness parameters until problematic behavior is observed. We
find the onset of instability to occur near values of �ij

0 that
have been reduced by 50% relative to the corresponding di-
agonal QE values. However, the onset of instability is ex-
pected to be sensitive to changes in the other parameters
�such as exponents� and the specific molecular conformation.
In contrast, the 	-restricted SQE approach remains stable.

V. CONCLUSIONS

In this work, we have explored the origins of the super-
linear polarizability scaling as a function of molecular size
that arises in certain �Eq methods. We find that this unde-
sirable scaling ultimately originates from the specific topo-
logical charge transfer constraints applied to a given �Eq

scheme and is not an inherent feature of the representation
�atom or bond� on which the scheme is built. We demonstrate
this by obtaining superlinear and linear scaling in both the
atom and BRs through manipulation of charge transfer con-
straints in a variety of ways, some explicit, some method-
ological.

Second, in order to provide guidance when constructing
future �Eq schemes, we have analyzed the mechanisms
whereby various �Eq schemes temper the polarization re-
sponse. In the case of the atomic �Eq scheme, we find that
constraining charge over small molecular subunits is a prac-
tical approach for localizing charge transfer and, upon appli-
cation, yields overall linear scaling of the polarizability with
molecular size. This validates the current use of CCUs in
some recent �Eq methods. To overcome certain deficiencies
associated with constructing and parametrizing CCU-based
schemes, we propose the use of OCCUs that localize charge
transfer in a more continuous fashion than is possible when
using disjoint CCUs.

We also derive closed-form expressions for the polariz-
ability scaling in a linear atomic chain system for three BR
schemes �QE, AACT, and SQE� and demonstrate that the
superlinear scaling in the QE case varies cubically with mo-
lecular size. This is formally worse than previously sus-
pected quadratic scaling and further bolsters the need for
utilizing scaling-tempered �Eq methods in large molecule
applications. We also demonstrate linear scaling of the
AACT and SQE schemes for our model system and how the
SQE scheme may be tuned to permit either a superlinear
�conducting� or a linear �insulating� polarizability response.
Similarities between the SQE and atomic CCU and OCCU
approaches to controlling the polarizability scaling are evi-
denced by the natural emergence of a tunable length-scale-
dependent conductivity response.

FIG. 7. Scaling of �̄ as a function of the number of carbon atoms NC for the
QE, AACT, and SQE methods for the trans N-alkane series. In all cases, we
have used �without optimization� the exponents of 0.70 and 0.78 a.u. for C
and H taken from Chelli et al. �Ref. 5� and the full Coulomb J matrix with
diagonal hardness elements given by the idempotential Jii values. For the
AACT and SQE cases, bond hardness parameters are applied so that the
diagonal of the resulting G matrix is equal to twice the diagonal that would
be obtained from the pure QE method. A value of 	=1 is employed in the
SQE case. For the AACT* case �stars�, we have artificially reduced the
diagonal bond hardness terms by a factor of 4 to illustrate the AACT insta-
bility problem when these terms become too small.
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Finally, in applying our analysis to a fully interacting
atomic chain system and the trans N-alkane series, we dem-
onstrate that the AACT and SQE methods can become un-
stable under certain conditions. These instabilities arise when
the positive-definite character of the underlying Hessian ma-
trix is destroyed by eliminating or scaling out specific QE
contributions. Such instabilities may be avoided in the SQE
scheme by retaining all QE contributions �corresponding to
no AACT character� before introducing additional diagonal
bond hardness terms.

Based on our observations, we recommend the use of
CCUs or possibly OCCUs as a practical means for modulat-
ing the scaling in atomic QEq descriptions of large molecular
systems. In the BR, the SQE approach appears to offer sev-
eral advantages over the AACT scheme including a tunable
scaling response that is useful for describing both insulating
and conducting molecules. Given the instabilities we observe
in the AACT scheme as well as the AACT limiting case of
the SQE scheme, we recommend the SQE scheme be used in
place of the AACT, subject to a simple criterion to guarantee
stability. Future work will focus on the specific role of the
charge transfer topology in moderating the polarizability
scaling of large molecules within the context of the BR.
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APPENDIX: BR DIPOLE MOMENT AND
POLARIZABILITY EXPRESSION

The dipole moment of the system in the BR �along the �
Cartesian direction� may be straightforwardly computed as a
vector dot product between a vector �r� comprised of the �
projection of the individual bond vectors and a second vector
q formed from the corresponding BCVs. The dot product
may be expanded as a summation over all B bonds in the
topology as

�� = �r� · q = �
b=1

B

�r�,bqb. �A1�

This relation is easily derived beginning from the standard
definition of the dipole moment in the atomic charge repre-
sentation

�� = �
i=1

N

r�,iQi. �A2�

Here, the summation is taken over all N atomic sites r�,i and
charges Qi. We may use Eq. �9� which describes the mapping
from atomic charges to a set of BCVs to rewrite �� in terms
of the BCVs as

�� = �
i=1

N

r�,i
�
j�i

N

qij� , �A3�

where the double summation twice includes all pairs of in-
teracting atomic sites �the variables qii are always zero and
are therefore excluded�. This double summation may be split
into two disjoint sums �corresponding to the upper and lower
triangular contributions� which, by the additional use of the
antisymmetry relationship qji=−qij, may be rearranged to
give

�� = �
i=1

N

�
j�i

N

r�,iqij − �
j=1

N

�
i�j

N

r�,jqij , �A4�

which may now be recombined to give the desired expres-
sion for the dipole moment in the BR:

�� = �
i=1

N

�
j
i

N

�r�,i − r�,j�qij = �
b=1

B

�r�,bqb = �r� · q . �A5�

From Eq. �2.12� of Chelli et al.,5 a similar expression may be
derived for the polarizability by using the induced BCV vec-
tor �q and the inverse of the matrix G in the presence of an
external, uniform electric field E� in the � direction:

�q = G−1E��r�. �A6�

The induced dipole moment ��
ind is given by substitution of

the above expression into Eq. �A5�. Taking a derivative of
the induced dipole moment with respect to the electric field,
we obtain a result for the �� component of the polarizability
tensor

��� =
���

ind

�E�

= �r�G−1�r�. �A7�

We also note that for practical calculations of the polarizabil-
ity tensor, explicit computation of G−1 is unnecessary. By
defining an auxiliary vector s� which is a solution of the
system Gs�=�r�, we may simply rewrite Eq. �A7� as

��� = �r� · s� �A8�

and conveniently avoid a potentially ill conditioned and
costly O�B3� construction of the inverse by replacing it with
several O�B2� matrix-vector solve operations.
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