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Abstract
The major risk factors for esophageal adenocarcinoma are gastroesophageal reflux disease (GERD)
and Barrett esophagus, a squamous-to-columnar cell metaplasia that predisposes to malignancy.
Adenocarcinomas in Barrett esophagus are thought to arise through a sequence of growth-promoting,
genetic alterations that accumulate until the cells have acquired the physiologic hallmarks of cancer
proposed by Hanahan and Weinberg. Moreover, GERD and Barrett esophagus are associated with
chronic esophagitis, and inflammation is a well known risk factor for cancer formation. The cell that
gives rise to Barrett metaplasia is not known. It has been proposed that the metaplasia may arise from
a change in the differentiation pattern of stem cells that either reside in the esophagus or are recruited
to the esophagus from the bone marrow. Alternatively, it is possible that Barrett metaplasia develops
through the conversion of one differentiated cell type into another. Regardless of the cell of origin,
Barrett metaplasia ultimately must be sustained by stem cells, which might be identified by intestinal
stem cell markers. An emerging concept in tumor biology is that cancer stem cells are responsible
for sustaining tumor growth. If Barrett cancers develop from Barrett stem cells, then a therapy
targeted at those stem cells might prevent esophageal adenocarcinoma. This report reviews the risk
factors for Barrett esophagus and esophageal adenocarcinoma, the mechanisms by which genetic
alterations might contribute to carcinogenesis in Barrett esophagus, and the role of stem cells in the
development of Barrett metaplasia and adenocarcinoma.
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1. Introduction
Cancer of the esophagus is the world’s eighth most common malignancy, affecting
approximately 500,000 individuals worldwide each year [1]. It is one of the most deadly
gastrointestinal tumors, with 5-year mortality rates that exceed 80% [2]. There are the two
major histological types of esophageal cancer, squamous cell carcinoma and adenocarcinoma,
and their epidemiological features differ considerably. Squamous cell carcinoma of the
esophagus has a predilection for black and Asian populations and, worldwide, more than 80%
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of esophageal cancers are squamous cell carcinomas. In contrast, esophageal adenocarcinoma
affects white populations predominantly.

In the United States over the past several decades, the frequency of squamous cell carcinoma
has declined while there has been a dramatic rise in the frequency of esophageal
adenocarcinoma [2]. Indeed, the incidence of esophageal adenocarcinoma has increased by
more than 600% since 1975 [3]. The major risk factors for esophageal adenocarcinoma are
gastroesophageal reflux disease (GERD) and Barrett esophagus, the condition in which an
abnormal, intestinal-type epithelium replaces the squamous epithelium that normally lines the
esophagus [4;5]. This report will review the risk factors for esophageal adenocarcinoma, and
discuss the molecular biology of Barrett esophagus and esophageal adenocarcinoma.

2. Risk Factors for Esophageal Adenocarcinoma
2.1. GERD and Barrett Esophagus

GERD and its sequela Barrett esophagus are the major risk factors for esophageal
adenocarcinoma [4;5]. GERD is thought to be the factor that both injures the esophageal
squamous epithelium and provides the abnormal milieu necessary for healing of the reflux
esophagitis through metaplasia rather than through the regeneration of squamous epithelium.
The specialized intestinal metaplasia of Barrett esophagus appears to be more resistant to acid-
peptic damage than the native squamous epithelium but, for reasons that are not clear, is
predisposed to carcinogenesis. Indeed, the large majority of esophageal adenocarcinomas
appear to arise from this specialized intestinal metaplasia [5]. Adenocarcinomas in Barrett
esophagus develop through a sequence of genetic alterations which eventually endow cells
with unlimited proliferative capacity [6]. These alterations are reviewed in detail below.

2.2. Obesity
Obesity has been established as a strong risk factor for esophageal adenocarcinoma. A recent
systematic review of the literature found a positive association between body mass index (BMI)
and the risk of esophageal adenocarcinoma [7]. Other recent data has found a stronger
association of esophageal adenocarcinoma with central (abdominal) obesity than with BMI
alone. In a nested case-control study, the strong association between esophageal
adenocarcinoma and abdominal obesity did not diminish when adjusted for overall BMI [8].
A strong association between central obesity and Barrett esophagus also has been reported
[9]. Central obesity may predispose to GERD by increasing pressure within the abdomen. In
addition, obesity may alter circulating levels of pro-proliferative factors so as to promote
esophageal carcinogenesis. For example, the insulin resistance that may accompany obesity
results in elevated serum levels of insulin-like growth factors, which are pro-proliferative.
Obesity also is associated with elevated levels of the pro-proliferative hormone leptin, and with
decreased levels of the anti-proliferative hormone adiponectin [10]. It has been proposed that
the rising frequency of obesity in Western countries may underlie the rising incidence of
esophageal adenocarcinoma.

2.3. Dietary Factors
Investigators from Glasgow have proposed that increased intake of dietary nitrate may be
contributing to the rising incidence of esophageal adenocarcinoma. Most dietary nitrate is in
green, leafy vegetables. Ingested nitrate is absorbed by the small intestine and is largely
excreted unchanged in the urine. However, approximately 25% of the dietary nitrate is
concentrated by the salivary glands and secreted into the mouth where bacteria on the tongue
reduce the recycled nitrate (NO3−) to nitrite (NO2−). When swallowed nitrite encounters acidic
gastric juice, the nitrite is converted rapidly to nitric oxide (NO), a toxic molecule. After nitrate
ingestion, high levels of NO have been demonstrated in the distal esophagus and proximal

Zhang et al. Page 2

Cancer Lett. Author manuscript; available in PMC 2010 March 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



stomach. NO can be genotoxic and, potentially, carcinogenic. Following World War II,
Western countries sharply increased their use of nitrate-based fertilizers, resulting in an
increased concentration of nitrates in vegetables. It is conceivable that this has contributed to
the rising frequency of esophageal adenocarcinoma [11;12].

Despite this attractive theory, the bulk of available epidemiological data suggest that a diet
high in fruits and vegetables may protect against Barrett and adenocarcinoma of the esophagus.
Furthermore, a recent prospective study conducted by the National Cancer Institute found no
apparent association between total fruit and vegetable intake and the incidence of esophageal
adenocarcinoma [13]. On subgroup analysis, furthermore, a significant inverse association was
found between spinach intake (a potential source of dietary nitrates) and adenocarcinoma of
the esophagus [13].

2.4. Helicobacter pylori
H. pylori has been classified by the World health Organization’s International Agency for
Research on Cancer as a group I (definite) carcinogen for adenocarcinoma of the distal stomach
[14]. In contrast, a recent meta-analysis has confirmed that there is a significant inverse
relationship between esophageal adenocarcinoma and H. pylori infection [15]. A similar
inverse relationship between H. pylori and Barrett esophagus also has been reported [15;16].
Thus, H. pylori appears to protect against the development of Barrett and adenocarcinoma of
the esophagus. Although the exact mechanism for this protective association is not clear, it has
been suggested that H. pylori infections which decrease gastric acid secretion may prevent the
development of GERD, which is an undisputed risk factor for esophageal adenocarcinoma.

2.5. Alcohol and Tobacco Use
Unlike esophageal squamous cell cancer where alcohol and tobacco use are strong risk factors,
a number of studies have found that there is only a moderate association of tobacco use with
esophageal adenocarcinoma and no clear association with alcohol use. A recent, prospective
study conducted by the National Cancer Institute has found that smokers have a 55% increased
risk of esophageal adenocarcinoma, whereas alcohol use (defined as >3 alcoholic beverages
per day) does not appear to influence the risk for this tumor [17].

3. Molecular Pathogenesis of Esophageal Adenocarcinoma Arising in Barrett
Esophagus

Metaplasia, the process in which one adult cell type replaces another, is one way in which
tissues respond to chronic inflammation [18]. Although the metaplastic cells may be more
resistant to the inflammatory insult than the native cells, the metaplasia also may predispose
to malignancy. In the esophagus, chronic inflammation due to GERD results in the replacement
of reflux-damaged squamous epithelium by specialized intestinal metaplasia, which appears
to be more resistant to reflux-mediated injury. Unfortunately, Barrett esophagus is predisposed
to develop esophageal adenocarcinoma.

As benign, metaplastic Barrett cells progress to carcinoma, they accumulate a number of
genetic alterations that give them growth advantages. These alterations eventually endow the
cells with the essential physiological hallmarks of cancer cells including the ability to
proliferate without exogenous stimulation, to resist growth-inhibitory signals, to avoid
triggering apoptosis, to resist cell senescence, to develop new vascular supplies (angiogenesis),
and to invade and metastasize [19]. The sections below focus on how genetic alterations
acquired during the neoplastic progression of Barrett esophagus result in the acquisition of
each of the cancer hallmarks (Figure 1).

Zhang et al. Page 3

Cancer Lett. Author manuscript; available in PMC 2010 March 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.1. Proliferation without Exogenous Stimulation
In general, it is the expression of oncogenes that allows cells to proliferate without exogenous
stimulation. Proto-oncogenes are normal cellular genes that promote cell growth. Oncogenes
are proto-oncogenes that have become overactive as the result of mutation. Examples of
oncogenes implicated in the development of esophageal adenocarcinoma are cyclins D1, E,
B1, and A. Cyclins D1 and E, along with their cyclin-dependent kinases (cdks), regulate the
pivotal G1 to S transition point in the cell cycle. Cyclin A is expressed during the S and G2
phases, whereas cyclin B1 acts to control the G2 to M transition. Increased nuclear expression
of cyclin D1 protein has been detected in biopsy specimens of non-dysplastic Barrett
metaplasia, suggesting that it may play an early role in carcinogenesis [20]. In contrast,
overexpression of cyclin E has been found in dysplastic Barrett epithelium and in
adenocarcinomas, but not in non-dysplastic Barrett esophagus [21]. Expression of cyclin B1
has been detected in non-dysplastic and dysplastic Barrett esophagus as well as in Barrett
adenocarcinomas [22]. Cyclin A expression has been found to increase as the metaplasia
progresses through dysplasia to adenocarcinoma [23].

In addition to the direct activation of oncogenes, alterations in growth factors, growth factor
receptors, or the signaling pathways that mediate growth factor-receptor interactions can also
allow cells to proliferate without exogenous stimulation. For example, increased expression of
epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor
(EGFR, also called ErbB-1) have been found in esophageal adenocarcinomas [24;25].
Increased expression of TGF-α and the EGFR have been found to occur early in non-dysplastic
Barrett epithelium [24;25]. The role of the oncogenic form of the normal EGFR family member
erbB-2 (also called HER2 or Neu) in esophageal adenocarcinoma progression remains
controversial. However recent data suggest that HER2 amplification may be associated with
a worse outcome for esophageal adenocarcinoma [26;27]. Downstream of tyrosine kinase
receptors like EGFR are the Ras proteins (including H-ras and K-ras,), which play a central
role in the regulation of cell proliferation. K-ras mutations have been reported in 11–40% of
esophageal adenocarcinomas [28;29].

3.2. Resistance to Growth-Inhibitory Signals
Tumor suppressor genes are normal genes that usually function to restrain cell growth. Cells
can acquire the ability to resist growth inhibitory signals by inactivating tumor suppressor
genes through one or a combination of three mechanisms including mutation of the gene, loss
of heterozygosity (LOH, which is a deletion of the chromosomal region containing the gene),
or promoter methylation (attachment of methyl groups to the promoter region of genes). Tumor
suppressor genes implicated in the progression of Barrett metaplasia to cancer have shown
inactivation by all of these mechanisms.

Examples of tumor suppressor genes implicated in the development of esophageal
adenocarcinoma include p16, p53, p14ARF, p27, and the adenomatous polyposis coli (APC)
gene. p16 and p53 proteins normally act to block cell cycle progression at the G1 to S transition
and, therefore, inactivation of the p16 or p53 gene enables unregulated cell growth. Allelic loss
of 9p21, the chromosomal locus for p16, and methylation of the p16 promoter have been
reported in 45–54% of esophageal adenocarcinomas [30;31]. Moreover, p16 mutation, LOH
or promoter methylation has been detected in non-dysplastic, Barrett metaplasia in
approximately 80% of cases, suggesting that genetic alterations of p16 are among the earliest
events in the neoplastic progression of Barrett esophagus [32].

Inactivation of p53 by LOH at its 17p locus along with mutation of the remaining allele has
been found in approximately 50–90% of esophageal adenocarcinomas [33;34] Non-malignant
cells of specialized intestinal metaplasia also can develop p53 LOH and mutation, but rarely
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in the absence of a preexisting alteration of p16 [35]. Decreased expression of p14ARF, a key
regulator of p53 protein, has been found as Barrett metaplasia progresses to adenocarcinoma,
with 75% of these cancers exhibiting undetectable levels of p14ARF [36]. Loss of protein
expression for p27, an inhibitor of cyclin E activity, has been observed in 83% of esophageal
adenocarcinomas, and has been correlated with aggressive tumor behavior and poor patient
outcomes [37]. Methylation of APC has been found in over 80% of cases of Barrett esophagus
with high grade dysplasia or adenocarcinoma, and in approximately 40 % of patients with non-
dysplastic Barrett metaplasia [38;39].

3.3. Avoidance of Apoptosis
Normal cells have the ability to destroy themselves through the process of apoptosis, a
genetically regulated, innate form of cell suicide. This process prevents the survival of cells
that have sustained cancer-promoting injuries that might threaten the organism. The cellular
apoptotic machinery can be triggered by a number of factors including DNA damage, death
receptor activation, and metabolic abnormalities. Once activated, the apoptotic machinery
leads to cell death through activation of an executioner pathway [40]. Tumor cells must find
ways to avoid apoptosis if they are to survive.

In addition to its tumor suppressor activity, p53 protein also functions as an initiator of
apoptosis. Esophageal adenocarcinoma cells can avoid apoptosis by inactivating p53.
Apoptosis also can be initiated when death receptors on the cell surface bind with ligands such
as Fas-ligand (FasL) and TNF-related apoptosis inducing ligand (TRAIL)[41;42]. The Fas
death receptor normally is found on gut epithelial cells, whereas lymphocytes express both Fas
death receptor and FasL. Esophageal adenocarcinoma cells have been found to express FasL,
which can bind the Fas receptor on the surface of tumor-killing lymphocytes, thereby
destroying the lymphocytes that might attack the cancer cells [43]. Recently, expression of
TRAIL has been found to decrease progressively as metaplastic Barrett epithelium develops
dysplasia and carcinoma [42].

Synthesis of an agent that blocks apoptosis is another mechanism whereby cancer cells avoid
their own destruction. For example, esophageal adenocarcinomas can exhibit increased
expression of cyclooxygenase-2 (COX-2), which has been shown to decrease apoptosis rates
in esophageal adenocarcinoma cells in vitro, [44;45] COX-2 overexpression also has been
detected in benign Barrett metaplasia, and COX-2 expression has been found to increase as
the cells progress to dysplasia and carcinoma [46].

3.4. Resistance to Cell Senescence
Senescence, like apoptosis, is an innate mechanism that limits the proliferation of normal cells.
As cells undergo successive divisions, their telomeres, which are short repetitive DNA
sequences located at the ends of chromosomes, undergo progressive shortening. Once the
telomeres shorten to a critical length, the cell enters senescence, a permanent state of growth
arrest. Therefore, for cells to replicate indefinitely (i.e. to become immortal), telomere length
must be maintained. Telomerase is the enzyme responsible for the synthesis and maintenance
of telomeres [47]. High levels of telomerase expression have been found in esophageal
adenocarcinoma, whereas low expression levels are found in non-dysplastic Barrett epithelium
[48]. Moreover, a marked increase in telomerase expression occurred during the transition from
low grade to high grade dysplasia in Barrett epithelium [48].

3.5. Development of New Vascular Supplies (Angiogenesis)
For tumors to grow, they must form new blood vessels to provide nutrients and eliminate
metabolic waste products. Vascular endothelial growth factors (VEGFs) are potent promoters
of angiogenesis. VEGF expression has been found to be significantly increased in esophageal
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adenocarcinomas compared to dysplastic and metaplastic Barrett esophagus and normal
esophageal mucosa [49]. Endoglin is a receptor for transforming growth factor β1, which
preferentially binds to endothelial cells involved in tumor angiogenesis [49]. In esophageal
adenocarcinoma, the number of tumor microvessels that stain with endoglin has been found to
correlate significantly with angiolymphatic invasion, lymph node metastasis, and overall
prognosis [49]. Moreover, Barrett epithelium with high grade dysplasia contains a significantly
greater number of endoglin-staining microvessels than Barrett with low grade dysplasia [49].

3.6. Invasion and Metastasis
To invade and metastasize, tumor cells must lose their cell-cell adhesion and acquire the ability
to degrade the extracellular matrix. Cadherins are a large family of adhesion molecules that
are located on the cell surface, where they bind to cadherins on the surface of neighboring cells.
The cadherins are anchored in place by binding to catenins, which are attached to the cell
cytoskeleton. Loss of cell-cell adhesion by failure of cadherins to interact with either the
catenins or with other cadherins can predispose to invasion and metastasis. As the degree of
dysplasia in Barrett epithelium increases, there is a decrease in membranous E-cadherin and
β-catenin and an increase in the cytoplasmic and nuclear location of these proteins [50;51].

Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes that mediate the
destruction of the extracellular matrix, allowing for tumor invasion and spread. MMPs-7 and
-9 have been found to be increased in non-dysplastic Barrett esophagus, with even higher levels
found in dysplastic Barrett mucosa and esophageal adenocarcinoma [52;53].

4. Contribution of Inflammation and Inflammatory Mediators to the
Development of Esophageal Adenocarcinoma

It has been known for more than a century that chronic inflammation can contribute to cancer
formation. A number of chronic inflammatory conditions of the gastrointestinal tract, such as
ulcerative colitis and chronic pancreatitis, are well known to predispose to carcinogenesis. As
noted above, the major risk factors for esophageal adenocarcinoma are GERD and Barrett
esophagus, both of which are associated with chronic inflammation. GERD can cause reflux
esophagitis, and histological evidence of moderate to severe inflammation along with the
expression of the pro-inflammatory cytokines IL-1β, IL-8, and NF-κB (a transcription factor
involved in the regulation of pro-inflammatory genes) have been detected in biopsies of Barrett
metaplasia [54;55]. Moreover, the infiltrating inflammatory cells are not the only source of
pro-inflammatory cytokines, because metaplastic Barrett epithelial cells themselves have been
found to express IL-8, IL-1β and IL-10 [54;56]. NF-κB activation and epithelial cell expression
of tumor necrosis factor (TNF) -α and its receptor TNFR1 all have been found to increase as
metaplastic Barrett mucosa develops dysplastic changes of progressive severity, suggesting
that the inflammatory response might be contributing to carcinogenesis [54;57]. Although
levels of IL-8 and IL-1β have not been found to be elevated in dysplastic Barrett epithelium,
higher expression levels of both cytokines have been detected in esophageal adenocarcinomas
[54].

One mechanism whereby inflammation might promote cancer formation is through the
production of reactive oxygen species (ROS) that can cause oxidative damage to cellular DNA,
proteins, and lipids. Such oxidative damage has been documented in association with GERD
in animal models of reflux esophagitis, Barrett esophagus, and esophageal adenocarcinoma as
well as in patients with those diseases [58;59]. Lipid membrane peroxidation is an indicator of
ROS-mediated cellular injury, and biopsies of inflamed esophageal squamous and Barrett
mucosae exhibit higher levels of ROS and lipid peroxidation than uninflamed control tissues
[59]. Moroever, Clemons et al. have demonstrated a link between acid-induced ROS and DNA
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damage in Barrett high-grade dysplasia and esophageal adenocarcinoma cell lines in vitro
[60].

One of the defense mechanisms cells have to prevent oxidative damage is the expression of
antioxidant enzymes that assist in the removal of ROS. Therefore, low levels of antioxidant
enzymes would be expected to enhance ROS-mediated cellular injury. Biopsies of non-
dysplastic Barrett metaplasia, Barrett with dysplasia, and esophageal adenocarcinoma all have
been shown to express low levels of the antioxidant enzymes glutathione S-transferase and
glutathione peroxidase, suggesting that deficiencies in the antioxidant defense system may
contribute to inflammation-mediated esophageal carcinogenesis [61;62].

5. Recent Advances in Understanding of the Pathogenesis of Barrett
Metaplasia

Barrett metaplasia develops when esophageal squamous epithelium is damaged by GERD. The
origin of the stem cells that give rise to the specialized intestinal metaplasia of Barrett
esophagus are not known, but have been assumed to reside within the esophagus itself.
However, a recent study suggests that stem cells from the bone marrow might contribute to
Barrett metaplasia. In this study, female rats had their native bone marrow cells destroyed by
a lethal dose of radiation, followed by a bone marrow transplant from male rat donors [63].
The female rats then had an esophagojejunostomy, which results in severe esophagitis and
intestinal metaplasia similar to human Barrett esophagus. Nuclear staining for Y chromosome,
which must have come from the bone marrow cells of the male donor rats, was found in both
squamous cells and metaplastic columnar cells in the esophagi of the female rats. These data
suggest that multipotential adult progenitor cells of bone marrow origin contribute to
esophageal regeneration and metaplasia in this rat model of reflux esophagitis and Barrett
esophagus, and that the progenitor cell for Barrett esophagus could be of bone marrow origin.

Metaplasia also can arise through the conversion of one differentiated cell type into another,
a process that generally involves changes in the cell’s pattern of gene expression. CDXs,
members of the Caudal gene family, are a homeobox family of transcription factors known to
mediate the expression of genes which can determine an intestinal phenotype. The forced
expression of Cdx1 or Cdx2 in the gastric epithelial cells of mice leads to intestinal metaplasia
in their stomachs [64;65]. In humans, biopsy specimens of specialized intestinal metaplasia
have been shown to express both CDX1 and CDX2 [66;67]. Moreover, a number of in vitro
studies suggest that acid and bile acids, the major noxious components of gastric refluxate, can
induce CDX-2 expression in esophageal squamous cells [68]. CDX2 expression has been found
in esophageal squamous epithelium from patients with Barrett esophagus, suggesting that
induction of CDX expression by gastric reflux in esophageal squamous cells may mediate their
differentiation into the intestinal-type cells of Barrett metaplasia [67].

Another factor which may be involved in the squamous-to-columnar metaplasia of Barrett
esophagus is bone morphogenetic protein (BMP)-4. In patients with GERD and Barrett
esophagus, BMP-4 expression has been localized to the stromal tissue underlying inflamed
esophageal squamous epithelium and specialized intestinal metaplasia, but not in the stroma
underlying normal esophageal squamous epithelium [69]. When human esophageal squamous
cells grown in culture are exposed to BMP-4, their gene expression patterns change to resemble
those of Barrett metaplasia [69]. These data suggest that perhaps GERD may cause esophageal
stromal cells to express BMP-4, which promotes the epithelium to change from a squamous
to columnar cell type.
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6. Stem Cells and Barrett-Associated Esophageal Adenocarcinoma
Regardless of whether Barrett metaplasia develops initially from the abnormal differentiation
of esophageal or bone marrow-derived stem cells, or from the conversion of mature esophageal
squamous cells, the maintenance of the metaplastic epithelium depends on a stem cell for its
continual renewal. Likewise, it is now thought that cancer stem cells are responsible for
maintaining and renewing tumors. Therefore, the cancer stem cells must be eliminated in order
to eliminate the tumor. Recent data suggest that the stem cells of gastrointestinal tumors may
express the same stem cell markers as the normal intestinal epithelium [70;71]. Presently, no
markers of stem cells in metaplastic Barrett esophagus have been identified. However, since
the epithelium of Barrett esophagus is a form of incomplete intestinal metaplasia, perhaps Lgr5
and DCAMKL-1, the recently identified markers for intestinal stem cells, may be of use in the
search for the stem cells in Barrett esophagus and esophageal adenocarcinoma [70;71]. If this
is the case, then it is conceivable that, in the future, pharmacologic agents or endoscopic
ablative therapies could be targeted to eliminate the Barrett stem cells and thus prevent the
development of esophageal adenocarcinoma.

7. Conclusion
Over the past several decades, there has been an alarming increase in the frequency of
adenocarcinoma of the esophagus. The major risk factors for esophageal adenocarcinoma are
GERD and its sequela, Barrett esophagus. Thus, it has become increasingly important to
understand the pathogenesis of esophageal adenocarcinoma and Barrett esophagus at the
molecular level in order to develop more targeted and effective cancer-preventive strategies.
While only a fraction of the genetic alterations required for benign, metaplastic Barrett cells
to progress to adenocarcinoma were reviewed in this report, it is hoped that the conceptual
basis for evaluating studies on developing cancer treatments and preventive strategies has been
established. It is also reasonable to assume that further elucidation of basic mechanisms
underlying the development of Barrett esophagus and its progression to malignancy will lead
to improved clinical strategies and outcomes for patients with Barrett adenocarcinomas.
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Figure 1.
Major genetic alterations acquired by metaplastic Barrett cells during progression to
esophageal adenocarcinoma. The approximate histological stage at which each genetic change
has been recognized is depicted.
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