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Summary
Computationally predicted three-dimensional structure of protein molecules has demonstrated the
usefulness in many areas of biomedicine, ranging from approximate family assignments to precise
drug screening. For nearly 40 years, however, the accuracy of the predicted models has been dictated
by the availability of close structural templates. Progress has recently been achieved in refining low-
resolution models closer to the native ones; this has been made possible by combining knowledge-
based information from multiple sources of structural templates as well as by improving the energy
funnel of physics-based force fields. Unfortunately, there has been no essential progress in the
development of techniques for detecting remotely homologous templates and for predicting novel
protein structures.

Introduction
Determining the three-dimensional structure of protein molecules is a cornerstone for many
aspects of modern biological research. Currently, over 7 million protein sequences are
deposited in the UniProtKB/TrEMBL database [1] but only ~50,000 of them have
experimentally solved structures [2]. These numbers can be frustrating to molecular and cell
biologists who need 3D models of proteins for their research: the chance of a protein domain
to have a solved structure has dropped to 0.7% by the end of 2008; this number was 2% in
2004 and 1.2% in 2007. The high demand of the community for protein structures has placed
computer-based protein structure prediction, the only means to alleviate the problem, at an
unprecedentedly critical position.

Here, a fundamental question arises: How useful are the computationally predicted protein
models for biological research? Clearly, the answer to the question depends on how accurate
the predicted models are. But is it possible to judge the accuracy of a predicted model without
knowing the experimental structure or what factors determine the modeling accuracy of state-
of-the-art algorithms? Can the accuracy be improved by refining low-resolution models to
high-resolution ones? In this paper, I review the new progresses in the field that are relevant
to answer these questions. The literature review is focused on the work published in the last
two years.
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Accuracy of structure prediction is essential for the biological usefulness
Algorithm and modeling accuracy

Historically, protein structure prediction methods have been divided into three general
categories: comparative modeling (CM), threading, and free modeling. In CM, the protein
structure is constructed by matching the target protein to an evolutionarily related protein with
a solved structure (called a template), where the equivalent residues between the target and the
template are found by aligning the sequences or sequence profiles. Threading is designed to
match the target sequence directly to the solved 3D structures of template proteins, with the
goal of recognizing similar protein folds even in the absence of an evolutionary relationship.
Finally, for targets without structurally related solved proteins, models should be built from
scratch by free modeling.

Although the boundary between these different methods is becoming increasingly blurred
[3], the accuracy of a predicted model is largely determined by the availability of templates
and therefore the prediction approach that can be applied (Figure 1). For proteins with close
homologous templates, CM can be used, and most predicted structures have a root mean square
deviation (RMSD) of 1–2 Å from the experimental structure, which in some cases achieve the
accuracy of medium-resolution NMR or low-resolution X-ray structures [4]. For proteins with
distant homologous or analogous templates, threading often identifies correct templates and
provides models with an RMSD of 2–6 Å, with errors mainly occurring in the loop regions
[5]. For target proteins without solved template structures, successful prediction by free
modeling is limited to small proteins (<120 residues), with an accuracy usually in the range of
4–8 Å [6]. For low accuracy models (say, RMSD >3 Å), RMSD is no longer a meaningful
measure of modeling quality because a local misorientation of tails or loops, for example, can
result in a big overall RMSD even though the core region of the model may be correct. The
accuracy of models in this category is usually evaluated by the GDT-score [7] or TM-score
[8]. In TM-score, larger distance errors between corresponding predicted and true atom
positions are scored with a smaller weight than shorter ones, thus making the score more
sensitive to the correctness of the global topology than the local structural errors. By definition,
TM-score lies in the [0, 1] interval, with a value >0.5 indicating a model with a roughly correct
topology, and a value ≤0.17 indicating a random prediction regardless of the protein size.

High-resolution models
High-resolution structure models, typically generated by CM based on close homologous
templates, can usually meet the highest structural requirements in the case of single-domain
proteins, and are sometimes suitable for computational ligand-binding studies and virtual
compound screening. There have been a number of successful examples in which computer-
predicted models were used to guide the design of a new drug [9]. Of note, Becker and
coworkers [10••] used the predicted structural models of the serotonin receptors to screen a
compound library. The docking conformations of the lead compound with the receptor models
were then used to guide the design of new compounds with a significantly improved selectivity
and affinity, leading to the discovery of a novel agonist for the treatment of anxiety and
depression. To benchmark the use of computer models for ligand screening, Brylinski and
Skolnick [11•] recently examined the tolerance of ligand-protein docking algorithms towards
the accuracy of protein structure predictions. The authors found that 62–87% of binding
residues could be correctly recovered using deformed receptor structures with a RMSD of 1–
3 Å by Q-DOCK, a knowledge-based reduced docking approach guided by binding restraints
from threading algorithms [12].

As another application of homologous modeling, Tramontano and coworkers [13•] evaluated
the usefulness of models predicted in CASP experiments for molecular replacement (MR), a
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procedure for recovering the phase information in X-ray diffraction studies, which is critical
for determining the electron density and eventually the 3D structure of crystallized proteins.
The authors found that the performance of MR depends on the overall quality of the model
used, rather than on the accuracy of local structures. Consequently, models with a GDT-score
>0.84 guarantee a success in the MR procedure while models with a GDT-score <0.8 never
succeed; the accuracy cutoff in RMSD is blurred as both successes and failures were found
with models in 1–4 Å. Moreover, the best available structural templates from threading are
much less successful in MR than the complete models, demonstrating the importance of
structural refinement. Qian et al. [14••] recently showed that high-resolution models refined
from NMR structures, models obtained by CM from close homologous templates, and even
models produced by free-modeling techniques, can be used successfully to help phase
determination in the molecular replacement procedure.

Medium-resolution models
For models of medium-resolution, roughly in the RMSD range of 2.5~5 Å, typically generated
by CM from distantly homologous templates or by fold recognition (Figure 1), the structural
predictions can help to identify the spatial locations of functionally important residues, such
as active sites and the sites of disease-associated mutations. Arakaki et al. [15] assessed the
possibility of assigning the biological function of enzyme proteins by matching the structural
patterns (or descriptors) of the active sites with structure decoys of various resolutions. The
authors found that models with an RMSD of 3–4 Å from the experimental structure can be
used to assign the first three digits of the Enzyme Commission (EC) number with an accuracy
of 35%; the accuracy drops to 22% when models of 4–5 Å RMSD are used. Ye et al. [16] used
models built by the threading program FFAS to study the structural characteristics of disease-
related mutations in the human genome and concluded that the mutations tend to be spatially
clustered on protein surfaces and interfaces. Similarly, Yue and Moult [17] performed protein
stability analyses based on predicted structural models for the purpose of identifying the
deleterious amino acid substitutions in human populations and found that nearly one quarter
of the known non-synonymous single nucleotide polymorphisms (nsSNPs) are deleterious to
the protein function in vivo. Boyd et al. [18] recently used structural models generated by the
automated I-TASSER server [19••] to help interpret mutagenesis experiments with the Sec1/
Munc18 (SM) proteins on the basis of the spatial clustering of the mutated residues. Wang et
al. [20] used threading models produced by the PROSPECT program to identify splice sites
for alternative splicing, a critical eukaryotic cellular process for producing isoform proteins
through combining different portions of coding sequences in mRNA. It is found that alternative
splice sites are generally in loop regions and on the surfaces of proteins.

Low-resolution models
Even models with the lowest resolution from otherwise meaningful predictions, i.e. models of
approximately correct topology from free modeling approaches or based on weak hits from
threading, have a number of uses including protein domain boundary identification [21,22],
topology recognition, or family/superfamily assignment. Recently, Malmstrom et al. [23]
performed a large-scale study of SCOP superfamily assignment based on structural models
from free modeling. The authors used the ROSETTA package to predict the 3D structures of
small protein domains (<150 residues), selected from the yeast (Saccharomyces cerevisiae)
proteome, that are not homologous to known structures. Out of the 3,338 domains, 404 could
then be assigned to SCOP superfamilies with high confidence, based on structural comparisons
between the predicted models and the SCOP structures; an additional 177 were assigned after
integrating the data with the Gene Ontology (GO) annotations. Zhang et al. [24••] predicted
structures for all 907 putative G-protein coupled receptors (GPCRs) in the human proteome,
with the majority of the targets modeled by free modeling or by assembling weakly homologous
fragments. Based on an all-against-all comparison of the predicted structures, GPCRs in the

Zhang Page 3

Curr Opin Struct Biol. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



same functional family were found to be more conserved in structure space than in sequence
space. This finding establishes the possibility of functional annotation of orphan proteins based
on topology-level comparisons of predicted structures. One such instance is the RDC1 receptor,
which was considered an orphan receptor for 15 years; its closest but weak relative is the
adrenomedullin receptor (AMDR) based on phylogenetic studies [25]. The TASSER structural
predictions placed the RDC1 receptor in the family of chemokine receptors because the
predicted RDC1 structure is closest to the predicted structure of the CXCR4 chemokine
receptor [24••]. This finding was later confirmed by binding experiments [26].

Predicting the accuracy of structural predictions – lessons from CASP
experiments
Consensus of templates is a reliable indicator of final model quality

Estimating the accuracy of predicted protein structures is essential for deciding how the models
will be used in biological research. Because structure predictions based on existing template
structures (including comparative modeling and threading) are the most reliable approaches
for producing high-resolution models, an often used and very naïve way of estimating the
quality of final models is to check the percentage of identical residues between the target and
the template sequences. We tested the relationship between model quality and target-template
sequence identity on the 293 protein targets/domains used in the recent two CASP experiments
[27] (124 from CASP7 and 169 from CASP8). Figures 2a and 2b show the average RMSD and
TM-score, respectively, of the best three server predictions versus the sequence identity
between each target and its closest template. To identify the closest template, the PDB
structures deposited after the CASP target release date were excluded from the template library
used here. As the figures show, for targets with a sequence identity higher than 35~40% with
the template, the state-of-the-art algorithms can always build high-quality models with a TM-
score >0.8 (or an RMSD <2 Å in the core region), and there is no significant variation in model
quality for targets with a sequence identity from 40% to 70%. On the other hand, for sequence
identities <35%, there is no correlation between sequence identity and the quality of final
models. This is understandable because many protein families (e.g. the globin family) are
diverse in sequence and the pair-wise sequence identity is low but their folds can be easily
identified by sequence-profile alignment tools such as PSI-BLAST.

Another often-used, simple approach to estimate model quality is based on the E-value of the
templates hit by PSI-BLAST [28], which is a measure of the statistical significance of the hit
and defined as the expected number of alignments to be found in the given database by chance
with a score higher than the hit. As shown in Figures 2c and 2d, an E-value cut-off (say, <0.001)
can pick up more targets with good predictions than a sequence identity cut-off of 40%.
However, there are a number of protein targets with a high E-value that still have high-quality
models, which shows that the E-value is not a good indicator of model quality when state-of-
the-art prediction methods are used.

Because most CASP predictors use templates found by sophisticated threading techniques, a
reliable estimate of modeling quality should come from the parameters related to the quality
of the threading templates on which the modeling is based. In Figures 2e and 2d, we present
the final model qualities versus the average pair-wise TM-score between the top templates
identified by LOMETS, a meta-server [29] unifying the results from 8 state-of-the-art
individual threading programs (FUGUE, HHsearch, MUSTER, PPA, PROSPECT2, SAM-
T02, SPARKS, and SP3). Again, templates structures deposited in the PDB after the CASP
target release date were removed. For each target, 8 threading alignments are collected from
the first hit of each program which produces 28 pair-wise TM-scores. The average from the
top half of the 14 TM-scores, 〈TM-score〉half, reflects the consens us of the threading templates
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and are used in Figures 2e and 2f. First, 〈TM-score〉half strongly correlates with the TM-score
between the best LOMETS template and the experimental target structure, with a correlation
coefficient of 0.92 (data not shown). This is understandable because each individual threading
program generally has a much higher chance to produce an incorrect hit than a correct one due
to the astronomically large alignment space. Thus, if the same template and alignment is
identified by multiple different threading programs then it is much more likely to be correct
than incorrect. Thus, a consensus measure defined as the average TM-score of multiple
threading templates constitutes a more reliable estimate of final model accuracy than sequence
identity or PSI-BLAST E-value. Structural consensus is also the core concept of many Model
Quality Assessment Programs (MQAPs), which have been designed for ranking and selecting
models from multiple predictors [30•,31]. For the CASP7 and CASP8 predictions, the
correlation coefficients between 〈TM-score〉half from LOMETS and RMSD/TM-score of the
final models are 0.68/0.88. If we consider models with a TM-score >0.75 or RMSD <3.5 Å as
successful models and use a cutoff of 〈TM-score〉half = 0.75 to predict modeling success, then
the false-positive/false-negative rates are 0.08/0.18 for the TM-score, and 0.19/0.18 for the
RMSD based criterion.

Correlation of templates and final models
To have a clear view of how the final modeling results are affected by the quality of the initial
templates, and whether the modeling procedures can yield an improvement over the templates,
we make a head-to-head comparison of the quality of the final models versus the templates
from threading or structural alignments. Figure 3a presents the RMSDs (from the experimental
target structures) of the best three final models versus the RMSDs of the best threading
templates by LOMETS [29], with both types of RMSD calculated for the residues aligned by
threading. While there is a general tendency of better templates resulting in better models, the
majority of the models are driven closer to the native structure than the best threading templates
to the native. The same improvement can also be observed when the TM-score is used for
comparison, as shown in Figure 3b. Because the TM-score of final models is calculated for the
full-length chain, part of the TM-score increase in the final models is due to the lengthening
of the protein chains. Nevertheless, the correlation between the qualities of the LOMETS
templates and the final models is more pronounced in the TM-score comparison (correlation
coefficient=0.96).

The best templates identified by threading are not necessarily the best templates in the PDB
library. In fact, when we use the experimental target structures to search for templates in the
PDB library by the structure alignment program TM-align [32], the average TM-score of the
best possible templates is 0.76 for all 293 domains; the same calculation yields only 0.65 for
the templates identified by LOMETS. In the sense of structure alignments, there were actually
no new fold targets in CASPs 7 and 8 because all targets have at least one template with a
correct topology (TM-score>0.45). Zhang and Skolnick [33] recently showed that using the
best possible templates, almost all the single-domain proteins can be folded with an overall
average RMSD of 2.3 Å. It was therefore concluded that the current PDB is an almost complete
template library for solving the problem of protein structure prediction at least for single-
domain proteins. However, most of the structural alignments for non-homologous proteins
could not be recovered by state-of-the-art threading algorithms. In Figures 3c and 3d, we
present the RMSDs and TM-scores of the best CASP predictions versus the best templates
obtained by structural alignment. Remarkably, for 19% of the targets, the RMSD of the final
models is lower than that of the best possible templates in the aligned regions. If TM-score is
considered, 54% of models are improved in comparison with the best possible templates. These
data demonstrate the significant progress achieved by the community in the area of model
refinement, which will be discussed in the next section.
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Protein structural refinement: from low to high resolution
The approximate assignment of modeling accuracy to each category of prediction methods in
Figure 1 is based on the models without refinement. Further refinement, aiming at pulling the
low-resolution models closer to the experimental target structure, can increase the resolution
of models, which will undoubtedly extend the scope of biological usefulness of the resulting
models across all prediction categories. Protein structure refinement methods can generally be
categorized into physics-based and knowledge-based approaches. While physics-based
methods try to repack the backbone and side-chain atoms based on physical principles that are
supposed to govern the basic atomic interactions, knowledge-based methods rely on statistical
potentials and the template information obtained from solved structures in the PDB library.

Knowledge-based structure refinement
One of the most successful knowledge-based approaches to protein structure refinement is the
TASSER method, developed by Zhang and Skolnick [34]. TASSER reassembles fragments
excised from template structures based on threading alignments, using an energy function
consisting of a variety of statistical terms derived from structures in the PDB, and energy terms
representing spatial restraints from multiple threading templates. Recently, Wu et al. [35]
developed a new version of I-TASSER which aims at refining the structures by an iterative
implementation of the TASSER assembly procedure. In CASP7, the models generated by I-
TASSER had a lower RMSD to the experimental structures in the threading-aligned regions
than the initial threading templates for 86 out of 105 template-based modeling (TBM) targets,
resulting in an average RMSD reduction from 4.9 to 3.8 Å [36•]. Even in comparison with the
best templates identified by structural alignment search using the experimental structure as a
query, the I-TASSER models have a higher GDT-score by more than half assessment units in
one third of the cases, as assessed by Kopp et al. [6]. In CASP8, the first models by the
automated I-TASSER server predictions [19••] is closer to the experimental structures than the
best initial threading templates in 127 out of 154 TBM targets while the models are worse than
(equal to) the templates in the other 24 (3) cases.

The use of composite restraint information from multiple threading templates appears to be a
key factor for the success of the knowledge-based structure refinement. One advantage of using
multiple templates is that the regions missing in one template can be built by borrowing
information from other templates for the same regions. Second, the consensus structural
information from multiple templates is in general more accurate than that from the individual
templates; this information can be exploited to correct the errors in the aligned regions of the
template as well [37]. There are also a number of multiple-template based MQAP approaches,
which try to score and rank models from a pool of multiple structures generated from other
modeling algorithms [29,30•,38–40]. MQAP is usually able to produce a set of selected models
having, on average, a better quality than the models from the individual algorithms; but the
individual models are not refined by MQAP.

Physics-based structure refinement
Compared with knowledge-based methods, physics-based approaches have been more
extensively used in the literature for refining the low-resolution models from both template-
based modeling and free modeling. Early efforts in physics-based structure refinement focused
on using molecular dynamics (MD)-based simulations, a computational method designed to
move atoms in a protein molecule by solving Newton’s equations of motion using force fields
such as AMBER and CHARMM. Except for some isolated instances, however, no systematic
improvement was achieved [41]. Recently, Zhu et al. [42••] performed replica-exchange
molecular dynamics (REMD) simulations using GROMACS to refine 21 models built by
comparative modeling which have an initial backbone RMSD in the secondary structures (SSE-
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RMSD) ranging from 1.33 to 4.14 Å (with respect to the experimental structure). In the replica-
exchange method, MD simulations are performed on replicas at different temperatures, with
the purpose of improving the sampling at low temperatures by occasionally exchanging the
conformations with those at high temperatures. The authors found that the REMD simulations
could often produce structures with lower SSE-RMSD than the initial models. Selecting the
structure with the lowest SSE-RMSD from 5 ns trajectories of the five lowest-temperature
replicas, the average SSE-RMSD improvement relative to the initial structures was 0.82 Å.
The conformations in these trajectories were then ranked by various statistical and physics-
based potentials and the five best-scoring structures were selected. The SSE-RMSD
improvement (relative to the initial structures) for the best of these five models was 0.24 Å.
Although encouraging, the experiment highlights key problems of physics-based structure
refinement. First, no atomic potential (both statistical and physics-based) could distinguish the
near-native structures from the more distant non-native structures because the energy of the
best near-native structure was almost always higher than some of the non-native ones. Second,
however, the energy of the native structures was found to be lower than any of the structure
decoys in all the tested potentials, including the RAPDF/HB and ROSETTA atomic potentials.
A similar tendency was observed by Wroblewska and Skolnick [43] with the AMBER
potential. These data indicate that the current energy landscape is actually similar to a golf
court with the native state as the deepest hole but lacks a middle-range funnel that could guide
the simulation to the target state.

To partly address this issue, Wroblewska et al. [44] recently tried to improve the funnel shape
of the physics-based force fields by systematically optimizing the weight factors of individual
energy terms through maximizing the correlation of the total energy with the TM-score on a
large set of training structure decoys. With the optimization, the correlation of the AMBER
FF03/HB energy with the TM-score increased from 0.25 to 0.59 in test decoys. When applying
the optimized FF03/HB potential to refine 3,900 low-resolution models generated by TASSER
for 39 small proteins (<123 residues), which had an initial C-alpha RMSD from 0 to 8 Å, the
authors observed improvements in 70% of the models, and the RMSD reduction was >0.5 Å
in 20% of the cases [45••]. The authors used a modified replica-exchange Monte Carlo
simulation method [46] to search the conformational space, where the improvement of the
energy funnel shape is of the key importance for guiding the simulations towards to the native
state. The success is also partly due to the improved ability of the optimized potential to
recognize near-native conformations.

Another way of resculpting the funnel shape of a physics-based energy landscape is to introduce
long-range spatial restraints. Chen and Brooks [47] incorporated tertiary contact restraints and
backbone phi/psi torsion angle restraints, both derived from initial near-native structures, into
the CHARMM22/GB potential, and searched the conformational space by REMD. The
approach was used to refine five CASP6 CM targets of 70–144 residues. In four cases,
considerable improvement, with an RMSD reduction of up to 1 Å, was achieved. Misura et al.
[48] also combined spatial distance restraints derived from sequence-structure alignments with
all-atom ROSETTA simulations. The approach resulted in one out of the 10 lowest-energy
models having an RMSD lower than the initial template in 22 out of 39 testing cases. The
authors recently extended their method to the refinement of NMR structures, with the
simulations focusing on the structurally variable regions. In 8 out of 10 cases, the refined
models were closer to the high-resolution X-ray crystal structures than the starting NMR
structures [14••]; these models were also shown to provide better molecular replacement
solutions than the NMR models to the X-ray crystallographic phase problem.
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Concluding remarks
The protein structure prediction problem could in principle be solved in two ways. The first is
to fold all proteins by reproducing the entire folding pathway of the polypeptide chains, from
their synthesis on the ribosome to their reaching their unique native states. Accomplishing this
remarkable task does not appear possible in the foreseeable future unless an accurate
physicochemical description of intra-protein and protein-solvent interactions is developed, not
to mention the delicate interactions of proteins with associated ligands and chaperones, which
dramatically complicate the problem. The second solution is more engineering-oriented rather
than scientific, i.e. experimentally solving the structures of a selected set of proteins so that all
proteins of unknown structures should have at least one neighbor with known structure that
can be used as a template for predicting their structures by comparative modeling. This has
been the goal of the various structural genomics (SG) projects [49]. It has been estimated
[50] that at least 16,000 optimally selected new structures need to be determined so that CM
can cover 90% of protein domain families. A total of 1,300 protein structures (65% are novel)
were determined by the Protein Structure Initiative in the first five years since its launch in
2000, and 3,000 more structures (75% are novel) are planned to be solved in the next five years
[51•]. Considering that traditional structural biology has contributed roughly the same number
of novel structures as the SG centers in the last two years [49,51•], it will take about one more
decade to determine all experimental structures needed to cover 90% of protein families.

At the preSG stage, computationally predicted protein structures, built on structural templates
from a variety of threading or homology-based algorithms, have proven to be helpful for drug
screening and drug design, designing mutagenesis experiments, detecting active sites, solving
the phase problem by molecular replacement, and understanding the effect of disease-
associated mutations. Even models based on weakly homologous templates or obtained by free
modeling, with the fold correctly predicted, have been used for assigning protein families and
identifying approximate domain boundaries. While experimental structures are undoubtedly
the most desirable, the applications addressable with predicted models span many needs of
biologists. The actual supply and demand are partly reflected by the popularity of online
structure prediction servers [31], e.g. the I-TASSER server [19••] alone has generated full-
length structure predictions for more than 20,000 unknown proteins submitted by about 2,000
registered scientists during the past 18 months.

One component which is often neglected by the predictors is an estimate of the modeling
accuracy, which essentially determines how the predicted models are used by biologists. A
number of dedicated algorithms, denoted as MQAP, have recently been developed for assessing
the quality of structural models. However, the external MQAP algorithms usually do not know
about the internal process by which the models were generated, and cannot utilize the
information generated during the modeling, such as how the modeling simulations converged
or how similar to each other the initial templates were, even though this information can provide
a more precise indication about the quality of the final models [19••]. An analysis of the recent
CASP predictions shows that a parameter measuring the consensus of threading template
alignments has a correlation coefficient of 0.88 with the TM-score of final models from state-
of-the-art predictors. On the other hand, naïve parameters such as template-target sequence
identity or PSI-BLAST E-value cannot differentiate good models from bad models for most
non-homologous protein targets.

Despite the fact that the PDB library has been shown to be complete at the level of structure
alignments [33,52], most threading methods have difficulty in detecting the best target-
template pairs when the evolutionary relationship is weak. One reason for the difficulty is that
the structural similarity of non-homologous protein pairs is often only partial, spanning ~4–5
secondary structure elements [53], while threading scores based on whole-chain alignments
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can be confounded by the structurally irrelevant regions and therefore prevent the correct
ranking and aligning of the templates. Splitting target sequences into segments and threading
the spliced sequence fragments through the structure library may help pick up the correct
substructure motifs (Wu and Zhang, Identifying protein substructure similarity by segmental
threading, submitted).

Developing efficient algorithms for refining low-resolution models to higher resolution has
become a central theme of the field. This has been motivated by several factors. First, most
biological and medical applications require atomic-level, high-resolution models; thus,
efficient refinement algorithms dramatically extend the scope of use of low-resolution protein
structure predictions. Second, with the progress of the SG projects and structural biology, more
and more structures become available as modeling templates, whereby the identification of
structural templates becomes increasingly obvious and easy, and the importance of ab initio
structure prediction from scratch diminishes for the purpose of structure prediction per se,
although ab initio modeling on its own is an important scientific problem that is relevant to
our understanding of protein folding. In fact, despite significant effort, progress in the
development of new threading algorithms for detecting remotely homologous templates, as
well as in ab initio structure prediction, has been slow in recent years [3]. Compared with
CASP7, there is no obvious difference in the overall performance on the modeling of hard
targets in the CASP8 experiment, nor are there notable novel algorithms developed to
efficiently address these issues. In contrast, protein structure refinement methods demonstrate
the most promising progress among many aspects of structure modeling. This is partly reflected
by the fact that structure refinement based methods have dominated the blind tests of recent
CASP experiments.

The success of the protein structure refinements is pursued in two aspects. For the knowledge-
based approaches, the major driving force comes from the optimal use of structural information
from multiple templates, and the optimization of statistical potentials. For the physics-based
algorithms, improving the funnel shape of the atomic potentials from a golf-court-like energy
landscape is the key where promising results have been attained by optimizing the energy
weights and/or introducing external long-range spatial restraints.

However, most of the success with physics-based refinement has been limited to small protein
domains (typically <150 residues). For larger proteins, the challenge is that a funnel-shaped
energy landscape is more difficult to achieve because more interacting subunits and energy
terms are involved; moreover, a much larger conformational space needs to be sampled where
molecular dynamics and Monte Carlo simulations are prone to be trapped in local energy
minima on the rugged landscape. Given the golf-court like energy landscape, there are also
efforts to extend the conformational search by more aggressive sampling, which, for example,
starts with a huge number of different initial conformations with the aid of worldwide-
distributed computing network [54•]. However, unless the initial starting model is already near
the native energy state (~1–3 Å), the atom-level refinement does not typically achieve. More
efficient sampling strategies should therefore be coupled with the energy funnel optimization
of the force fields. For knowledge-based approaches, despite the success in combining structure
features from multiple sources of structural templates, the challenge is to generate novel
structural ingredients that are not present in any of the templates or initial models. Overall, an
optimal combination of knowledge-based and physics-based approaches, including the
construction of a composite knowledge-based and physics-based potential of both reduced and
atomic levels where the reduced knowledge-based potential is proven to be able to retain the
global topology of protein structures and the atomic physics-based component serves to repack
the local structural details, may help meet these challenges simultaneously.
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Figure 1.
Approximate correspondence of the algorithms, accuracy, and the biological usefulness of
protein structure predictions. The pictures in the right panel are representative examples where
models of different resolutions are used for different purposes: The first picture shows the 3D
model of the lead compound arylpiperazinylsulfonamide docked to the predicted structure of
the serotonin receptor. The squared region highlights the interactions specified for serotonin
which were exploited to design new compounds with improved selectivity over the adrenergic
receptors [10]. The second picture shows the electron density map of Rv2844, a CM target in
CASP7, determined from molecular replacement using ROSETTA refined models, with the
sticks representing the backbone of the X-ray structure [14]. The third picture is the TASSER
model for the YfcM protein from E. coli, with its active sites highlighted, which structurally
match with the AFT descriptor associated with EC 3.4.24.69 (metalloendopeptidase); this
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functional annotation could not be obtained from homology [15]. The fourth picture is the
structural superposition of the TASSER models for the orphan RDC1 receptor (thick backbone)
and the chemokine CXCR1 receptor (thin backbone) [24••]; the RDC1 receptor was later
deorphanized as a chemokine receptor that binds the chemokines CXCL11 and CXCL12
[26].
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Figure 2.
Correlation of accuracy of state-of-the-art structure predictions with different pre-modeling
parameters. (a, b) the sequence identity of targets to templates; (c, d) E-value of PSI-BLAST
search; (e, f) structural consensus of the templates by LOMETS [29]. The data come from 293
targets in the CASP7 and CASP8 experiments with open circles indicating the CASP7 targets
and stars the CASP8 targets. The RMSD and TM-score were calculated from the average of
the best three groups for each target. Sequence identity is from the pairwise sequence alignment
by BLAST. BLAST, PSI-BLAST and LOMETS were run on a target-specific template library
which excludes structures published after the target was released in CASP. The left panel shows
RMSD and the right panel shows TM-score as measures of model accuracy
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Figure 3.
Comparison of final models with templates. (a, b) templates are from meta-server threading;
(c, d) templates are from structural alignment. The data is taken from 293 targets in CASP7
and CASP8 experiments with open circles indicating the CASP7 targets and stars the CASP8
targets. RMSD and TM-score of final models were calculated from the average of the best
three groups for each target. RMSD was calculated based on the same aligned regions as the
template alignments while TM-score was calculated along the whole chain for the final models.
LOMETS and TM-align were run using template libraries excluding structures published after
each target was released in CASP. The labeled point in (d) is T0472 which has a duplicated
β3α two-domain structure, with the closest structural template from a domain-swapped dimer
of 3bid. TM-align matches one chain of 3bid to half of the target structure while the top
predictors exploit the whole dimer as a template to model the target which results in a
significantly higher TM-score than that by TM-align.
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