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A simple reference state makes a significant
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INTRODUCTION

Docking prediction refers to the prediction of the structure of a protein–

protein complex from the structures of individual subunits. This is a challenging

task because an unbound subunit often changes its conformation upon binding

with its partner (induced fit). Docking prediction involves decoy generation and

the selection of the near-native structure from decoys using a filter and/or

energy function. Thus, the success of docking prediction requires an efficient

method that samples complex conformations and an accurate energy function

that ranks the near-native conformations as low energy conformations. Advan-

ces in sampling methods and energy functions for docking have been high-

lighted in several recent reviews.1–13

Various energy functions have been used in docking prediction to separate

near-native structures from other structures. They are classified into two groups:

‘‘integrated’’ and ‘‘edge’’ functions based on whether or not they were used

directly in sampling procedures or applied at the end of sampling procedures.4

Energy functions are also classified based on the methods used to obtain them.

Physical-based energy functions,14–17 derived based on the laws of physics, have

been applied to docking [e.g., DARWIN,18 DOT,19 Hex,20 Guided Docking,21

TSCF,22 SmoothDock23]. Some docking algorithms use semi-empirical energy

functions that combine various physical terms such as surface complementarity,

van der Waals interaction, generalized Born-surface area (GB/SA), and hydrogen

bonding with optimized weight factors. Examples are Dock,24–26 ICM-

DISCO,27 PPD,28,29 GRAMM,30 FTDOCK,31 3D-DOCK,32 AutoDock,33

Surfdock,34 GAPDOCK,35 MolFit,36,37 BIGGER,38 Northwestern DOCK,39

ZDOCK,40 and RosettaDock.41 Still others use statistical energy functions

derived from known protein structures.42–49 The use of energy functions is of-

ten accompanied with clustering to incorporate entropic contribution as demon-

strated in recent CAPRI (Critical Assessment of PRedicted Interaction) (for

example, Refs. 50–54). Moreover, predicted protein–protein conformations of-

ten contain steric clashes and wrong sidechain conformations. Thus, sidechain
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ABSTRACT

Near-native selections from docking

decoys have proved challenging espe-

cially when unbound proteins are used

in the molecular docking. One reason

is that significant atomic clashes in

docking decoys lead to poor predictions

of binding affinities of near native

decoys. Atomic clashes can be removed

by structural refinement through

energy minimization. Such an energy

minimization, however, will lead to an

unrealistic bias toward docked struc-

tures with large interfaces. Here, we

extend an empirical energy function

developed for protein design to protein–

protein docking selection by introduc-

ing a simple reference state that

removes the unrealistic dependence of

binding affinity of docking decoys on

the buried solvent accessible surface

area of interface. The energy function

called EMPIRE (EMpirical Protein-

InteRaction Energy), when coupled

with a refinement strategy, is found to

provide a significantly improved suc-

cess rate in near native selections

when applied to RosettaDock and

refined ZDOCK docking decoys. Our

work underlines the importance of

removing nonspecific interactions from

specific ones in near native selections

from docking decoys.
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optimization and energy minimization31,55,56–59 are

important strategies for improving near-native selections

from docking decoys. However, unrealistic nonspecific

binding affinity proportional to the interface size is often

observed for the structurally refined complexes. This makes

it difficult to identify the near-native complexes with a small

interface from non-native decoys with large interfaces.60

In this article, we extend an empirical energy function

originally developed for protein design to protein–protein

docking prediction. We find that this energy function to-

gether with a simple reference state provides a significant

improvement in docking-structure prediction for structur-

ally refined docking decoys. The reference state works by

removing the unrealistic dependence of binding affinity of

docking decoys on the buried solvent accessible surface

area of interface.

METHODS

RosettaDock set: A refined set of
docking decoys

The RosettaDock set consists of 54 protein–protein decoy

sets [version 1.0 of Chen-Mintseris-Janin-Weng’s bench-

mark61] downloaded from the website http://graylab.

jhu.edu/docking/decoys/. The decoy sets are generated by

random starting position of unbound monomer compo-

nents superimposed on the native bound complex structure,

followed by RosettaDock protocol to create a diffuse space

distribution that covers a reasonable area (20 Å radius

rmsd) with moderate density around the native position.

Each decoy set has 1000 decoys/protein complex (For more

detailed description, see Ref. 41). All structures in the Ros-

settaDock set have optimized sidechain conformations

and their energies were minimized to reduce steric clashes.

ZDOCK set: An unrefined set of
docking decoys

The ZDOCK 2.3 decoy set is made of 48 protein–pro-

tein complexes (downloaded from http://zlab.bu.edu/

�rong/dock/software.shtml). Each protein complex con-

tains 2000 docking decoys. The decoy sets were generated

using fast Fourier transform (FFT) algorithm based on the

PDE scoring function that combines pairwise shape com-

plementarity (PSC) with desolvation energy (DE) and

electrostatic energy (ELEC).40 These decoy sets are from

direct docking of unbound structures without either side-

chain optimization or energy minimization. The ZDOCK

set is structurally refined in a procedure described below.

Structural refinement of docking decoys
from ZDOCK

Sidechain optimization

We used an empirical sidechain score for sidechain opti-

mization that was originally developed for protein design.62

The score calculates the energy of a sidechain rotamer (R) of

a residue, the representative conformation of the amino

acid, placed on its backbone position. The score function is

a linear combination of multiple energetic terms:

DGsidechainðRiÞ ¼ �0:143 Scontact þ 0:724 Voverlap

þ 1:72 Ehbond þ 28:6 Eelec � 0:0467 DSpho

þ 0:0042 DSphi þ 1:14 DðFphiÞ30 þ 7:95 Vexclusion

� 0:919 lnðf1f2Þ � 4:3 Nssbond � DGref ; ð1Þ
where Scontact, Voverlap, Ehbond, Eelec, DSpho, and DSphi are
atom-contact surface area, overlap volume, hydrogen

bonding energy, electrostatic interaction energy, buried

hydrophobic solvent accessible surface, and buried hydro-

philic solvent accessible surface between the rotamer of

residue i and the rest of the protein, respectively; Fphi is

the fraction of the buried surface of non-hydrogen-bonded

hydrophilic atoms; D(Fphi)
30 is the difference between the

rotamer positioned in the protein environment and the

isolated form; Vexclusion is the normalized solvent exclusion

volume around charged atoms63; f1 is the observed fre-

quency of the rotamer and f2 is the observed frequency of

the amino acid residues in a given backbone conforma-

tion; Nssbond is the flag of disulfide bridge (1 or 0); DGref is

the reference value for the free energy difference between

the rotamer in solvent and in a denatured protein.64 The

weights of these energy terms together with the reference

values (DGref) were optimized so that the native residues

are predicted energetically favorable over other residue

types at each position of the training proteins.62 Here, the

contact surface area (Scontact) is applied to evaluate geo-

metric complementarity between a rotamer and its protein

environment65 while the buried solvent accessible surface

area accounts for the effect of solvation. This sidechain

score is used because its simplified version yields one of

the most accurate sidechain prediction method.65

For sidechain modeling, we are only interested in the

energy difference between different sidechain rotamers.

Thus, the terms f2 and DGref will make no contribution for

sidechain modeling because they are unchanged. They are

not considered in the actual calculation. We use the back-

bone-dependent rotamer library developed by Dunbrack

and Cohen.66 The updated library was downloaded from

http://dunbrack.fccc.edu/bbdep/index.php. Polar hydrogen

atoms, absent in the Dunbrack library, are added to calcu-

late electrostatic interactions. The program REDUCE67 is

used to add hydrogen atoms to all proteins.

Refinement algorithm

A two-step refinement algorithm is developed for dock-

ing decoys.

Sidechain modeling. For a given complex structure, only

sidechain conformations of interface residues are opti-

mized. Interface residues are surface residues of monomers

whose solvent accessible surface areas are decreased by
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more than 0.1 Å2 upon complexation. Solvent-accessible

surface area is calculated as described by Zou et al.68 Side-

chains of other residues and the backbones are fixed. Side-

chain conformations of interface residues are optimized by

Monte Carlo simulated annealing simulation as described

in Refs. 65, 62. First, the rotamers for the interface residues

are initialized by random selections. Second, an interface

residue is randomly selected and the frequency to select

the residue is proportional to the number of rotamers pos-

sessed by the residue. Third, a rotamer for the residue is

selected at random and the interaction energy between the

rotamer and the rest of the protein E new
sidechain is calculated

using Eq. (1). The change of rotamer for the residue is

accepted if the energy value is decreased (E new
sidechain <

E old
sidechain). Otherwise, the change or the move is accepted

with probability exp[(E old
sidechain � E new

sidechain)/T]. Each cycle

has 50N trials of rotamer substitutions or 5N successful

substitutions, whichever comes first (N is the number of

interface residues). The annealing temperature is set to 10

initially and reduced by a factor of 0.8 after each cycle. A

total of 15 cycles of annealing are conducted.

Energy minimization. The resulting structure from side-

chain modeling is further minimized by CHARMM.14

This is to remove backbone steric clashes and discrete

errors of the rotamers. Fifty steps of adopted-basis Newton

Raphson minimizer (ABNR) are applied. All charged resi-

dues are in their charged states and distance-dependent

dielectric constant is used to calculate electrostatic energy.

CHARMM 19 parameters are used throughout minimiza-

tion. Here, the solvent effect is only approximated by a

distance-dependent dielectric constant.

In the ZDOCK decoys, only heavy atoms have coordi-

nates. All polar hydrogen atoms are added to decoy sets

with the program REDUCE.67 Nonpolar hydrogen atoms

are ignored. To reduce the possible effect of overoptimiza-

tion and computational time, only 3/4 of sidechain-opti-

mized decoys with high binding affinity are selected for

energy minimization. We discard 1/4 of decoys with the

lowest predicted binding affinities after sidechain model-

ing. This is because those decoys usually contain severe

atomic clashes and could be overoptimized if they are

used in energy minimization.

EMPIRE score function

We develop the EMPIRE score function by extending

the sidechain energy described earlier for the evaluation of

binding affinity. Equation (1) becomes

EI ¼ �0:143 SIcontact þ 0:724 VI
overlap þ 1:72 EI

hbond

þ 28:6 EI
elec � 0:0467 DSIpho þ 0:0042 DSIphi

þ 1:14 DðFI
phiÞ30 þ 7:95 VI

exclusion: ð2Þ

Here, each term is evaluated between two binding proteins

rather than between a given sidechain and a protein in

sidechain optimization. For example, SIcontact is the con-

tacting surface area between two proteins and DSIpho
(DSIphi) is the difference between buried hydrophobic

(hydrophilic) solvent accessible surface areas before and

after the binding. Both sidechain and mainchain atoms

are included in calculation. Unlike Eq. (1) for protein

design, the terms f1,f2,Nssbond, and DGref make no contri-

bution to binding affinity and are not considered. How-

ever, we need to add a reference value of the protein–pro-

tein interaction to Eq. (2) instead of amino acid reference

value in Eq. (1) to calculate binding free energy. Similar to

the role of amino acid reference value (DGref) in Eq. (1),

the interface reference value is the nonspecific interaction

energy between the two proteins in a refined decoy com-

plex. Because the amino-acid reference values strongly cor-

relate with the size of amino acid residues,62 we hypothe-

size that the interface reference value is proportional to

the buried solvent accessible surface area of the interface.

That is,

DG ¼ c1E
I þ c2S

I þ c3; ð3Þ

where c1, c2, and c3 are to-be-determined constants (see

Results) and SI is the buried solvent accessible surface area

of interface obtained with a solvent probe of radius 1.4 Å.

RESULTS

EMPIRE score function

We obtain the three constants (c1, c2, and c3) of the ref-

erence state [Eq. (3), methods] by multiple linear-regres-

sion analysis between EI, SI, and DGexp. The training set

(1ppf, 3sgb, 1jhl, 2ptc, 1cho, 1acb, 2kai, 1vfb, 1mlc, 1nmb,

1brs, and 1ycs) are selected from 75 complexes collected

by Conte et al.69 Here, a complex is selected for training if

(1) its structure has a resolution of 2.5 Å or higher, (2) it

does not undergo disorder–order transitions upon associa-

tion, (3) its binding affinity70 is known, and (4) its buried

interface area is between 1200 and 1600 Å2. The medium

size of binding interface is used here because significant

conformational changes between complexed and free

components are observed69 for large interfaces of 2000–

4660 Å2. Thus, they are not suitable for the purpose of

obtaining the reference state.

We first attempted to use Eq. (3) for linear regression

with the above-described training set. However, we found

that DGexp does not have a significant correlation with SI.

This leads to a nearly negligible c2. Thus, we employ EI as

the dependent variable in the regression, instead. This

yields the equation: EI ¼ 3.09 DGexp � 0.0295 SI þ 3.77.

Then, a simple inversion yields c1 ¼ 0.324, c2 ¼ 0.00955,

and c3 ¼ �1.22. The energy unit is kilocalories per mole.

The correlation coefficient between the calculated and

experimental binding free energies is 0.73. The fact that c2
> 0 indicates the unfavorable contribution to association.
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Application to the RosettaDock decoy set

The EMPIRE score function is tested in the RosettaDock

unbound docking decoy set of 54 protein–protein complexes.

As in Ref. 41, the selection capability of a score function is

characterized by the number of structures within the five

lowest energy structures whose root mean squared devia-

tion (rmsd) values are less than 10 Å from the native com-

plex structure (nrmsd). The rmsd value is calculated over

the distance deviation of the Ca atoms of the smaller

docking partner in the fixed coordinate frame of the larger

partner. Gray et al. further defined that a discrimination is

successful if nrmsd is greater than or equal to three.

Without structural refinement, we find that the success

rate based on nrmsd � 3 is 37/54 (69%) for EMPIRE, com-

pared with 34/54 (63%) for RosettaDock.41 The success

rate of EMPIRE, after 50 steps of energy minimization,

increases further to 39/54 (72%). It should be noted that

without the reference state, the success rate for the direct

application of Eq. (2) to RosettaDock decoy sets will be

35/54. Table I compares the performance of the EMPIRE

energy function for minimized RosettaDock decoys with

that of RosettaDock. There are 21 targets in which

EMPIRE has more near-native structures in top 5 than

RosettaDock does whereas there are only 10 targets in

which RosettaDock has more. The difference illustrates the

significant improvement of EMPIRE over RosettaDock.

Application to ZDOCK2.3 decoy set

For the ZDOCK set, docking decoys are first refined by

sidechain optimization and energy minimization. The

refined structures are then ranked according to their re-

spective binding affinities calculated by Eq. (3). The per-

formance of the proposed refinement and scoring method

is measured by success rates. Success rate is defined as per-

centage of test cases for which at least one near-native

structure has been found within a given number (NP) of

lowest-energy structures. Success rates for NP ¼ 1 (top 1)

and NP ¼ 10 (top 10) are reported. According to ZDOCK

and RDOCK,40,59 a near-native structure is a structure

with an interface rmsd of 2.5 Å or less. An interface rmsd

between a docking decoy and a native complex structure is

based on the Ca atoms of interface residues. The value of

an interface rmsd is obtained directly from ZDOCK decoy

set. We do not recalculate rmsd values. This is because 50

steps of ABNR minimization makes little change in rmsd

values and sidechain optimization does not change rmsd

values measured by backbone Ca atoms.

The result for the ZDOCK 2.3 decoy set is summarized

in Table II. It lists the best ranks of near-native structures

in ZDOCK2.3 decoy sets along with the number of near-

native structures in the 2000 decoys for a given target.

Three sets of best ranks are from the application of the

EMPIRE function to the original decoys, decoys with side-

Table I
The Number of Top 5 Decoys with rmsd < 10 Å given by EMPIRE and the RosettaDock scoring function

Pdb IDa 1CGI 1CHO 2PTC 1TGS 2SNI 2SIC 1CSE 2KAI
EMPIREb 1 5 4 5 5 5 5 5
RosettaDockc 4 3 2 5 4 5 2 4

Pdb ID 1BRC 1ACB 1BRS 1MAH 1UGH 1DFJ 1FSS 1AVW
EMPIRE 5 3 4 5 5 5 3 5
RosettaDock 1 2 4 5 5 4 5 5

Pdb ID 1PPE 1TAB 1UDI 1STF 2TEC 4 HTC 1MLC 1WEJ
EMPIRE 5 5 5 5 5 5 2 2
RosettaDock 5 5 5 5 5 5 0 0

Pdb ID 1AHW 1DQJ 1BVK 1FBI 2JEL 1BQL 1JHL 1NQA
EMPIRE 0 1 1 5 5 2 1 5
RosettaDock 5 2 5 3 5 5 1 5

Pdb ID 1NMB 1MEL 2VIR 1EO8 1QFU 1IAI 2PCC 1WQ1
EMPIRE 5 5 3 1 4 3 4 4
RosettaDock 5 5 4 1 5 0 3 3

Pdb ID AVZ 1MDA 1IGC 1ATN 1GLA 1SPB 2BTF 1A0Q
EMPIRE 0 4 1 5 5 5 3 4
RosettaDock 0 3 2 5 1 5 4 1

Pdb ID 1BTH 1FIN 1FQ1 1GOT 1EFU 3HHR #(�3)d #(>)
EMPIRE 0 0 4 5 2 2 39 21e

RosettaDock 0 0 2 0 0 0 34 10f

aEnzyme/Inhibitor: the first 22 protein complexes (1CGI-4HTC); antibody-antigen: the next 16 protein complexes (1MLC-1IAI); the others: (2PCC to 1A0Q); and the

difficult set (1BTH to 3HHR).
bThis work.
cThe high-resolution RosettaDock scoring function.41,71

dThe number of protein-protein complexes with more than 3 near-native structures (rmsd < 10Å) in top 5 ranked decoys.
eThe number of near natives given by EMPIRE that is greater than that given by RosettaDock.
fThe number of near natives given by RosettaDock that is greater than that given by EMPIRE.

Near-Native Selections from Docking Decoys

DOI 10.1002/prot PROTEINS 247



chain optimization and decoys with further energy

minimization.

Near-native structures of 10 proteins (out of 43 proteins

with near-native structures, 23%) are ranked as top 1 in

the direct application of the scoring function to the

ZDOCK 2.3 decoy set. The number of correctly ranked

near-native proteins increases to 14 (33%) after sidechain

optimization and 20 (47%) after further energy minimiza-

tion. The number of near-native structures that are ranked

within top 10 also increases from 18 (42%) for the origi-

nal, 22 (51%) for sidechain optimizied, to 29 (67%) for

energy-minimized decoys. This highlights the importance

of sidechain optimization and energy minimization.

The success rates for enzyme/inhibitor group are more

impressive. In a total of 22 targets, there are 11 (50%) and

14 (64%) complexes whose near-native structures are

ranked number 1 after sidechain optimization and after

energy minimization, respectively. For the 16 antigen-anti-

body complexes, however, none of their near-native struc-

tures are successfully ranked as number 1 after sidechain

modeling and only three after energy minimization.

Among the 10 other targets, 4 do not contain any near-

native structures. The success rates are 50% before and

after energy minimization for the remaining six targets.

The main reason behind different success rates for dif-

ferent types of complexes is that the enzyme/inhibitor

group has significantly more near-native structures per

target in 2000 decoys than those of antigen-antibody com-

plexes. In fact, for all targets with 24 or more near-native

structures in their decoys (1.2%), there is at least one

near-native structure ranked within top 10 after energy

minimization. This is true regardless of actual type of

complex structures (enzyme/inhibitor, antigen-antibody,

or others). Thus, the success rate is largely determined by

the quality of docking conformations (i.e., the population

of near-native structures).

To further illustrate the importance of refinement, one

example for the ribonuclease A/ribonuclease inhibitor

complex (1dfj) is shown in Figure 1. Before any structural

refinement, strong atomic clashes make the binding free

energies of all docking decoys positive [Fig. 1(a)]. Side-

chain optimization removes most steric clashes and major-

ity of docking decoys now have negative (attractive) bind-

ing free energies [Fig. 1(b)]. Most near-native structures,

however, do not yet distinguish significantly from other

decoys. Only further energy minimization [Fig. 1(c)]

makes a clear identification of near-natives as a cluster of

structures that are separated from the rest.

The reference state used in EMPIRE plays an essential

role in the accuracy of EMPIRE. Figure 2 compares the

performance made by EMPIRE with or without the refer-

ence state for the original ZDOCK decoys, decoys after

sidechain optimizations, and decoys after further 50, 100,

and 200 steps of energy minimization. It is clear that the

use of the reference state leads to a significant increase in

the number of successful predictions for the refined com-

plexes. Another interesting result is that 50 steps of mini-

mization lead to the highest success rate for including

near-native structures within the top 10, in particular. We

found that 50 steps of minimization yield the binding

Table II
The Ranks and rmsd Values of Refined Structures in ZDOCK2.3 Decoy Sets

Complexa

PDB ID# No. of hitsb

Rank(rmsd)c

Originald Sidechaine Minimizationf

1CGI 77 107 (1.54) 48 (2.02) 1 (2.18)
1CHO 99 1 (1.26) 1 (1.01) 1 (1.57)
2PTC 48 8 (1.03) 1 (0.44) 1 (0.44)
1TGS 109 10 (2.46) 4 (1.55) 3 (1.85)
2SNI 1 425 (2.22) 617 (2.22) 92 (2.22)
2SIC 52 2 (2.06) 3 (2.06) 3 (1.04)
1CSE 29 1 (0.50) 5 (1.10) 4 (1.24)
2KAI 16 151 (2.30) 3 (1.69) 28 (1.69)
1BRC 54 21 (1.21) 1 (1.73) 1 (2.30)
1ACB 93 2 (1.44) 14 (1.44) 4 (0.93)
1BRS 21 20 (1.30) 26 (1.97) 15 (2.29)
1MAH 28 238 (1.78) 104 (0.84) 1 (0.89)
1UGH 20 1069 (1.60) 66 (1.13) 1 (1.60)
1DFJ 51 517 (2.38) 1 (1.70) 1 (1.70)
1FSS 15 54 (1.04) 1 (1.07) 2 (1.05)
1AVW 52 1 (1.89) 12 (1.48) 1 (1.53)
1PPEg 393 1 (0.52) 1 (1.46) 1 (0.87)
1TABg 50 1 (0.51) 1 (1.56) 1 (1.56)
1UDIg 35 12 (1.06) 1 (0.94) 1 (0.79)
1STFg 83 1 (0.80) 1 (1.42) 1 (1.01)
2TECg 185 1 (0.68) 1 (1.25) 1 (0.92)
4HTCg 57 45 (1.40) 1 (0.69) 1 (0.69)
1MLC 17 46 (2.46) 395 (2.46) 338 (2.46)
1WEJ 22 5 (0.91) 12 (0.57) 62 (0.57)
1AHW 67 25 (1.41) 7 (1.75) 4 (1.23)
1DQJ 0 � (�) � (�) � (�)
1BVK 2 672 (2.34) 450 (2.34) 419 (2.34)
1FBIg 5 1593 (2.18) 534 (2.18) 447 (2.18)
2JELg 35 598 (1.90) 20 (1.16) 1 (1.09)
1BQLg 70 14 (0.68) 11 (0.84) 9 (0.84)
1JHLg 12 121 (1.16) 9 (1.16) 50 (1.85)
1NCAg 67 8 (1.51) 56 (0.83) 2 (1.93)
1NMBg 9 1 (0.99) 427 (0.99) 337 (1.13)
1MELg 71 2 (1.36) 3 (1.01) 1 (1.07)
2VIRg 3 79 (1.03) 527 (1.03) 521 (1.19)
1EO8g 2 55 (0.94) 607 (0.94) 72 (0.94)
1QFUg 18 21 (0.75) 92 (0.78) 1 (0.78)
1IAIg 3 52 (1.47) 106 (1.47) 429 (1.70)
2PCC 0 � (�) � (�) � (�)
1WQ1 54 121 (2.23) 10 (1.88) 9 (1.20)
1AVZ 0 � (�) � (�) � (�)
1MDA 0 � (�) � (�) � (�)
1IGCg 3 141 (1.18) 785 (1.20) 227 (1.18)
1ATNg 24 1 (0.56) 1 (0.52) 1 (0.80)
1GLAg 0 � (�) � (�) � (�)
1SPBg 112 2 (0.61) 1 (0.61) 1 (0.95)
2BTFg 35 1 (0.65) 1 (1.02) 1 (0.83)
1A0Og 4 21 (2.45) 13 (2.25) 427 (2.45)
Top 1 (Top 10) 10 (18) 14 (22) 20 (29)

aEnzyme/Inhibitor: the first 22 protein complexes (1CGI-4HTC), antibody-antigen:

the next 16 protein complexes (1MLC-1IAI). The rest are 10 other complexes.
bThe number of hits (near-native structures with interface rmsd < 2.5Å).
cThe highest rank of hits (and its interface rmsd).
dOriginal decoys without any refinement.
eResults after sidechain optimization.
fResults after sidechain optimization and energy minimization.
gDocking decoys from unbound and bound structures.
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affinities of near-native structures close to that of experi-

mental-binding affinity whereas 100 or 200 steps of mini-

mization produces the value of binding affinity that is

much lower than the corresponding experimental value

(20 of 48 targets have known binding affinities).41 Sixteen

of the 20 targets have native like complexes in the decoy

sets and the mean value of their experimental-binding free

energy is �12.6 kcal/mol. This is essentially the same as

the calculated value, �12.7 kcal/mol, of the best ranked

near-native decoys of the 16 targets after minimized 50

steps. The corresponding values after 100 and 200 steps

are �15.8 and �20.3 kcal/mol, respectively). This explains

the highest success rate made by 50 steps of minimization

because the parameters of the reference state in EMPIRE

are trained by experimental-binding affinities. In other

words, a stronger interface reference value would be

needed to counter the over-reduction of energy for 100 or

200 steps of minimization (for details, see Discussion).

It should be emphasized that the parameters in the ref-

erence state are trained by the native structures and exper-

imental-binding affinities. A 50-step minimization is the

best minimization protocol for decoy refinement because

it produces binding affinities similar to experimental-

binding affinities. However, one certainly can optimize

parameters based on minimization protocol as well (see

Discussion).

To further illustrate the importance of the reference

state, we plot the binding affinity as a function of rmsd

(Fig. 3) and buried solvent accessible surface area of inter-

face (Fig. 4) for target 1ATN. In the absence of reference

state, near-native structures (rmsd < 2.5 Å) do not have

low-binding free energies. The lowest energy conforma-

tions have rmsd values that are greater than 10 Å. After

Figure 1
The binding affinity as a function of rmsd (Å) for the original ZDOCK decoys

(a), after sidechain optimization (b), and after 50 steps of minimization(c).

Only top 500 ranked decoys for each case are shown in this figure. This is the

result of target 1DFJ.

Figure 2
The number of successful predictions with or without the reference state as

labeled for original ZDOCK decoys, after sidechain optimization, after further

50, 100, and 200 steps of minimization.

Figure 3
As in Figure 1, but compares the binding affinity for EMPIRE with or without

the reference state (target 1ATN). Only top-ranked 500 decoys are shown.
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incorporating the reference state in EMPIRE, near-native

structures become a part of low energy conformations.

Figure 4 further shows that there is a correlation between

the buried solvent accessible surface area and binding af-

finity for EMPIRE without reference state. The correlation

coefficient is �0.54. The use of the reference state in

EMPIRE effectively removes this correlation (the correla-

tion coefficient becomes 0.02). Thus, removing the unreal-

istic dependence of binding affinity on the buried solvent

accessible surface area of interface is the main reason for

the success of EMPIRE.

DISCUSSION

In this article, we successfully construct an empirical

energy function for docking prediction by adding a simple

reference state to a scoring function originally developed

for protein design. The new scoring function, called

EMPIRE, is tested in RosettaDock with or without further

energy minimization. The success rates (3 or more in top

five ranked decoys that are ‘‘near-native’’) are 69% with

the original decoys and 72% with further energy minimi-

zation, respectively. This can be compared to 63% made

by RosettaDock.41,71

EMPIRE is further tested in ZDOCK 2.3 decoy set. It

successfully ranks 20 near-native complex structures in top

1. We have also applied EMPIRE to the ZDOCK 2.1 decoy

set. This leads to 14 successful predictions. The reduction

of the number of successful predictions is expected

because the ZDOCK 2.1 decoy set has a much smaller

number of near-native-structures (27 per complex) than

the ZDOCK 2.3 decoy set (46 per complex in average). On

the other hand, RDOCK, a structural refinement and scor-

ing protocol, performs much better on the ZDOCK 2.1

decoys than on the ZDOCK 2.3 decoys.59 The number of

successful prediction for RDOCKþZDOCK 2.1 (top 1) is

18, compared to 20 for EMPIREþZDOCK 2.3.

For each target, a higher number of near-native struc-

tures corresponds well with the improved ability of

EMPIRE in detecting near-native structures. In fact, for all

targets with 24 or more near-native structures in their

decoys (1.2%), there is at least one near-native structure

ranked within top 10 after energy minimization. This is

true regardless if a complex is an enzyme-inhibitor, anti-

body-antigen, or other complex. That is, a lower success

rate in ranking near-native structures of antibody-antigen

complexes than that of enzyme-inhibitor complexes

reflects a smaller number of near-native structures in

ZDOCK docking decoy sets of the former complexes. This

suggests the robustness of the EMPIRE energy function in

identification of near-native structures. It is of interest to

note that RosettaDock is somewhat better than EMPIRE

in detecting near-native structures for antibody-antigen

complexes (EMPIRE recognizes more near-native struc-

tures within top five in four antibody-antigen complexes

and less so in six complexes than RosettaDock, Table I).

This may be related to the fact that many of these anti-

body-antigen complexes are used in training the weights

of energy terms of RosettaDock.41,71

The success of the EMPIRE score function highlights

the importance of removing nonspecific interactions. Pro-

teins interact with each other via recognizing specific

interfaces, rather than according to the size of interfaces.

However, an unrealistic correlation between binding affin-

ity and the interface area is often observed for structurally

refined complexes (Fig. 4). This unrealistic correlation is

possibly caused by local energy minimization with an ap-

proximate energy function. In general, more minimization

leads to higher binding affinity. Although binding affin-

ities of near-native decoys may increase faster than those

of non-native decoys with a similar interface area during

minimization, binding affinities of decoys with a large

interface will increase even faster. EMPIRE attempts to

remove this artifact empirically by subtracting an interface

reference state.

The removal of the unrealistic dependence of binding

affinities on interface areas is an empirical approach. One

issue with this approach is that the performance of

EMPIRE will depend on refinement protocol. This is

because longer energy minimization will further increase

binding affinities of docking decoys and the rate of

increase depends on interface areas and other factors. As a

Figure 4
The binding affinity as a function of the buried solvent accessible surface area of

interface for EMPIRE with or without the reference state (target 1ATN). Only

top-ranked 500 decoys are shown. The solid line denotes the result from linear

regression on the data given by EMPIRE without the reference state (with a

correlation coefficient of �0.54). There is no correlation for the data given by

EMPIRE (with the reference state).
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result, EMPIRE will work best with a fixed minimization

step that leads to a nativelike binding affinity. This high-

lights the approximate nature of the EMPIRE energy func-

tion. The RDOCK refinement protocol59 obviously has

the same problem. The number of steps in its refinement

procedure is precisely defined.

We examined the dependence of reference parameters

on minimization steps. This is done by varying c2 in Eq.

(3) at an interval of 0.001 to make the best near-native

prediction for docking decoys with different refinement

procedures. The best performances are a total of 14, 21,

20, and 24 targets successfully predicted (NP ¼ 1) after

sidechain modeling, and sidechain modeling plus 50, 100,

and 200 steps of energy minimization, respectively. Thus,

optimizing c2 can increase the prediction success rate for

decoys refined by 100 or 200 steps of energy minimization,

compared to c2 obtained from native structures and exper-

imental-binding affinities. As a result, a stronger interface

reference value would be needed to counter the increase of

binding affinities for over optimized decoy sets. Indeed,

we find that the best c2 value for the decoy set refined by

200 steps of energy minimization yields binding affinities

that are close to the experimental values. Although this

value yields the highest success rate (24 targets), we prefer

50 steps of minimization and the parameters independ-

ently generated from native structures and experimental-

binding affinities. This is to avoid overoptimization.

One interesting result is that EMPIRE performs well for

some difficult targets (1BTH to 3HHR in Table I). We

found that this is mainly because of the improvement of

correlation between rmsd values and energy scores after

the introduction of the reference state. Figure 5 displays

the rmsd values of decoys as a function of their energy

scores with and without the reference state in EMPIRE for

a difficult target 1GOT. The correlation coefficient

between rmsd values and energy scores increases from

0.12 to 0.41 after the reference state is used in EMPIRE.

Without the interface reference state, the selected decoys

with the lowest interaction energy have a overwhelmingly

larger interface than the near-native docking decoys.

Some docking decoys were made from the docking

between an unbound structure and a bound one (Table

II). EMPIRE performs better on those targets than the

decoys from unbound–unbound docking. For example,

near-native structures for unbound–bound-docked en-

zyme-inhibitor targets are all ranked number 1. The dif-

ference between unbound-unbound and unbound-bound

docking is largely because there are more near-native

structures in unbound-bound decoys.

The most time-consuming part of calculations in this

study is sidechain optimization via simulated annealing.

Sidechain modeling for 2000 decoys typically takes 1–3

weeks on a single 2.6 GHz AMD Opteron CPU. We use

our in-house sidechain optimization since its simplified

version is one of the most accurate sidechain prediction

algorithms.65 For sidechain modeling, EMPIRE is 1–2

times slower than its simplified version but the prediction

accuracy is similar. In this study, we use the same energy

function for intraprotein and interprotein interactions

(except the reference state) that allows a consistent evalua-

tion of the energy function.

An executable version of the EMPIRE score function

and its corresponding webserver are freely available at

http://sparks.informatics.iupui.edu.
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