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ABSTRACT

Acrolein is a cell metabolic product and a main com-
ponent of cigarette smoke. Its reaction with DNA
produces two guanine lesions c-OH-PdG, a major
adduct that is nonmutagenic in mammalian cells,
and the positional isomer a-OH-PdG. We describe
here the solution structure of a short DNA duplex
containing a single a-OH-PdG lesion, as determined
by solution NMR spectroscopy and restrained
molecular dynamics simulations. The spectroscopic
data show a mostly regular right-handed helix,
locally perturbed at its center by the presence of
the lesion. All undamaged residues of the duplex
are in anti orientation, forming standard Watson–
Crick base-pair alignments. Duplication of proton
signals near the damaged site differentiates
two enantiomeric duplexes, thus establishing the
exocyclic nature of the lesion. At the lesion site,
a-OH-PdG rotates to a syn conformation, pairing
to its counter cytosine residue that is protonated
at pH 5.9. Three-dimensional models produced by
restrained molecular dynamics simulations show
different hydrogen-bonding patterns between
the lesion and its cytosine partner and identify
further stabilization of a-OH-PdG in a syn confor-
mation by intra-residue hydrogen bonds. We
compare the a-OH-PdG�dC duplex structure with
that of duplexes containing the analogous lesion
propano-dG and discuss the implications of our
findings for the mutagenic bypass of acrolein
lesions.

INTRODUCTION

Acrolein or propenal, the simplest a,b-unsaturated alde-
hyde, is a prevalent environmental pollutant (1). The
chemical industry uses thousand of tons of acrolein

every year as starting material for the preparation of
polymers and simple organic substances. The incomplete
combustion of organic materials, including wood, food,
fuels and tobacco are additional sources of acrolein in
the environment. Depending on the type and brand,
cigarette smoke contains between 18 and 98 mg of acro-
lein per cigarette, quantities that far exceed those of
polycyclic aromatic hydrocarbons or nitrosamines (2)
and, not surprisingly, lung tissues of smokers have
higher levels of acrolein-derived DNA lesions than that
of the polycyclic aromatic hydrocarbon adducts (3). In
addition to environmental sources of propenal, the
metabolic oxidation of polyamines (4) and lipid peroxida-
tion process (5–7) endogenously generate significant
amounts of acrolein within cells. Furthermore, acrolein
is a product of cyclophosphamide metabolism and
lymphocytes of patients undergoing chemotherapy with
this agent contain significant amounts of acrolein-derived
DNA adducts (8,9).
As with other a,b-unsaturated aldehydes, acrolein

reacts with nucleophilic centers in DNA and proteins via
a Michael addition without requiring metabolic activation
(10–12). The reaction of acrolein with double-stranded
DNA generates two isomeric deoxyguanosine adducts.
The main product, g-OH-PdG, originates from Michael
addition to the peripheral amino group of dG whereas
the minor product, a-OH-PdG (Figure 1), occurs by initial
attack at the N1 position (11). Both adducts compromise
the Watson–Crick (WC) edge of dG and, thus, should
have important genotoxic effects. Early mutagenic studies
in prokaryotic and eukaryotic cells showed that acrolein
induces base substitution mutations, primarily G�C !
T�A transversions and G�C ! A�T transitions (13–16).
However, since acrolein adducts are unstable under the
conditions required for solid-phase DNA synthesis, these
early studies employed cells directly exposed to acrolein
or transformed with acrolein-treated plasmids, precluding
the independent assessment of each dG adduct toward
toxicity.
Recent advances in the synthesis of damaged DNA

have made possible the preparation of duplexes having
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site-specific lesions, g-OH-PdG or a-OH-PdG (17–20),
which have permitted the independent evaluation of
toxic properties of each adduct (21–24). Unexpectedly,
DNA replication across g-OH-PdG lesions is quite
efficient and proceeds mostly (>99%) without causing
mutational events, in either bacterial or mammalian cells
(21–23). In contrast, a-OH-PdG extensively blocks DNA
replication in human cells and, when bypassed by TLS
polymerases, it mostly codes for dC incorporation
together with a few G! T and G! A base substitution
mutations (24). Simultaneously with these studies, we
used NMR spectroscopy to characterize the structure of
oligomeric DNA containing a single g-OH-PdG lesion
at its center. We observed that although g-OH-PdG
exists in the cyclic 1,N2-(OH)-propano form in the
simple nucleoside, it is present as the noncyclic
N2-(3-propanal) in DNA, a state that minimally perturbs
the helical structure of the DNA and allows WC align-
ments throughout the duplex, including at the site of
the lesion (25). The linear form of g-OH-PdG not only
explained the onset of error-free replication across the
lesion but also the presence of interstrand cross-links
during the mutagenesis studies (24,26).
Here, we report the solution structure of an undecanu-

cleotide duplex containing a-OH-PdG, as determined by
NMR spectroscopy and restrained molecular dynamics.
Hereinafter this double-strand construct is referred to
as the a-OH-PdG�dC duplex. Our results indicate that,
contrary to the g-OH-PdG case, a-OH-PdG exists in the
closed form, which perturbs the local duplex structure at
the damaged site and hinders WC hydrogen bonding
across the lesion-containing base pair. Figure 1 shows
the chemical structure of acrolein-derived dG lesions
and the duplex sequence employed in our study.

EXPERIMENTAL PROCEDURES

Synthesis and purification of oligodeoxynucleotide samples

The oligomer containing the lesion was prepared
using standard solid-phase synthesis methods, follow-
ing a postsynthetic procedure for the incorporation
of a-OH-PdG (20). Briefly, the 50-O-dimethoxytrityl-
30-O-(b-cyanoethyl)-phosphoramidite derivative of
1-(3,4-diacetylbutyl)-N2-(dimethylaminomethylene)-dG

was chemically synthesized and used to incorporate
1-(3,4-diacetoxybutyl)-dG at the center of an undecanu-
cleotide. Samples dimethoxytritylated at the 50-terminus
were purified by HPLC using a reverse-phase Luna 5 mm
Phenyl-Hexyl (250� 10mm) column (Phenomenex,
Torrance, CA, USA), with a mobile phase consisting of
a 16–36% acetonitrile gradient, over 35min, in 0.1M
triethylammonium acetate buffer, pH 6.8. After removal
of the 50-O-DMT group by reaction with 80% acetic acid
for 30 minutes, the oligomer was subjected to a second
HPLC purification using the same column with a 0–20%
acetonitrile gradient over 40min. Treatment of the
pure1-(3,4-dihydroxybutyl)-dG containing oligomer, for
5min at room temperature, with a 100mM sodium
periodate solution (0.5M sodium acetate buffer, pH 6.0)
oxidatively cleaved the dihydroxy chain producing the
a-OH-PdG lesion. After oxidation, a final HPLC purifi-
cation of the material yielded a single peak that corre-
sponded to the desired product. ESI-MS analysis
revealed an m/z=3373.9� 1.3 (theoretical mass 3373.2),
verifying the identity of the lesion-containing strand.
The complementary unmodified oligomer was prepared
and purified following similar procedures.

Duplex formation and sample preparation

A 1:1 strand ratio was obtained by monitoring the inten-
sity of isolated NMR proton signals during the gradual
addition of the unmodified oligomer to that containing
the lesion. NMR samples consisted of 180 OD260 of the
duplex dissolved in 0.6ml of 25mM phosphate buffer,
pH 5.9, containing 50mM NaCl and 1mM EDTA in
either 99.96% D2O (D2O buffer) or 90% H2O-10% D2O
(v/v) (H2O buffer), corresponding to around 2.5mM
duplex concentration.

NMR experiments

One- and two-dimensional NMR spectra were collected
on a Varian Inova spectrometer operating at 11.75T
field strength. Proton chemical shifts were referenced
relative to sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4
at 0 p.p.m. Phase-sensitive (27) NOESY (50, 150, 200
and 300ms mixing time), COSY, DQF-COSY and
TOCSY (70 and 120ms contact time) spectra in D2O
buffer were recorded at 258C. The residual water signal
was suppressed by presaturation during the repetition
delay of 1.5 s. Phase-sensitive proton NOESY spectra
(120 and 220ms mixing time) in H2O buffer were collected
at 58C, using a ‘jump and return’ pulse sequence as the
reading pulse (28). NMR data were processed and
analyzed using Felix (Accelrys Inc., San Diego, CA,
USA) running on Silicon Graphics workstations. Two-
dimensional data sets consisted of 2048 and 300 com-
plex points in the t2 and t1 dimensions, respectively.
Shifted sine-bell window functions were used to smooth
the time domain data prior to the Fourier transformation.
No baseline correction was applied to the frequency
spectra.
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Figure 1. Chemical structure of acrolein adducts and sequence compo-
sition of the a-OH-PdG�dC duplex.
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Refinement of the duplex structure

Restrained MD (rMD) simulations were run on Silicon
Graphics computers using X-PLOR 3.1 (29) and an
all-atom force field derived from CHARMM (30) with
the dielectric constant set to 4 (31). Partial charges on
the b-CH2 and g-CH2 groups of a-OH-PdG were assigned
by analogy to deoxyribose 20-CH2, while those on the
a-CHOH group by comparison with deoxyribose
C10-O40. Partial atomic charges on phosphate groups
were not screened, resulting in residues with a net –1
charge. Experimentally derived inter-proton distances
were computed with X-PLOR using a full relaxation
matrix approach. Briefly, canonical undecamer B-form
duplexes having the R or S isomer of a-OH-PdG in the
syn conformation were subjected to 1000 steps of energy
minimization using a single potential energy function
that was proportional to the difference between back-
calculated and experimental NOE peak intensities (32).
A grid search showed that the best isotropic correlation
time (�c) for fitting the experimental NOE volumes to
the initial B-form duplex structures was 2.33 ns and this
value was subsequently used for back-calculation of
NOE peak intensities during computation of interproton
distances. At the end of the minimization, interproton
distances were extracted from the last set of atom coordi-
nates. Experimental NOE peak intensities were measured
with Felix using NOESY spectra in D2O at different
(50, 150, 200 and 300ms) mixing times. Since some
NOE peaks related to the central part of the duplex
were resolved and stereo specifically assigned to the S
or R isomer of a-OH-PdG (see ‘Results’ section), we
computed interproton distances specific for each enantio-
mer. When proton signals of each isomer overlap, a
situation found for the first 3 bp at the ends of the
duplex, half of the NOE peak intensity was ascribed to
each isomer. This 50% split followed the comparison
of the C5(H5-H6) and C7(H5-H6) NOE cross-peak inten-
sities that were resolved for each isomer. For the R isomer,
448 distance restraints were enforced during rMD using
square-well potential energy functions with boundaries
of �0.6 Å for nonoverlapping cross-peaks present at all
mixing times. Distance boundaries of �0.9 Å were used
for distances from NOE peaks observed only in the
300ms mixing time NOESY or for nonequivalent over-
lapping peaks. For the S isomer, 460 distance restraints
were implemented using similar boundary criteria.
Following the NMR data, WC hydrogen bonds were
enforced on all undamaged base pairs of the duplex
using equilibrium distances taken from crystallographic
studies and boundaries of �0.1 Å. Backbone dihedral
angles of the last four residues were restrained using
a square-well potential energy function with a range
encompassing A- and B-form DNA conformations
(Table 2S). Backbone dihedral angles in the
(C5-X6-C7)�(G16-C17-G18) segment were not restrained.

Initial duplex structures having the R or S isomer of
a-OH-PdG in the syn orientation paired to a protonated
cytosine residue were built in InsightII. Prior to the
initiation of the molecular dynamics simulations, the ini-
tial models were energy minimized to relieve unfavorable

interatomic contacts. rMD protocols followed previously
reported procedures (33). Briefly, the temperature of
the system was increased from its initial value (100, 105,
110, 115 or 120K) to 500K during the first 100 ps of
rMD, followed by 100 to 120 ps at high temperature.
After completion of the high-temperature step, the
system was cooled down to 300K in 100 ps and equili-
brated at this temperature for an additional 150 ps of
rMD. Interproton distances were enforced with a penalty
constant that gradually increased during the heating
step of rMD from 10 to 300 kcal/(mol A2) and remained
at this value until the end of the simulation. Twenty-five
independent a-OH-PdG�dC duplex structures were com-
puted for each adduct isomer by starting rMD at slightly
different initial temperatures (100, 105, 110, 115 and
120K) and using five different time lengths of the high-
temperature step (100, 105, 110, 115 and 120 ps). Atomic
coordinates at the end of the simulations were energy-
minimized generating an ensemble of distance-refined
structures that converged to root mean square deviations
(RMSDs) <1.1 and <1.3 Å for the S and R isomers,
respectively. Structural assemblies were averaged and
energy-minimized yielding the isomeric a-OH-PdG�dC
duplex models presented here. Identical rMD protocols
were used for the refinement of 50 additional structures
of the duplex, 25 for each isomer, without protonation
of the lesion site at C17. Structures were visualized with
Chimera (34) and InsightII (Accelrys Inc., San Diego, CA,
USA) and analyzed with Curves (35).

Duplex ‘melting’ experiments

UV thermal denaturation curves were obtained using a
CARY100 Bio UV-VIS spectrophotometer equipped
with a multicell block temperature regulation unit and a
circulation bath for enhanced temperature control
(Varian, Inc.). Calibration of the temperature controller
performed using a buffer solution and an external ther-
mometer showed that temperature readings were stable
and accurate to within 18C. Initial temperatures were
allowed to equilibrate for at least 10min at 48C or 808C,
depending upon the experiment, and the rate of tempera-
ture variation was set to 0.38C per minute. Melting tem-
peratures were determined on a sample containing 1
OD260 units of duplex dissolved in 1ml of 25mM
sodium phosphate buffer containing 100mM NaCl and
0.5mM EDTA, for a final sample concentration of
8.3mM. Duplex melting temperatures were extracted
from the first derivative curve using manufacturer’s
software. The pH dependence of duplex denaturation
was investigated in the 4.7–7.3 pH range, with six inde-
pendent values obtained at each pH and their average
taken as the melting temperature.

RESULTS

Nonexchangeable proton spectra

The one-dimensional spectrum of the a-OH-PdG�dC
duplex dissolved in D2O phosphate buffer, pH 5.9,
at 258C displays sharp and fairly well-resolved proton
signals, indicating that the sample is amenable to NMR
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structure determination (Figure 1S, Supplementary Data).
Assignment of the nonexchangeable proton spectrum
follows the analysis of NOESY, COSY and TOCSY
spectra using established procedures (36,37). Figures 2
and 2S show expanded regions of a 300ms mixing time
NOESY spectrum depicting interactions between the
base (6.96–8.45 p.p.m.) and sugar-H10 (4.87–6.36 p.p.m.)
protons of the duplex. Characteristic of a right-handed
helix, each purine-H8 or pyrimidine-H6 proton on the
undamaged strand shows NOE peaks to the H1 proton
of the same and 5-flanking residues (Figure 2, right panel,
and Figure 2S, bottom panel, Supplementary Data).
On the lesion-containing strand, the presence of
a-OH-PdG breaks these sequential interactions, which
are still present on the C1–C5 and C7–C11 stretches of
duplex sequence (Figure 2, left panel, and Figure 2S,
top panel, Supplementary Data). The intensity of the
a-OH-PdG(H8-H10) NOE interactions is unusually
strong (Figure 2, left panel, peaks X6) a fact that estab-
lishes a short distance between these protons of the duplex
and suggests a syn conformation around the glycosidic
angle of the damaged residue. A syn a-OH-PdG readily
explains the interruption of sequential NOE
interactions at the duplex lesion site. Further evidence of
right-handedness on the a-OH-PdG�dC duplex is the
interaction between purine-H8 and the 30-attached
cytosine-H5 protons (Figure 2, peaks E–J), and between
the sugar-H10 and the adenine-H2 protons of the duplex
(Figure 2, peaks B–D and K–M).
Figure 2 also reveals a peculiar feature of the NOESY

spectrum of the a-OH-PdG�dC duplex. From T3 to A8,
on the lesion-containing strand, and T15 to T19, on the
undamaged strand, the base to H10 NOEs are split into
two peaks of approximately equal intensity (Figure 2).
Cross-peak splitting is not limited to the ‘fingerprint’
region of the spectrum but is seen also in other regions
of the 100% D2O NOESY spectra (Figure 3) as well as

in NOE peaks observed between the exchangeable protons
of the duplex (Figures 4 and 3S, Supplementary Data).
This duplication of NOE peaks on the center of the
duplex originates from the presence of the chiral
Ca�atom of a-OH-PdG (Figure 1). Enantiomer specific
assignments on the damaged strand are straightforward
following the observation of an a-OH-PdG(Ha)-C5(H6)
NOE peak (Figure 2, peak A) that, with the adduct in
syn, is only possible for the case of the (S)-a-OH-PdG
isomer that orients its Ha proton toward the 50-flanking
residue. In contrast, isomer specific assignments on the
undamaged strand were only possible after analysis of a
NOESY spectrum recorded with the duplex dissolved in
10% D2O buffer, pH 5.9 at 58C. Under these conditions,
we observe well-resolved inter-strand NOEs between the
C17 and C5 amino protons (Figure 3S, Supplementary
Data, peaks B–C, F–G) which, in turn, can be ascribed
to the specific enantiomers by their interaction with the
vicinal C(H5) protons (Figure 3S, Supplementary Data,
peaks D and H for C17 and K for C5).

Assignment of the exocyclic protons of a-OH-PdG
results from analysis of a different region of the same
300ms mixing time NOESY spectrum (Figure 3). The
signal at 5.27 p.p.m. that shows an NOE peak with
C5(H6) (Figure 2, peak A) displays strong and weak
interactions to the b (vicinal) and g protons respectively,
within the OH-propyl ring of the S isomer (Figure 3,
peaks B and A, respectively). In the R enantiomer, the
Ha proton shows a pair of strong but broad NOE
cross-peaks with the vicinal b protons (Figure 3, peaks
C), providing the assignment of these protons of the
adduct and revealing differences in local dynamics
between both isomers. At the same time, the g protons
exhibit a strong but broad NOE peak, completing the
assignments of (R) a-OH-PdG (Figure 3, peak H).
Examination of a TOCSY spectrum recorded under
identical conditions subsequently confirmed these
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assignments (Figure 4S, Supplementary Data). In addition
to the intra-residue NOEs, Figure 3 displays several cross-
peaks between the protons of a-OH-PdG and the 50-flank-
ing C5 residue (Figure 3, peaks D–G), which helped
during the refinement of the solution structure. Nonex-
changeable proton chemical shifts of the a-OH-PdG�dC
duplex are listed in Table 1S (Supplementary Data).

Exchangeable proton spectra

The 500-MHz one-dimensional proton spectrum, recorded
at 58C in 10% D2O buffer solution, pH 5.9, shows eleven
partially resolved signals in the 13.90–12.00 p.pm. range
that account for all the imino protons of the duplex
(Figure 4, top). Assignment of the imino protons follows
the analysis of a NOESY (220ms mixing time) spectrum
recorded under the same conditions. Thymine imino
protons exhibit strong NOE peaks from their interaction
with H2 protons of the adenine counter base (Figure 4,
peaks A–D) just as guanine imino protons interact
with the hydrogen-bonded and exposed protons of
their cytosine partners (Figure 4, peaks E/E0-H/H0).

Taken together, these observations establish regular WC
base pair alignments for undamaged base pairs in the
a-OH-PdG�dC duplex. As in the case of the NOESY
spectra collected in 100% D2O buffer, the chiral center
of a-OH-PdG causes splitting of proton signals at or
near the lesion site. There are several sequential NOE
cross-peaks between the adenine H2 and guanine H1
protons (Figure 4, peaks I–L) and between the imino pro-
tons of adjacent base pairs (Figure 5S, Supplementary
Data), indicating proper base pair stacking throughout
the a-OH-PdG�dC duplex. In addition to these inter-
actions that are regularly seen in the water NOESY spec-
trum of unmodified duplexes, a-OH-PdG(H8) shows
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NOE peaks with G18(H1) of the 50-flanking G�C base
pair (Figure 4, peak M), further confirming the syn con-
formation adopted by the damaged residue and suggesting
proper base pair stacking at the lesion site of the duplex.
The amino protons of the lesion partner C17 are readily
identified by a strong geminal NOE peak (Figure 4, peak
O) and the weaker interactions with C17(H5) within the
pyrimidine ring (Figure 4, peaks P and Q). In addition,
they show NOE peaks to the hydrogen-bonded C5(N4H)
proton and G18(H1) (Figure 4, peaks R, S and N), further
supporting base pair stacking at the lesion site of the
duplex.
At 9.78 and 8.79 p.p.m., the chemical shift of C17 amino

protons are notably downfield from the 8.0–8.5 (hydrogen
bonded) and 6.0–6.5 p.p.m. (exposed) range normally

observed for cytosine residues. These downfield values
are entirely consistent with protonation of the cytosine
counter base. As shown in Figure 5, increasing the
buffer pH gradually reduces the intensity of the C17
amino proton signals while acidifying the sample below
5.7 seems to have little effect (Figure 5, top panel).
However, no signal was detected in the 15–20 p.p.m.
range that could be assigned to the C17+(H3) proton.
The pH dependence of the duplex melting temperature
shows the highest Tm value in the 5.2–5.9 pH range
(Figure 5, bottom panel), suggesting that C17 protonation
increases the thermal stability of the damaged duplex,
most likely by inducing the formation of a hydrogen
bond across the a-OH-PdG(syn)�dC+ base pair. Taken
together, these observations indicate that C17+(H3) is
involved in hydrogen bonding but cannot be detected in
the NMR spectra, probably due to its fast solvent
exchange. Exchangeable proton chemical shifts of the
a-OH-PdG�dC duplex are also listed in Table 1S
(Supplementary Data).

a-OH-PdG�dC duplex structures

Figures 6 and 6S (Supplementary Data) show different
views of the R and S a-OH-PdG�dC duplexes obtained
after 450 ps of rMD. The refined structures are in excellent
agreement with the experimental NMR constraints,
having no interproton distance violations >0.3 Å and six
violations >0.1 Å that cause only minor distortions of the
atom covalent geometry (Table 1). The structures are very
similar, having all-atom RMSD values of 0.95 Å for the
whole duplex, 0.97 Å at the duplex lesion site (central three
base pairs) and 0.80 Å for the undamaged six base pairs
after excluding the lesion site and terminal bases. Both
duplexes adopt regular right-handed helical structures
mildly distorted at their centers by the presence

a-OH-PdG•dC+ Duplexes

R isomer S isomer

Oa
Oa

Figure 6. Three-dimensional structures of the isomeric a-OH-PdG�dC
duplexes. The figure shows space-filled models seen with the major
groove prominent, the damaged base pairs colored by atom type, and
the Oa atoms labeled in the figure.
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Figure 5. Top, pH dependence of the exchangeable proton spectrum
recorded at 58C with the a-OH-PdG�dC duplex dissolved in phos-
phate buffer pH 5.9 (10mM phosphate, 50mM NaCl and 1mM
EDTA). Bottom, pH dependence of the melting temperature of the
a-OH-PdG�dC duplex.
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of a-OH-PdG. The glycosidic torsion angle (�) of all
undamaged residues reveals an anti orientation while
sugar conformations appear in the C10-exo/C20-endo
range and standard WC alignments are preserved in non-
damaged base pairs of the duplex. At the lesion site, the �
torsion angle of a-OH-PdG is syn, placing the exocyclic
1,N2-hydroxylpropyl ring in the major groove of the
duplex with its Hoogsteen edge facing the protonated

C17+ counter base. Figure 7 displays closer views of the
structure at the lesion site revealing a network of hydrogen
bonds that stabilizes the syn conformation of the adduct �
torsion angle. There is a well-formed hydrogen bond
between a-OH-PdG(N2H) and a backbone phosphate
oxygen that is present in the refined structure of both
isomers. An additional hydrogen bond between a-OH-
PdG(OH) and the same phosphate forms only with the
R isomer of the adduct, which directs its OH group
toward the 50-end of the nucleotide (Figure 7). In addition
to these intraresidue hydrogen bonds, the Hoogsteen edge
of a-OH-PdG can form different hydrogen bonds with its
partner base C17. These interactions, however, are some-
how unstable during rMD, forming and breaking during
the course of the simulation and, in some cases, being
absent from the final refined model. On the other hand,
hydrogen bonding occurs more often with the S isomer
and, expectedly, on simulations performed with a pro-
tonated C17+ residue. Figure 8 displays different refined
structures having two, one or no hydrogen bonds across
the lesion-containing base pair. Two well-formed hydro-
gen bonds connecting a-OH-PdG(O6)-C17+(N4H) and
a-OH-PdG(N7)-C17+(H3) occur in about one half of
the MD simulations performed with a C17+ residue
(Figure 8, top). In the presence of a nonprotonated C17
residue, structures having similar alignment with just
one hydrogen bond between a-OH-PdG(O6)-C17(N4H)
occur only once with the S isomer. On the other hand,
a quarter of the C17+ refinements and one half of the
nonprotonated C17 simulations yield models with a
single a-OH-PdG(N7)-C17(N4H) hydrogen bond.
Formation of this hydrogen bond correlates with a
small displacement of C17 toward the minor groove
of the duplex and partial loss of co-planarity in the
a-OH-PdG�dC base pair (Figure 8, middle). Structures
lacking hydrogen bonds also occur and show a complete
loss of co-planarity across the base pair of the lesion
(Figure 8, bottom). Interestingly, models with a single
hydrogen bond between a-OH-PdG(O6)-C17+(H3) were
never observed in the refined models. Statistics of the
refinement and relevant structural parameters of the
a-OH-PdG�dC duplexes are listed in Table 1.

Table 1. Statistics of the refinement and structural parameters of a-OH-PdG�dC+ duplexesa

R-isomer S-isomer

Distance and geometry violations
RMSD NOE-violations (Å) 0.022 0.023
Number of distance violations >0.1 Å 6 6
RMSD bond lengths (Å) 0.009 0.01
RMSD bond angles (8) 3.1 3.0
Van der Waals energy (Kcal/mol) �326 �331

Lesion site hydrogen bonding
a-OH-PdG(N2H-O2P) distance (Å)/N2-H2-O2P angle (8) 1.90/162 1.97/175
a-OH-PdG(Ha-O2P) distance (Å)/Oa-Ha-O2P angle (8) 2.07/163 4.83/84
a-OH-PdG(O6)-C17+(N4H) distance (Å)/O6-N4H-N4 angle (8) 2.90/107 1.93/127
a-OH-PdG(N7)-C17+(N3H) distance (Å)/N7-N3H-N3 angle (8) 2.36/132 2.72/147
a-OH-PdG(N7)-C17+(N4H) distance (Å)/N7-N4H-N4 angle (8) 2.18/142 3.70/131

aAveraged values computed from the 25 refined structures. Chi torsion angles of a-OH-PdG in the refined R and S isomer models were 658 and 838,
respectively

Oa

Oa

N2H

N2H

R isomer

S isomer

Figure 7. Close-up view of the central three base pair fragment depict-
ing hydrogen-bonding interactions that stabilize the syn conformation
of a-OH-PdG.
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DISCUSSION

NMR spectra of the a-OH-PdG�dC duplex

The sequential interactions detected on the NOESY spec-
trum recorded at 258C (Figure 2 and 2S, Supplementary
Data) along with the interstrand NOE peaks observed
across undamaged base pairs of the duplex (Figure 4)
demonstrate that the a-OH-PdG�dC duplex adopts a reg-
ular right-handed helical conformation stabilized by the
formation of WC base pairs. Further support for a regular
B-form DNA helix is the observation of NOE peaks
between C(H5) and the base proton of its 50-flanking res-
idue and between A(H2) and neighboring sugar-H10 pro-
tons (Figure 2). Similarly, NOE connectivities between
sequential imino protons (Figure 5S, Supplementary
Data), and between imino and amino and A(H2) protons
of sequential base pairs (Figure 4) indicate that the a-OH-
PdG�dC duplex preserves normal base pairing through-
out. The presence of the acrolein lesion manifests itself by
the split nature of the NMR signals from residues located
at and near the damaged site (Figures 2–4), indicating that
a-OH-PdG conserves the exocyclic ring form, after pairing
to C17, with resonances from the R and S duplexes
resolved under the experimental conditions. This observa-
tion is in sharp contrast to the case of the isomeric

g-OH-PdG adduct, which undergoes a chemical rearran-
gement to the open N2-3-oxo-propyl form after pairing to
dC, losing by this process its chiral center (25). Chemical
shift differences between corresponding protons of the
enantiomeric duplexes are very small (Table 1S,
Supplementary Data) indicating that both duplexes
adopt a similar conformation in solution. This character-
istic is very different from that of bulky polycyclic hydro-
carbon lesions, where the chirality of the adduct linkage
carbon profoundly affects the NMR spectra and solution
structure of the damaged duplex (38) or the related croto-
naldehyde-N2-dG lesion, which preferentially forms inter-
strand cross-links in the case of the R isomer (39).

The NOESY spectra in 100% D2O buffer reveal
very strong NOE cross-peaks between the H8 and H10

protons of a-OH-PdG (Figure 2, peak X6), indicating
that the distance between them is short and suggesting a
syn conformation around the � torsion angle of a-OH-
PdG. The NOE cross-peaks between a-OH-PdG(Ha)-
C5(H6) (Figure 2, peak A), a-OH-PdG(Hg/g0)-C5(H5)
(Figure 3, peaks E and F) and a-OH-PdG(H8)-
G18(N1H) (Figure 4, peak M) protons, which are far
apart (>5 Å) in canonical B-form DNA, independently
confirm the syn conformation of the damaged
residue. The � rotation from anti to syn not only
relieves any steric clashing that would exist across the
a-OH-PdG-containing base pair, but also allows hydro-
gen bond interactions with the Hoogsteen edge of the
lesion. Analysis of the exchangeable proton spectra
shows that C17 amino protons have chemical shift
differences of about 1 p.p.m. (Figure 4 and Table 1S)
indicating that one of them is hydrogen bonded, a fact
later supported by the refined three-dimensional structure.
Incidentally, the chemical shift of C17 amino protons
is clearly downfield from the value observed for other
cytosine residues of the duplex. NMR studies reported
similar chemical shift values for the amino protons of
C+ residues on G�CC+ triplets at pH 5.5 (40,41) and
on the "dG�dC+ base pair at pH 5.2 (42), suggesting
protonation of the a-OH-PdG counter base at pH 5.9
with the possible formation of an additional hydrogen
bond across the damaged base pair. The observation
that the thermal stability of the duplex is highest in the
5.2–5.9 pH range provides independent support for the
existence of such a hydrogen bond. We failed, however,
to detect the NMR signal of the C17+ imino proton sug-
gesting that it must be in rapid exchange with solvent.

Structure of a-OH-PdG�dC duplexes

The NMR-derived duplex structures show that the
presence of a-OH-PdG causes only small perturbations
of the regular right-handed helix (Figure 6). After adopt-
ing a syn conformation for the glycosidic torsion angle,
the exocyclic ring of a-OH-PdG locates in the duplex
major groove, where there is enough room to accommo-
date the OHa group without causing further perturbations
of the structure (Figures 6 and 6S). As a result, the
chirality of a-OH-PdG lesion is structurally inconseq-
uential. This is in sharp contrast to the case of
benzo[a]pyrene-dG lesions where chirality induces vastly

C17+a-OH-PdG

C17+a-OH-PdG

C17+a-OH-PdG

Figure 8. Characteristic hydrogen-bonding patterns observed for the
a-OH-PdG�dC base pair in the refined structures. In all three align-
ments, the major groove of the duplex is toward the top of the base
pair.
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diverse conformations, as different as minor-groove-
aligned or duplex-intercalated structures (38), or that
of the related crotonaldehyde adducts, where one isomer
preferentially forms interstrand cross-links (39).

A well-formed hydrogen bond between
a-OH-PdG(N2H) and a backbone phosphate oxygen
stabilizes the syn conformation of the � torsion angle
of the damaged residue in both isomers (Figure 7).
Although direct spectroscopic evidence for this hydrogen
bond is lacking, the chemical shift of a-OH-PdG(N2H) at
8.53 and 8.42 p.p.m. (Figure 4, Table 1S, Supplementary
Data) supports the involvement of this proton in
hydrogen bonding, giving credence to the refined struc-
tures. The R a-OH-PdG isomer can further stabilize
the syn conformation of the lesion by formation of an
additional hydrogen bond between a-OH-PdG(OHa and
the same phosphate oxygen (Figure 7). This enantiomer-
specific characteristic may explain the small differences
in dynamics between the isomers, manifested by slight
broadening of the exocyclic protons of the R a-OH-PdG
isomer in the NOESY spectra (Figure 3). However, the
exact nature of these dynamic processes is unknown at
the present time and its structural consequences, if any,
seem minimal. The � syn conformation positions the
Hoogsteen edge of a-OH-PdG for hydrogen bonding
with its counter base C17, but these residues have to
move closer to engage in hydrogen bonding. On the
refined structures, therefore, the average C10-C10 distance
at the lesion-containing base pair is about 10% shorter
than that of canonical pairs and different patterns of
hydrogen bonds are present at the lesion site of the
duplexes (Figure 8). On average, the duplexes form two
hydrogen bonds involving the amino and imino protons
of C17+ as donors and the adduct O6 and N7 on the S
isomer or only the N7 atom on the R isomer, as acceptors
(Table 1). However, these interactions are not very stable
and refined structures with one or no hydrogen bonds
are present at the end of the simulation. Interestingly
in both cases, C17+ starts losing co-planarity with
a-OH-PdG, moving towards the minor groove of the
duplex and partially explaining the fast solvent exchange
of the C17+(N3H) proton.

Previous studies have determined the structure of
duplex DNA containing 1,N2-propano-dG (PdG) an
acrolein lesion analog that lacks the OH substituent.
When A�T pairs flanked the PdG adduct, the lesion
adopts a syn conformation and pairs to a C+ residue with-
out disrupting WC alignments of neighboring base pairs,
adopting a structure that is very similar to the one
described here. However, the former duplex needed
stronger acid conditions, pH 5.2, for the formation of a
PdG�C+ base pair (43), which underlines the role of
the a-OH group in stabilizing the syn conformation of
the lesion. In contrast, not only the PdG of the lesion-
containing base pair but also the guanosine residue of
the 30-flanking base pair adopt a syn orientation and
form protonated Hoogsteen base pairs at pH 5.8
when the adduct is located in a (C X C) sequence (44).
The duplex structures presented here show a-OH-PdG
and its 30-flanking dG residue relatively close in space
but with enough room for the latter to adopt a syn

conformation without causing steric clashes. In addition,
these residues lack any specific interaction that could
explain retaining the 30-flanking dG in the anti orientation.
Although the cause for this difference is currently
unknown, it is evident that PdG does not model
a-OH-PdG in the (C X C) context.

Biological implications of a-OH-PdG structures

In contrast to its positional isomer g-OH-PdG that is not
mutagenic in human cells, a-OH-PdG extensively blocks
DNA replication and, when bypassed by trans-lesion
synthesis, mostly codes for dC incorporation, along with
G ! T and G ! A base substitution mutations (24).
In vitro primer extension studies using Y-family DNA
polymerases showed that PolZ and Polk might catalyze
mutagenic replication across a-OH-PdG, while Rev1 and
Pol� would mediate accurate lesion replication, with the
latter polymerase incorporating dA and T at lower fre-
quency (45). The X-ray structure of a Rev1/PdG-DNA/
dCTP complex has the modified residue evicted into a
small hydrophobic cavity while the incoming dCTP is in
the enzyme active site forming two hydrogen bonds
with an arginine residue, thus explaining the property of
Rev1 for incorporation of dCTP exclusively (46).
Importantly, there was enough room in the hydrophobic
cavity to accommodate the OH group of OH-PdG,
suggesting that a similar structural intermediate would
occur with the acrolein lesion. Poli, on the other hand,
can catalyze incorporation of any dNTP during trans-
lesion synthesis, presumably by hydrogen bonding
the incoming nucleotide with the Hoogsteen face of
a syn template residue (47). The structure reported
here identified lesion specific bonds that would keep
a-OH-PdG in the syn conformation at the replication
fork of Poli, helping the formation of the non-mutagenic
a-OH-PdG(syn)�dC replication intermediate. In princi-
ple, incoming dTTP or dATP may form similar
a-OH-PdG(syn)�dA and a-OH-PdG(syn)�T base pair
alignments, explaining the error-prone bypass of
a-OH-PdG by Poli. An investigation into the structure
of such mutagenic intermediates in duplex DNA is
currently underway.
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