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Abstract
Background—Cardiac conduction, as assessed by electrocardiographic PR interval and QRS
duration, is an important electrophysiological trait and a determinant of arrhythmia risk.

Objective—We sought to identify common genetic determinants of these measures of cardiac
conduction time.

Methods—We examined 1604 individuals from the island of Kosrae, Federated States of
Micronesia, an isolated founder population. We adjusted for covariates and estimated the heritability
of quantitative electrocardiographic QRS duration, PR interval and secondarily its subcomponents
P wave duration and PR segment. Finally, we performed a genome-wide association study (GWAS)
in a subset of 1262 individuals genotyped using the Affymetrix GeneChip Human Mapping 500K
microarray.

Results—The heritability of PR interval was 34% (SE 5%, p=4×10−18), of PR segment 31% (SE
6%, p=3.2×10−13) and P wave duration 17% (SE 5%, p=5.8×10−6) but for QRS duration only 3%
(SE 4%, p=0.20). Hence, GWAS was performed only for PR interval and its subcomponents. A total
of 338,049 SNPs passed quality criteria. For PR interval, the most significantly associated SNPs were
located in and downstream of the alpha-subunit of the cardiac voltage-gated sodium channel gene
SCN5A with a 4.8 msec (SE 1.0) or 0.23 standard deviation increase in adjusted PR interval for each
minor allele copy of rs7638909 (p=1.6×10−6, minor allele frequency 0.40). These SNPs were also
associated with P wave duration (p=1.5×10−4) and PR segment (p=0.01) but not with QRS duration
(p≥0.22).
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Conclusions—PR interval and its subcomponents showed substantial heritability in a South Pacific
islander population and were associated with common genetic variation in SCN5A.
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Introduction
Electrocardiographic PR interval and QRS duration are measures of cardiac conduction time.
PR interval duration reflects conduction of the electrical signal from the SA-node through the
conduction system to the ventricular myocardium but primarily through the AV-node. It can
be subdivided into P wave duration and the PR segment, from the end of the P wave to the
beginning of the QRS. The QRS complex reflects conduction through the ventricular
myocardium. Experimental and clinical data suggest a role for global atrial conduction slowing
in the pathogenesis of atrial arrhythmias1 and QRS prolongation is associated with ventricular
arrhythmias and sudden cardiac death.2

The PR interval has evidence of a heritable component with most previous heritability estimates
in the range of 0.34–0.46, which could result from rare or common genetic variants or both.
3–5 Rare coding6,7 and common noncoding8 variants in the alpha-subunit of the cardiac
voltage-gated sodium channel gene, SCN5A, have been reported to cause delayed conduction
and PR interval prolongation but to date most of the PR interval heritability remains
unexplained. PR interval has also been shown to be influenced by other factors including sex,
age, heart rate and dromotropic drugs, such as those acting on the cardiac sodium channel.
QRS duration, on the other hand, has not shown evidence of significant heritability in previous
studies.5,9

A genome-wide association study (GWAS) can be used to identify genes (known or unknown)
and variants in them that are associated with cardiac conduction phenotypes. GWAS uses dense
maps of common genetic single nucleotide polymorphisms (SNPs) to examine whether
genotype is significantly associated with differences in phenotype. The GWAS approach has
only recently been made possible by advances in genotyping and genomic mapping and has
successfully identified genes involved in a number of common, multifactorial diseases
including atrial fibrillation10 as well as genetic determinants of quantitative traits such as
electrocardiographic QT interval11. In aggregate, such studies have confirmed the common
disease-common variant hypothesis, that common genetic variants influence heritability of
common diseases and observed variation in quantitative traits. Many of the genes and pathways
identified in this systematic manner, such as NOS1AP in QT interval,11 had not previously
been linked to the trait of interest and thus provide novel physiological information.

We hypothesized that a systematic search for common genetic variants with an influence on
PR interval, and secondarily its subcomponents, and QRS duration could identify novel
molecular mechanisms involved in cardiac conduction which would then be potential
candidates for arrhythmogenesis. We performed a GWAS in a community-based sample from
the island of Kosrae, Federated States of Micronesia, an isolated founder population. This
population exhibits long-range linkage disequilibrium,12 potentially making association
scanning with high genomic coverage feasible.
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Methods
Study sample

Inclusion of individuals and variables examined in the Kosrae study has been described
previously.13 Briefly, residents of Kosrae were examined at three different time points: in
1994, 2001 and 2003. We studied the sample examined in 2001 which included a total of 2170
individuals.14 All individuals were examined with recording of anthropometric traits, blood
pressure, several blood biomarkers, medications (the island has a limited formulary), self-
reported ethnicity, and lifestyle habits. Self-reported familial relationships were investigated
by a genetics counsellor working on Kosrae who was able to construct a family tree that
included most of the Islanders and which was later and revised based on identity-by-descent
estimates from SNP data using PLINK.15 One individual was excluded for self report of non-
Micronesian ancestry. For the three pairs of monozygotic twins identified, the average trait
value was used in analyses. After exclusions, there were 1604 individuals in the PR interval
heritability analysis and 1588 individuals in the QRS duration heritability analysis. PR interval
GWAS was completed in the 1262 individuals free of exclusions with available genome-wide
genotypes passing quality control. In a secondary analysis after our initial PR interval GWAS
results were obtained, additional ECG measurements were made in the subset of individuals
free of exclusions with genotypes in the GWAS and included 1133 individuals with P wave
duration and 1131 individuals with PR segment measures. Informed consent in Kosraen was
obtained from all subjects. The study protocol was approved by the Institutional Review Boards
of Rockefeller University, Massachusetts General Hospital and the Massachusetts Institute of
Technology. The authors had full access to the data and take responsibility for its integrity. All
authors have read and agree to the manuscript as written.

Electrocardiographic trait measurement
Twelve-lead electrocardiograms were recorded at a paper speed of 50 mm per second in 1756
individuals using a Universal ECG (QRS Diagnostic LLC, Plymouth, MN). De-identified
paper electrocardiograms were scanned into digital images at high resolution. Quantitative
measures of QRS duration, PR interval, P wave duration and PR segment were obtained using
digital calipers in Rigel 1.7.3 (AMPS LLC, New York, NY) from two cardiac cycles of lead
II and one cycle each from V2 and V5. PR interval was measured from the onset of the P wave
to the onset of the QRS complex and PR segment from the offset of the P wave to the onset of
the QRS complex. Measurements in all analyzed individuals were made at two time points
with high agreement for mean PR interval (r=0.90) but lower for mean QRS duration (r = 0.60).

Genotyping and Quality Control
Genotyping was performed using the Affymetrix GeneChip Human Mapping 500K microarray
at Affymetrix (San Francisco, CA). Genotypes were called using the Bayesian Robust Linear
Modeling using Mahalanobis Distance (BRLMM) algorithm.16 SNPs were excluded for the
following reasons: genotype call rate below 95%, twelve or more Mendelian errors, minor
allele frequency below 0.01or mapping to more than one locus in the human genome. A total
of 338,049 SNPs passed quality criteria on the 22 autosomes.

Phenotype modeling
We excluded from analyses of PR interval and its subcomponents individuals with Wolf-
Parkinson-White pattern (n=1), those using drugs that slow AV-nodal conduction (n=4), those
with atrial fibrillation (n=1). No individuals examined for this study had a pacemaker. In QRS
analyses, we excluded individuals with mean QRS duration >120 ms or right bundle branch
(n=36). Normality of traits was confirmed.
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We adjusted for covariates using multivariable linear regression models. To create regression
models, we first examined univariable regression models for relevant covariates. The following
covariates were significant (p<0.05) in univariable linear regression models: age, sex, BMI,
height, weight, waist, waist-to-hip ratio, body surface area, lean body mass, systolic blood
pressure, diastolic blood pressure, mean arterial blood pressure, pulse pressure, hypertension,
heart rate, total cholesterol, LDL, HDL, triglycerides, creatinine, diabetes, fasting blood sugar,
and HbA1c.

Covariates with p<0.05 on univariable analysis were included in stepwise multiple regression
models for each measure in cardiac cycle-specific and averaged trait values (from up to four
measures). The variability explained by each model (as estimated by the coefficient of
determination, r2) was compared between the cycle-specific and mean trait models, under the
assumption that more precise measures would have a greater proportion of variation
explainable by clinical covariates. For all traits the r2 in regression models and the correlation
of two independent sets of measures was greatest for the mean of all four measures which was
therefore used for heritability estimation and association. Residuals from fully-adjusted models
were standardized to mean 0, standard deviation 1 and served as the trait for subsequent
heritability and genotype-phenotype association analyses. Phenotype modeling was performed
in SPSS (SPSS v11.5.0, SPSS Inc, Chicago, Illinois).

Heritability
Additive heritability was estimated using variance components analysis as implemented in the
Sequential Oligogenic Linkage Analysis Routines software (SOLAR v4.0.7, Southwest
Foundation for Biomedical Research).

Genome-wide association analysis
The association strategy was designed to account for the small effective population size and
the high degree of relatedness that exists on Kosrae due to the founder effect. Multiple strategies
were examined and compared for type I and type II error rates in simulation experiments.14
The final strategy tested for association within sibships drawn from the extended Kosrae
pedigree, and combines scores from both within- and between-sibship association testing as
implemented in the QFAM-Total procedure in PLINK.15 An additive genetic model was tested
in all analyses. We included a number of singletons (“sibships” of one) with low relatedness
to the rest of the sample as defined by identity-by-descent (IBD) estimates ≤ 0.125 (equivalent
to a first cousin relationship or less). We adjusted for test statistic inflation induced by
relatedness between sibships by calculation of the genomic inflation factor and subsequent
genomic control. Our analytic strategy thus attempts to maximize power by analyzing within
and between components of association, while controlling the inflation in test statistics
resulting from background relatedness on the island.

A quantile-quantile plot of the observed compared to expected −log10(p-value) was generated
in R v2.6.0 (http://www.r-project.org) and the −log10 (p-value) plotted using Haploview
v4.0.17 Plots of correlation patterns for selected loci were generated in Haploview using
pairwise r2 of SNPs from 133 individuals drawn from the entire population who exhibit the
lowest pairwise relatedness (pairwise IBD estimates ≤ 0.08).

Results
Phenotype modeling

For clinical characteristics of the study sample see Table 1. The final regression model for PR
interval included age, sex, heart rate, weight and fasting blood sugar and the final model for
QRS duration included sex, heart rate, body surface area and pulse pressure. For P wave and
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PR segment the same covariates as for PR duration were used. The proportion of variation in
phenotype explained by covariates (r2) was modest: 17%, 6%, 5% and 10% respectively.

Heritability
The estimated heritability of PR interval was 0.34 (SE 0.05, p=4×10−18), suggesting that
additive genetic factors explain 34% of variability in PR interval. The heritability of P wave
duration was 0.17 (SE 0.053, p=5.8×10−6), and of PR segment was 0.31 (SE 0.057,
p=3.2×10−13) while that of QRS duration was not significant (0.03, SE 0.04, p=0.20). The
correlation to PR interval of its subcomponents was substantial (P wave r=0.48, PR segment
r=0.86). Because of the significant heritability of PR interval and its subcomponents and the
low heritability of QRS duration, genome-wide association testing was performed for PR
interval and its subcomponents only.

Genome-Wide Association Study
A GWAS of PR interval was performed using 1262 individuals from 168 sibships and 189
singletons and the 338,049 SNPs that passed quality control. Mild inflation of test statistics
was observed (Figure 1) with a genomic inflation factor λGC of 1.16. After genomic control to
correct for relatedness between sibships, there was a slight excess of low p-values (high −log
(p-value)). The ten results with the lowest p-values were all for non-coding SNPs at
chromosome 3p22.2 (Figure 2) at the 3′ end of the alpha-subunit of the cardiac sodium channel
gene, SCN5A (MIM 600163) and downstream (Figure 3, Supplementary Table 1). The top SNP
result was for rs7638909 in intron 27 of SCN5A (minor allele frequency 0.40), which was
associated with an effect size of 4.8 ms (SE 1.0) or 0.23 SD increase in PR duration for each
additional minor allele copy (p=1.6×10−6, Table 2), explaining 2.0% of variation in PR interval.
The second best result was for SNP rs2070488 (minor allele frequency 0.33), which was
associated with a 5.0 ms (SE 1.1) or 0.24 SD decrease in PR interval per minor allele
(p=3.8×10−6). The majority of the SNPs with the lowest p-values in the region are highly
correlated and fall in one large block of strong linkage disequilibrium (Figure 4A). We tested
for association of the top two SNPs in a multivariable linear regression model and found both
to be significant (rs7638909, p=0.001; rs2070488, p=0.04), suggesting possible independent
effects. However, examination of the haplotypes across the locus suggest that the opposite
direction of effect for the top two SNPs may be explained by the fact that the minor allele of
rs7638909 is located on a complementary haplotype containing the major allele of rs2070488
(Figure 4 B, C). As can be seen in Table 2, only one other SNP than the ten SNPs at SCN5A
reached a p-value below 10−5, rs2461751 (4.5 ms/minor allele, SE 1.0, MAF 0.44,
p=8.0×10−6), on chromosome 2 and more than 200kb from any known gene.

GWAS for P wave duration and PR segment were performed in 1133 and 1131 individuals
and genomic control performed for inflation factors of 1.34 and 1.27, respectively. For PR
segment the most significant SNP, rs2008242, is located near MSX1 (p=3×10−6) and for P
wave duration we note that a SNP, rs10925451, in the cardiac ryanodine receptor (RYR2) ranks
among the top ten SNPs (p=2.9×10−5) (Supplementary table 2).

SCN5A in P wave duration, PR segment and QRS duration
Since the heritability of QRS duration was nonsignificant, we did not perform a genome-wide
association scan for this trait. However, we did examine whether the SNP with the strongest
association with PR interval, rs7638909, was also associated with QRS duration. We did not
find a significant association between SCN5A SNPs and QRS duration (p=0.20, Table 2). We
also found this SNP to be associated with 2.2 msec (0.19 SD) increased P wave duration
(p=1.5×10−4), and 2.6 msec (0.14 SD) increased PR segment for each minor allele copy
(p=0.01).
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Discussion
Main findings

We have examined the heritability and common genetic determinants of cardiac conduction
as measured by electrocardiographic intervals in an isolated founder population. We observed
heritability estimates for PR interval similar to previous studies in other populations and
significant heritability estimates for P wave duration and PR segment, the subcomponents of
PR interval, but not for QRS duration. We performed a genome-wide association study of PR
interval and found the SNPs with the lowest p-values to be located in the 3′ end of the gene
encoding the alpha-subunit of the cardiac sodium channel SCN5A, a strong candidate gene to
modulate this electrocardiographic correlate of cardiac conduction. The most strongly
associated SNP increases PR interval by 4.8 ms/copy of the minor allele and explains 2.0 %
of PR interval variability.

Heritability
The PR interval heritability estimate on Kosrae (34%) is similar to that previously reported in
other populations. A family-based study of 1951 individuals of European ancestry from the
United States estimated the heritability at 34%.3 A family-based study in 820 individuals from
the Tokelau islands in Polynesia estimated heritability to be 46%.18 Studies in twins have also
shown significant heritability but of varying degree; a study in 355 twin pairs estimated
heritability to 34%5 while a study in 20 Norwegian twin pairs estimated heritability to be 78%.
4 To our knowledge, no previous studies have examined the heritability of PR interval
subcomponents P wave duration and PR segment. Studies examining the heritability of QRS
interval are scarce but have not demonstrated significant heritability.5,9 The lack of heritability
in these studies could be attributable to limited power to detect such effects due to modest
sample sizes or poor precision of QRS measurements, as well as the possibility that additive
genetic factors as assessed by heritability do not play much of a role in determination of QRS
duration compared to environmental factors.

SCN5A in cardiac conduction
Rare loss-of-function variants in SCN5A have been found to cause delayed conduction with
prolonged PR interval and QRS (MIM 600163.0016)6, atrial fibrillation,19 sudden cardiac
death,20 sick sinus syndrome (MIM 608567),21 Brugada syndrome (MIM 601144),22 dilated
cardiomyopathy (MIM 601154),23 and Progressive Familial Heart Block (MIM 113900).7.
These variants are likely to result in a reduced action potential upstroke velocity resulting in
slowed impulse propagation24. Mouse knockout models of SCN5A exhibit 50% reduced
sodium conductance in patch clamp experiments and impaired atrioventricular and
intramyocardial conduction25,26 whereas transgenic mice with constitutive overexpression of
SCN5A exhibit shorter P-wave and PR interval.27 Heterozygous knockout mice were found
to resemble the human disease of Progressive Familial Heart Block with a progressive
impairment of atrial and ventricular conduction.28

Bezzina et al described a common haplotype in the SCN5A promoter (immediately 5′ of the
gene) of a sample consisting of 102 healthy Japanese subjects and 71 Japanese Brugada
syndrome patients without coding SCN5A mutations to be associated with PR interval and QRS
duration in both groups.8 We find it unlikely that our association signal is the same as the
promoter signal reported by Bezzina et al since the SNPs in our study are all located in the 3′
end of the SCN5A gene, a gene which spans 101 kb. No SNP in the 5′ end of SCN5A reaches
p<0.33 and the SNP with the lowest p-value within 50 kb 5′ of the gene has p=0.05
(Supplementary Table 1). Second, a recombination hotspot separates our association signal
from the SNPs with stronger association in the 5′ end of the gene (Figure 3). Lastly, none of
the SNPs within 50kb of the SCN5A promoter in HapMap Chinese from Beijing or Japanese
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from Tokyo samples or in the Kosraen sample has an r2 greater than 0.05 to the top SNP
identified in the current report (rs7638909). To our knowledge no other studies have described
association between common SCN5A variants and cardiac conduction. However, previous
studies have found association between a common missense variant, H558R, in SCN5A and
atrial fibrillation in an Asian sample29 and a variant associated with ventricular arrhythmia,
S1102Y, in an African American sample.30 The H558R variant has low correlation with the
top SNP in our report in HapMap (r2=0.03) and is not included on the Affymetrix 500K
GeneChip. The S1102Y variant is very rare in samples of Asian or European ancestry.

As the cardiac sodium channel is expressed widely in both ventricles and atria we also examined
the association of SCN5A with the ventricular component of cardiac conduction, QRS duration,
and did not find any significant association. This might be explained by differences in the
properties of atrial and ventricular sodium channels, which have been described previously,
31 lack of power to detect modest genetic effects or a limited genetic contribution to variation
in QRS duration. We found the strongest PR interval SNP to be strongly associated with P
wave duration, with a weaker association to PR segment, consistent with a general action of
the variant identified in both the atrial conduction tissue and the atrioventricular node..

Other GWAS results
For PR interval, the only SNP other than at the SCN5A locus to reach a p-value below 10−5 is
located on chromosome 2, more than 200 kb from any known gene. However, one of the two
closest genes is activating transcription factor 2, ATF-2, previously implicated in experimental
models of cardiac hypertrophy.32 This finding could merit further examination if replicated
in other studies.

For PR segment, the most significant SNP was located near MSX1.MSX1 was recently shown
to interact with T-box factors in regulating connexin expression in the heart,33 which
contributes to electrical coupling of cardiomyocytes and has been found to have a role in
embryological development of the atrioventricular myocardium making it a strong candidate
for follow up.34 For P wave duration we noted that a SNP in RYR2, the calcium channel which
couples cardiac muscle excitation to myocardial contraction and is responsible for monogenic
cardiomyopathy and ventricular tachycardia, ranks among SNPs with the strongest association.

Strengths and limitations
Genetic screens in isolated populations can be a valuable tool in identifying Mendelian disease
genes due to the low genetic and environmental heterogeneity. We have previously shown that
genetic heterogeneity in terms of long-range linkage disequilibrium on Kosrae also makes
genome-wide association studies with high coverage of common variation feasible, with as
much as 80% coverage of all common variation at r2>80% using only 110,000 SNPs.12
However, our study is underpowered to fully utilize the greater coverage provided by over
300,000 SNPs in identifying common genetic variants of the low effect sizes that typify many
common variants that alter risk of human disease or physiology. The effect size seen in
SCN5A SNPs is relatively large for a common variant, explaining 2.0 % of trait variability.

The significance thresholds that should be used in genome-wide association studies to control
the false-positive rate are a matter of debate. The Wellcome Trust Case Control Consortium
employed a threshold of 5×10−7.35 We have recently recommended a threshold of 5×10−8 in
European population samples, accounting for roughly 1,000,000 independent common variant
tests in the human genome.36 On Kosrae, it is likely that the increased correlation among SNPs
(linkage disequilibrium), as previously shown12 and exemplified here by the reduced number
of haplotypes covering SNPs in SCN5A as compared with Asian HapMap samples (Figure 4),
makes this threshold overly conservative due to the more limited number of independent tests
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across the genome in Kosraens. Lastly, the implication of rare SCN5A mutations in Mendelian
forms of conduction block and a common variant effect in one Asian study gives greater
confidence that the current findings are unlikely to be spurious. Ultimately, proof of true
association will need to come from replication in additional samples of various ancestral
backgrounds.

The isolated population study design also introduces some potential challenges. The long-range
linkage disequilibrium makes fine-mapping and resequencing of identified loci more difficult.
In addition, as rare alleles may have risen to high frequencies in founder populations, findings
may not be generalizable to other populations. Hence, our finding of SCN5A as the top SNP
in the PR interval GWAS could be the result of a generally rare variant such as those previously
described6 which has risen to higher frequency on Kosrae as recently shown for
phytosterolemia.37 However, the high minor allele frequency of the variants reported here
make this less likely. Further work, including fine-mapping and resequencing, is required to
exclude this possibility.

Conclusion
We have identified a common variant at the SCN5A locus that influences PR interval in a South
Pacific founder population. Replication in other cohorts and extension to clinical samples is
needed to define the ultimate clinical implications of these findings. Our results add to results
from QT interval duration that systematic genetic scans of ECG traits may identify genes and
variants important in electrophysiological function.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Quantile-quantile plot of PR interval association results for 338,049 autosomal SNPs under an
additive genetic model. Plotted are the expected versus observed −log10(p-value) before (black)
and after (red) genomic control from the PR interval GWAS. The measure of overdispersion
of the test statistics, λGC, was 1.16 before genomic control.
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Figure 2.
PR interval association results for 338,049 SNPs across 22 autosomes under an additive genetic
model. Each dot represents one SNP. Plotted on the y-axis is −log10(p-value) and on the x-axis
physical position by chromosome.
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Figure 3.
Regional association plot for PR interval top locus on chromosome 3p. The plot covers the
genomic region from 150 kb upstream of SCN5A to 300 kb downstream. Positions are from
NCBI build 35 and recombination rates as estimated from HapMap phase II. SNPs are
represented by diamonds and the large blue diamond is the SNP with the highest p-value.
Diamond color represents correlation with the top SNP: faint red indicates weak correlation
and brighter red indicates strong correlation. Recombination rate is plotted in the background
and known genes in the region are shown in the bottom of the plot.
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Figure 4.
Linkage Disequilibrium plot showing all SNPs with p<10−5 and intervening SNPs in the
genomic region of SCN5A and downstream. Values in the boxes are pairwise SNP correlations
(r2); box color reflects the degree of correlation. An empty, dark box indicates complete
correlation (r2 = 100%) and a clear box indicates low correlation. The LD block including most
of the associated SNPs was defined by the criteria of Gabriel et al as implemented in
Haploview24. The strongest and second strongest associated SNPs are indicated with red and
blue boxes, respectively. Correlations were calculated in the 133 most distantly related
Kosraeans (see Methods). Panel B shows haplotypes with all 19 SNPs in the region constructed
in Haploview in which each line represents one haplotype followed by its frequency on Kosrae
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and the numbers above each column correspond to the number for each SNP as given in the
LD plot. Panel C shows haplotypes of the same SNPs from the Asian populations CHB/JPT
in HapMap rel21. Haplotypes with frequencies below 0.02 were excluded.
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Table 1
Sample characteristics. Mean and standard deviation are reported for each sex and the total sample. Percentage of cases
are reported for dichotomous traits.

Female (n=1049) Male (n=702) Total (n=1751)

Age (years) 37.3 (15.3) 37.9 (17.1) 37.6 (16.1)

BMI 31.1 (6.46) 28.9 (5.71) 30.2 (6.26)

SBP (mm Hg) 110.1 (18.2) 115.3 (16.8) 112.1 (17.9)

DBP (mm Hg) 73.4 (11.5) 76.3 (11.1) 74.6 (11.4)

LDL (mmol/l) 2.47 (0.74) 2.60 (0.79) 2.5 (0.76)

HDL (mmol/l) 1.06 (0.26) 0.91 (0.22) 1.0 (0.25)

Chol (mmol/l) 3.88 (0.90) 3.88 (0.95) 3.88 (0.92)

TG (mmol/l) 0.91 (0.42) 1.08 (0.64) 0.98 (0.53)

Type 2 diabetes 16.6 % 16 % 16.3 %

Smoking 0.8 % 28.5 % 11.9 %

PR interval (ms) 164.4 (21.5) 170.1 (24.8) 166.7 (23.0)

QRS interval (ms) 97.4 (9.28) 101.0 (9.19) 98.8 (9.41)

Heart rate (beats/min) 72.1 (9.73) 66.8 (10.1) 69.9 (10.2)

P wave duration (ms) 104.2 (11.7) 107.0 (12.0) 105.3 (11.9)

PR segment (ms) 65.8 (18.7) 67.9 (20.4) 66.6 (19.4)

Abbreviations: BMI = Body Mass Index, SBP = Systolic Blood pressure, DBP = Diastolic Blood Pressure, MAP = Mean Arterial Blood Pressure, LDL
= Low Density Lipoprotein, HDL = High Density Lipoprotein, Chol = Total Cholesterol, TG = Triglycerides, FBS = Fasting Blood Sugar
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