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Summary
Homopolymeric stretches of deoxyadenosine nucleotides (A’s) on one strand of double stranded
DNA, referred to as poly(dA:dT) tracts or A-tracts, are overabundant in eukaryotic genomes. They
have unusual structural, dynamic, and mechanical properties, and may resist sharp bending. Such
unusual material properties, together with their overabundance in eukaryotes, raised the possibility
that poly(dA:dT) tracts might function in eukaryotes to influence the organization of nucleosomes
at many genomic regions. Recent genome-wide studies strongly confirm these ideas and suggest that
these tracts play major roles in chromatin organization and genome function. Here we review what
is known about poly(dA:dT) tracts and how they work.

Functional importance of poly(dA:dT) tracts in vivo
Poly(dA:dT) tracts – homopolymeric stretches of deoxyadenosine nucleotides (A’s), often
having lengths of 10–20 bp or even greater – are highly enriched in eukaryotic genomes but,
intriguingly, not in prokaryotic genomes [1], suggesting that they may have a functional role
unique to eukaryotic genomes. Indeed, studies of many individual genes showed that poly
(dA:dT) tracts are important for transcriptional regulation [**2,**3,4–6], recombination [7],
and blocking the spread of histone posttranslational modifications that are linked to
transcriptional repression [8]. An early suggestion, inspired in part by in vitro studies described
below, was that poly(dA:dT) tracts might function in vivo to facilitate gene activation by
excluding nucleosomes [**2]. A recent genome-wide analysis showed further that poly(dA:dT)
tracts are associated with and may cause nucleosome depletion at promoters, origins of DNA
replication, and 3′ ends of genes; that genes whose promoters contain poly(dA:dT) tracts tend
to exhibit less transcriptional noise; and that origins of replication that have poly(dA:dT) tracts
in their vicinity tend to have a greater likelihood of utilization per round of DNA replication
[**9].

The X-ray crystallographic structure of the nucleosome shows nucleosomal DNA to be highly
distorted and sterically occluded, thereby hindering interaction of the nucleosomal DNA with
other DNA binding proteins [10]. Thus, nucleosomal organization of DNA may have a
generally repressive effect on DNA activity [11]. If nucleosomes were excluded from poly
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(dA:dT) tracts in vivo (and from their vicinity; see below), this nucleosome exclusion would
facilitate access of other proteins to the DNA, helping to explain these functional roles of poly
(dA:dT) tracts.

Poly(dA:dT) tracts and their flanking DNA are relatively depleted of
nucleosomes in vivo

The possibility that poly(dA:dT) tracts might function in vivo to facilitate gene activation by
excluding nucleosomes [**2] focused attention on the nucleosome organization around poly
(dA:dT) tracts at many genes [**2,**3,4–7,12–16]. The results of these studies at individual
loci were conflicting, in part because some were not carried out quantitatively. Certain assays
for nucleosome occupancy can sensitively reveal the presence of nucleosome-free DNA even
if a given sequence is in fact wrapped in nucleosomes across most of the cells in the population,
while other assays have a converse sensitivity. Consequently, in a real situation, in which a
poly(dA:dT) tract is wrapped in nucleosomes in only some fraction of the cells in the
population, such analyses could report either nucleosome absence or nucleosome occupancy,
depending simply on which kind of experiment was carried out. Thus, the real in vivo
nucleosome occupancy over poly(dA:dT) tracts remained unclear.

Recently, quantitative genome-wide analyses establish that poly(dA:dT) tracts are, on average,
relatively depleted of nucleosomes in vivo [**9,**17,18–21]. These studies reveal that
nucleosomes are depleted not just over perfect poly(dA:dT) tracts, but also over imperfect
tracts containing multiple basepair substitutions or containing clusters of shorter tracts that
alternate between strands [**9]. The magnitude of nucleosome depletion increases with both
the length and the perfection of the poly(dA:dT) tracts (Figure 1). The fold depletion over a
perfect or imperfect poly(dA:dT) tract can be predicted from the sequence itself, and can be
surprisingly large. In the yeast genome, there are hundreds of poly(dA:dT) tracts with relative
nucleosome depletions of 10-fold or greater [**9].

The nucleosome depletion over poly(dA:dT) tracts extends for considerable distances also into
the flanking DNA on both sides of the poly(dA:dT) tract. The depletion is maximal over the
poly(dA:dT) tract, but (on average) remains significant over much greater distances, ±100–
150 bp (Figure 2), comparable to the length of the nucleosomal DNA itself. This longer-range
nucleosome excluding behavior arises as a consequence of configurational statistics: there are
a smaller number of configurations in which a nucleosome can be located nearby to a
nucleosome excluding region, compared to regions that are far from such constraints [**22].

In summary, nucleosomes are, on average, strongly depleted from poly(dA:dT) tracts in vivo,
and this depletion extends for considerable distances into the flanking DNA. Since
nucleosomes occlude their wrapped DNA from interacting with many other proteins, decreased
nucleosome occupancy over such an extended DNA region will have the effect of increasing
the accessibility of all of the DNA in that region – both the poly(dA:dT) tract itself and its
flanking DNA – to other DNA binding proteins. Such enhanced DNA accessibility could
explain many of the in vivo functions that have been associated with poly(dA:dT) tracts.

Nucleosome depletion over poly(dA:dT) tracts results chiefly from the tracts’
intrinsically lower nucleosome affinity

What causes the dramatic nucleosome depletion over poly(dA:dT) tracts? The simplest
hypothesis, that the nucleosome depletion is due to competition with another protein that binds
specifically to poly(dA:dT) tracts, is ruled out. To date, a single protein in S. cerevisiae, called
Datin (Dat1p), which recognizes poly(dA:dT) tracts of length 9 bp or greater, has been
identified [23]. Datin may be the only DNA binding protein in S. cerevisiae that binds poly
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(dA:dT) tracts, since yeast cell extracts in a Datin deletion do not exhibit any detectable protein
binding to poly(dA:dT) tracts. Many of the studies that revealed functional roles for poly
(dA:dT) tracts specifically tested the role of Datin binding by deleting the DAT1 gene [**3,
5–7,15,23]. However, Datin binding was found to be important for transcriptional activation
in only one case [4]. These studies prove that Datin binding is not responsible for the
transcription activating function of most poly(dA:dT) tracts or for the nucleosome depletion
over the poly(dA:dT) tracts.

Another possibility is that the binding of transcription factors to sites near the poly(dA:dT)
tracts causes nucleosome depletion over poly(dA:dT) tracts. Indeed, such an effect is to be
expected on thermodynamic grounds [**22]; the question is the relative significance of this
effect. If transcription factor binding to sites flanking poly(dA:dT) tracts were a dominant cause
of nucleosome depletion over the poly(dA:dT) tracts themselves, then one would expect similar
nucleosome depletion over factor binding sites regardless of whether or not they are close to
poly(dA:dT) tracts. However, this is not the case: nucleosomes are strongly depleted over factor
binding sites that are near poly(dA:dT) tracts, but only weakly depleted over factor sites that
are not near poly(dA:dT) tracts [**9]. Conversely, the extent of nucleosome depletion over
poly(dA:dT) tracts is similar regardless of whether the poly(dA:dT) tracts are near to binding
sites for transcription factors, or not. Thus, binding by transcription factors is not the major
cause of nucleosome depletion over poly(dA:dT) tracts in vivo.

A remaining alternative is that poly(dA:dT) tracts are relatively nucleosome-depleted in vivo
because the tracts themselves intrinsically disfavor nucleosome formation. This possibility is
supported by both in vivo and in vitro studies at specific genes. The most important of the in
vivo experiments include: In the yeast HIS3 promoter, a poly(dA:dT) tract, but not a Gal4
protein binding site, can induce transcription by bacteriophage T7 RNA polymerase,
suggesting that the poly(dA:dT) tract acts by exclusion of a repressive nucleosome and not by
inducing interactions with the basal transcriptional machinery [14]. At HIS3, RPS28a, and
BAR1, replacing the poly(dA:dT) tract by poly (dC:dG) resulted in similar transcriptional
induction, with longer poly(dA:dT) tracts resulting in greater transcriptional induction,
consistent with increasing nucleosome exclusion but less-so with a role for a sequence-specific
DNA binding protein [**3,5]. One apparent contradictory result suggested that a poly(dA:dT)
tract in the DED1 promoter cannot function only through its nucleosome exclusion effects
[24]. However, since that poly(dA:dT) tract has 7 non-A nucleotides (in a 38 bp-long tract), it
may well contain a binding site for an additional site-specific DNA binding activity; and in
any case, that finding does not contradict a possible additional role for an intrinsic nucleosome
disfavoring activity for that imperfect poly(dA:dT) tract in vivo. Thus, the consensus of studies
of specific genes support a role for poly(dA:dT) tracts in causing a relative nucleosome
depletion in vivo, with the resulting nucleosome depletion facilitating the binding of factors to
specific DNA target sites.

Similarly, studies in vitro establish that poly(dA:dT) tracts intrinsically disfavor nucleosome
organization. First, however, contrary to some claims, poly(dA:dT) tracts are capable of being
incorporated into nucleosomes [25–29]. Any remaining question about this was definitively
settled by the determination of a high resolution X-ray crystallographic structure of a
nucleosome containing a 16 bp-long perfect poly(dA:dT) tract [30]. Small structural
differences caused by the poly(dA:dT) tract are detectable, but the overall wrapping of the
nucleosome DNA is essentially unchanged. It follows that any effects of poly(dA:dT) tracts
on nucleosome occupancy or affinity will necessarily be quantitative in nature, not absolute.
Only studies that are sensitive to quantitative differences in occupancy or affinity can shed
light on such questions; and early such quantitative studies showed that poly(dA:dT) tracts do
indeed disfavor nucleosome formation [31,32], with a magnitude that increases with the length
of the poly(dA:dT) tract [25,26]. More recent studies confirm that even a relatively short (16
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bp) poly(dA:dT) tract significantly decreases nucleosome affinity [33]; many copies of a 4–6
bp poly(dA:dT) tract greatly reduced affinity [34]; and poly(dA:dT) tract-containing DNAs
present in several different yeast promoters disfavor nucleosome incorporation [**9] by an
amount comparable to that of other non-natural DNAs that were selected in vitro for their
ability to resist nucleosome formation [35]. These findings were strongly confirmed and
extended in a recent genome-wide analysis [**36]: the distribution of nucleosomes
reconstituted on genomic DNA in vitro closely resembled the in vivo nucleosome distribution,
with significant depletion of nucleosomes from over poly(dA:dT) tracts.

In summary, nucleosomes are on average significantly depleted from poly(dA:dT) tracts in
vivo. This depletion in most cases is not due to competition with Datin binding specifically to
the poly(dA:dT) tracts; and, while competition with other proteins binding to specific target
sites located nearby the poly(dA:dT) tracts can contribute to the observed nucleosome
depletion, this is not the dominant cause. Instead, the observed nucleosome depletion is due
chiefly to nucleosomes intrinsically disfavoring occupancy over the poly(dA:dT) tracts; and
this disfavoring is quantitative, not absolute.

Poly(dA:dT) tracts have unusual structural and dynamic properties
At the level of detailed molecular structure and mechanics, why is it that nucleosomes
intrinsically disfavor wrapping poly(dA:dT) tracts relative to most other DNA sequences? The
answer is not known definitively; but a growing body of studies points to a unique cooperative
structure of poly(dA:dT) tracts, which in turn is associated with, and possibly due to, a unique
hydration structure of the poly(dA:dT) tracts. Deforming this unique poly(dA:dT) tract
structure by forcing it into a nucleosome conformation may be much more energetically costly
than are comparable deformations of generic DNA sequences.

An early hypothesis was that AA dinucleotide steps might be intrinsically stiff compared to
other dinucleotide steps, and thus poly(dA:dT) tracts might have an exaggerated stiffness,
maximally-disfavoring the deformations required for nucleosome formation. However,
analyses of newer, larger, databases of X-ray crystallographic structures of DNA and protein-
DNA complexes, in which the variance among configurations in independent structures may
serve as a proxy for basepair step flexibility [37], and recent molecular mechanics calculations
[38,39], do not support a high intrinsic stiffness of the AA dinucleotide step. Thus, any intrinsic
resistance of poly(dA:dT) tracts to nucleosome formation is not attributable to special
mechanics of AA dinucleotides.

Several lines of evidence suggest instead that the structural, dynamic, and mechanical
properties of poly(dA:dT) tracts may differ fundamentally from the corresponding properties
of individual AA dinucleotides. Compared to generic sequence DNA, poly(dA:dT) has a
shorter helical repeat [40,41], a narrow minor groove, a distinct spine of hydration within the
minor grove, and maximal overlap of the bases separately within each strand [42,43]. The
crystallographic studies [42,43] further suggested that poly(dA:dT) tracts also exhibit an
unusual hydrogen bonding pattern (“bifurcated H-bonds”), in which amino groups on A bases
formed hydrogen bonds both with their Watson-Crick partner and also to the O4 atom of an
adjacent T base on the opposite strand. Such cross-strand H-bonds could potentially stiffen the
DNA; however subsequent higher resolution studies show the shortest (presumably, tightest)
such bonds to be at the long limit for a significant H-bond [**44], so whether such bonds truly
exist, and how much they might contribute to special properties of poly(dA:dT) tracts, is
unclear.

Moreover, the unusual structural properties of poly(dA:dT) grow in cooperatively with length
of the poly(dA:dT) tract, and are accompanied by unusual dynamic properties. Hydroxyl
radical footprinting studies reveal a progressive decrease in reactivity with increasing distance
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inside poly(dA:dT) tracts, for tracts of length 4 bp or greater (also for A2T2), implying the
existence of a distinct, length-dependent, structural state for the poly(dA:dT) tract [45]. The
detailed cleavage pattern further suggested that the minor groove width decreased
progressively with distance inside the poly(dA:dT) tract, a conclusion that is strongly upheld
in atomic resolution crystallographic structures of A2T2- and A3T3-containing DNAs [**44,
46,47]. Correspondingly, NMR measurements of imino proton exchange rates reveal
extraordinarily long basepair lifetimes (high lifetimes) for T residues located 4 or more
nucleotides inside a poly(dA:dT) tract of length 4 bp or greater (again, also for A2T2 and
A3T3 tracts), with the basepair lifetimes increasing with depth inside the tract [48–50]. These
results imply that not only do the poly(dA:dT) tracts possess unusual length-dependent
structures, but these structures have corresponding unusual dynamics, which could well
translate into unusual mechanical properties – including, potentially, into a relatively great
resistance to the bending and twisting deformations that are characteristic of DNA in the
nucleosome [10]. Other evidence for cooperative formation of a distinctive DNA structure with
increasing length of a poly(dA:dT) tract includes an abrupt change in gel mobility for tracts of
length 4 bp or greater [51]; a remarkable cooperative premelting transition in DNAs having
several poly(dA:dT) tracts of length 5 bp [52]; and structural discontinuities including local
DNA bending within poly(dA:dT) tract and at the two ends where the tract connects to arbitrary
DNA sequence [53,54].

In summary, there is overwhelming evidence from diverse experiments that poly(dA:dT) tracts
of lengths of 4 bp or greater adopt a novel cooperative state whose structures, dynamics, and
thermodynamic properties differ fundamentally from those of generic sequence DNA. But why
does this state disfavor nucleosome incorporation?

The simplest possibility, mentioned above in connection with the results of NMR studies, is
that the unique length-dependent structure of poly(dA:dT) tracts might be uniquely resistant
to the deformation(s) required for nucleosome formation. Imposing such deformations on a
poly(dA:dT) tract by incorporating it into a nucleosome would then incur a particularly large
cost in free energy, producing a nucleosome with an intrinsically reduced stability [30], or,
equivalently, causing the nucleosome to preferentially occupy locations on the DNA that
exclude the poly(dA:dT) tract, as observed in the many in vitro nucleosome reconstitution
studies mentioned above.

Structural studies provide further evidence that is suggestive of such a picture. The atomic
resolution crystallographic studies of DNAs containing the poly(dA:dT) tracts A2T2 and
A3T3 [**44,46] and NMR solution studies [55] reveal highly ordered spines of hydration, at
least four water-layers deep for A3T3 (Figure 3), restricted to the narrowed minor groove
regions of the tracts themselves. In certain cases specific high occupancy and/or long lifetime
bound cations can also be detected [46,56]. The existence of such highly ordered waters (and
localized cations when present) strongly suggests that they must be held in place by favorable
energetic interactions. Similarly, the long bound-state lifetimes of these localized waters are
analogous to those of water molecules in the interiors of globular proteins, which are integral
parts of the proteins’ structure [55], further suggestive of a net favorable energetic interaction.
The extensive H-bonding of these waters with both DNA and each other, including between
the successive water layers, would be expected to contribute to a length-dependent cooperative
formation of the poly(dA:dT) tract’s special structure.

The DNA structural deformations required for nucleosome formation could likely disrupt such
energetically favorable water- or specific cation-DNA interactions, thereby causing the poly
(dA:dT) tracts to have a decreased affinity (less-negative free energy change) for nucleosome
formation. Consistent with this view, a model for the sequence-dependent free energy of DNA
wrapping in nucleosomes suggests that the curvature-dependent DNA hydration changes
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coupled to sharp DNA bending plays a significant role in the energetics of nucleosome
formation [57].

All of these facts – together with the experimentally proven intrinsic resistance of poly(dA:dT)
tracts to nucleosome incorporation in vitro – suggest that poly(dA:dT) tracts intrinsically resist
the structural deformations required for nucleosome formation, relative to generic DNA
sequences. But is this true? Taken at face value, the available literature does not support this
conclusion: some studies suggest that poly(dA:dT) tracts are not more-resistant to bending and
twisting, but less-so, than are other simple sequences [58], while other studies suggest
stiffnesses that are within the normal range [59,60]. However, these experiments are somewhat
indirect, moreover, they monitor DNA flexibility in situations in which the DNA is rather less
distorted than is DNA in nucleosomes. Thus, the requirements of nucleosome organization
would greatly exaggerate the effects of what might otherwise be only small differences in the
mechanics of differing DNA sequences, such that the differences are not detectable with
presently available methods.

Conclusions
In summary, poly(dA:dT) tracts strongly resist incorporation into nucleosomes in vitro, and,
if incorporated into nucleosomes, reduce the stability of those nucleosomes. This intrinsic
resistance to incorporation into nucleosomes may be due to an intrinsic resistance of the poly
(dA:dT) tracts to adopting the substantially distorted structures required by the nucleosome,
although idea this remains unproven. Whatever the physical mechanism for their preferential
avoidance of nucleosome incorporation, poly(dA:dT) tracts are dominant determinants of the
in vivo nucleosome organization of eukaryotic genomes, and strongly influence genome
function, including by controlling the accessibility of other nearby specific DNA target sites
to their cognate regulatory proteins. Better ways of analyzing the sequence-dependent
mechanical properties of DNA are plainly needed.
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Figure 1. Nucleosome are relatively depleted over poly(dA:dT) tracts in vivo
Shown is the combined nucleosome fold depletion over all poly(dA:dT) tracts of length k, for
k = 5,6,7,…, and for tracts with exactly 0, 2, 4, or 6 base substitutions. Each graph is trimmed
at a length K at which there are less than 10 such tracts in the S. cerevisiae genome, and the
fold depletion at this final point is computed over all elements whose length is at least K. The
number of underlying elements at various points in the graph is indicated (N). Figure adapted
from ref. [**9].
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Figure 2. Poly(dA:dT) tracts create larger nucleosome-depleted regions
(a) Shown is a simple example focusing only on the immediate neighborhood of the boundary.
All (five) possible nucleosome configurations are illustrated, in which a nucleosome (cyan
ovals) can be placed within five basepairs of the boundary (blue triangle). The number and set
of nucleosome configurations occupying each of the five basepairs immediately adjacent to
the boundary are shown in the graph below. If all configurations are equally likely, then
basepairs closer to the poly(dA:dT) tract will exhibit lower nucleosome occupancy simply
because fewer nucleosome configurations cover those basepairs [22]. (b) Schematic showing
that nucleosome depletion caused by a poly(dA:dT) tract is maximal over the tract itself, but
extends for considerable distances in either direction. Thus specific factor DNA binding sites
located nearby to a poly(dA:dT) tract will have relatively enhanced accessibility compared to
factor sites located far from a poly(dA:dT) tract, facilitating binding of the factor. Panel (a)
adapted from ref. [**9].
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Figure 3. Narrow minor groove and multilayer spine of hydration in a poly(dA:dT) tract
Shown is a representation of the atomic resolution X-ray crystallographic structure of [d
(CGCAAATTTGCG)]2 [**44]. The DNA backbones are shown as yellow curves, with the
bases shown in a partial-charge-coded stick representation. The narrow minor groove of the
A3T3 stretch has many high occupancy water molecules, 4 layers deep, shown here as spheres,
color coded according to their layer from innermost to outermost as cyan, purple, blue, and
red, respectively. The multiple layers, extensive hydrogen bonding, and high occupancy of
these waters all suggest that they may have strongly favorable energetic interactions with
themselves and the DNA. Figure kindly provided by Prof. L.D. Williams (Georgia Tech.).
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