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Abstract
The field of biomaterial design has begun to focus upon methods by which materials can modulate
immune response. While certain approaches appear promising, they are limited to isolated facets of
inflammation. It is well documented that both bacteria and viruses have highly developed methods
for evading the immune system, providing impetus for a more biomimetic approach to material
design. This review presents the immune evasive tactics employed by viruses and bacteria and offers
suggestions for future directions in applying these principles to biomaterial design.
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1. Introduction
1.1. Innate and Adaptive Immunity

A major clinical concern with medical implants is the threat of exacerbated inflammation in
the surrounding tissue. Whether acute or chronic in nature, such inflammation compromises
both patient well being as well as the effective life of the implant [1]. These inflammatory
events are coordinated by the immune system, whose role it is to recognize self from non-self
and dispose of non-self foreign bodies in a controlled and multi-faceted manner [2]. Once the
body begins to interrogate the foreign object, the immune system will seek to isolate the object
through a series of layered defenses. An excellent review by James Anderson provides more
in depth assessment of the immune response to biomaterials [1].

Briefly, immune defenses are classified into innate immunity and adaptive immunity. Innate
immunity is considered the first line of defense from a foreign object as it reacts to the object
in a non-specific manner that is comprised of four distinctive types of non-specific barriers
[2].
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1. Anatomic Barriers: Skin and mucous membranes provide a mechanical barrier to the
influx of microbes and pathogens, as well as environmental barriers that can inhibit
growth of pathogens.

2. Physiologic Barriers: Physiologic conditions like the average body temperature or
low pH in the digestive tract kill most foreign microorganisms.

3. Phagocytic Barriers: Specialized cells such as neutrophils, macrophages and
dendritic cells engulf whole cells and foreign macromolecules.

4. Inflammatory Barriers: Tissue damage induces leakage of exudate from engorged
vasculature into the damaged region, leading to the directed migration of
inflammatory cells to promote phagocytosis of foreign material.

If a foreign object or pathogen cannot be neutralized by the innate immune system, the adaptive
immune system will be triggered to combat the object. As the name implies, the adaptive
immune system reacts to pathogens in a more specific manner than the generic response of the
innate immune system. The major process governing adaptive immunity is the interaction
between lymphocytes and antigen-presenting cells. Lymphocytes are generated in bone
marrow during hematopoiesis, and circulate both the blood and lymphatic systems. Two major
classes of lymphocytes involved in adaptive immunity are B cells and T cells.

B lymphocytes express membrane-bound antigen-binding motifs that are unique to a specific
antigen. When a naïve B lymphocyte encounters an antigen that matches its surface-bound
antibody, the lymphocyte will divide rapidly into either memory B lymphocytes or effector B
lymphocytes. Memory B lymphocytes have a longer lifespan than naïve B lymphocytes and
possess the same surface-bound antibody to bind to an antigen with high specificity. Effector
B lymphocytes produce the antibody in a form that may be secreted. This antibody can then
bind to an antigen, facilitating its clearance from the body.

Similar to B lymphocytes, T lymphocytes arise in bone marrow; however they migrate to the
thymus gland to mature. Mature T lymphocytes express a unique, surface-bound antigenic
binding protein called a T-cell receptor. The role of a T lymphocyte will vary based upon its
T-cell receptor. Those T lymphocytes expressing CD4 receptors generally function as T helper
cells (CD+4) and interact with anti-presenting cells, while those expressing CD8 receptors are
T cytotoxic cells (CD+8) and interact with all cell types. Unlike B cells, T lymphocytes cannot
recognize free antigen. Instead, T-cell receptors can only recognize antigen that is bound to
cell membrane proteins called major histocompatibility complex (MHC) molecules. CD4-
bearing T-lymphocytes interact with class II MHC molecules, which are expressed only by
antigen-presenting cells. Antigen-presenting cells, such as macrophages, dendritic cells, and
B cells, will present processed antigen in the form of antigenic peptides and, once bound to a
T-cell receptor, will provide a costimulatory signal to activate the T cell. Once a naïve T
lymphocyte encounters an antigen/MHC complex on a cell surface, the T cell will proliferate
and its progeny will differentiate into memory T cells and effector T cells. Activated T-helper
cells will secrete factors that coordinate activation of B cells, macrophages and other cells
involved in inflammation. T-cytotoxic cells will differentiate into cytotoxic T lymphocytes
that will exhibit cytotoxic activity [2].

The process by which naïve lymphocytes will rapidly multiply once bound to a specific antigen
is called clonal selection. An effect of clonal selection is immunologic memory since many
daughter lymphocytes, such as plasma and memory cells, have a longer life span than their
naïve parents. With more daughter lymphocytes in the body, a later contact of a lymphocyte
with an antigen will produce a more rapid and heightened secondary response relative to the
primary response of the naïve lymphocytes. This specificity thus provides for stronger and
quicker responses each time lymphocytes are exposed to those pathogens [2].

Novak et al. Page 2

Biomaterials. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Innate and adaptive immunity however do not operate independently of one another. Innate
immune cells, like macrophages, release signaling molecules that can stimulate initiation of
the adaptive immune response. There is also feedback from the adaptive to the innate immune
system in the way of cytokine secretion that may activate differentiation of monocytes into
macrophages for an increased phagocytic presence at the site of inflammation [2].

1.2. Overview of Cyotkines
The inflammatory and phagocytic barriers of the innate and adaptive immune systems are
coordinated by the secretion of cytokines, which are “molecular traffic lights,” that regulate
the pace and extent of the immune reaction [3]. Cytokines are short-lived, small (10–30kDa)
glycoproteins produced de novo in response to an immune stimulus to mediate and regulate
immunity, inflammation, cell growth and differentiation, and hematopoiesis. They are secreted
predominantly by lymphocytes, monocytes and macrophages, but act on a broad array of cells
by binding to specific membrane receptors. Binding to receptors on cell membranes triggers
second messenger complexes that carry the signal to the nucleus to alter gene expression.
Cellular responses to cytokine binding include up- or down-regulation of membrane protein
expression, cell growth/proliferation/differentiation, and secretion of effector molecules.
Cytokines as a class are potent (work at femto-nanomolar concentrations), redundant (multiple
cytokines elicit same response), pleiotropic (single cytokine elicits multiple responses), and
act locally between neighboring cells. These factors can also act synergistically (to amplify)
or antagonistically (to attenuate) a biological response. A more definitive reference on
cytokines has been published by Thomson and Lotze [4].

Briefly, several cytokines are characterized by their predominantly pro-inflammatory or anti-
inflammatory functions [5,6]. IL-1 and TNF-α are the prototypical “alarm” cytokines because
of their ubiquity and early and intense response to the invading agents such as bacterium or
toxin. TNF- α and IL-1 can work separately or synergistically to drive biological activities in
a wide number of cell types (e.g., B and T lymphocytes, monocytes, macrophages, fibroblasts,
endothelial cells, smooth muscle cells, astrocytes, microglia), including induction of cell
mediator expression (e.g., cytokines, chemokines, immunoglobulins, lytic enzymes,
prostaglandins, antigen presentation) that chemoattract leukocytes and monocytes, promote B
and T cell proliferation, increase vascular permeability and angiogenesis, promote thrombus
formation, increase cell adhesion, and induce cell lysis. IL-10 and the isoforms of TGF-β on
the other hand are commonly identified as anti-inflammatory and/or immuno-suppressive
cytokines. IL-10 inhibits the synthesis of IL-1, IL-2, IL-6, IL-12, IFN-γ, TNF-α and
immunoglobulins, deactivates macrophages, and down regulates cellular immunity and the
presentation of class II major histocompatibility complex antigens. The isoform TGF-β inhibits
the growth and proliferation of a number of cell types (e.g., endothelial cells, fibroblasts,
neuronal cells, epithelial cells, smooth muscle cells, chrondrocytes), deactivates macrophages,
antagonizes growth factors (e.g., EGF, PDGF, α/βFGF), down regulates immunoglobulin
synthesis, and inhibits proliferation of lymphocytes.

1.3. Overview of Macrophages
When a biomaterial is implanted in the body, the inflammatory response is initiated by injury
of the vascularized tissue proximal to the site of implantation. This injury allows fluid, proteins
and cells, such as neutrophils and monocytes, from the vasculature to escape to the site of
implantation through a process called exudation. The surrounding chemical composition of the
exudate will induce differentiation of blood borne monocytes into macrophages of different
phenotypes that may attempt to phagocytose the foreign body as well as release chemokines,
reactive oxygen species, growth factors, and cytokines [1]. The released factors in turn recruit
a number of cell types such as monocytes, macrophages, fibroblasts and epithelial cells to the
site of injury [1].
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The classic phagocytic activated macrophage, the M1 phenotype is elicited by cytokines
including interferon-gamma (IFN-γ) and tumor necrosis factor (TNF) as well as by Gram-
negative bacterial cell wall lipopolysaccharides (LPS) (Figure 1). M1 macrophages generate
large amounts of reactive oxygen species and inflammatory cytokines, which all serve to
augment killing of phagocytosed intracellular parasites and local cell-mediated immune
response (the Th1 response). While M1 macrophages are critical for the early response to injury
and infection, prolonged or aberrant activation of M1 macrophages can also result in undesired
tissue destruction and chronic inflammation [7].

The M2 macrophage phenotype describes macrophages in a broad category that encompasses
macrophages activated in a manner different than the classic M1 macrophages, and includes
macrophages activated by IL-4, IL-13, IL-10, immune complexes, and glucocorticoids [7–9].
M2 macrophages promote angiogenesis, tissue remodeling, parasite encapsulation, and can act
as immunoregulators by suppressing the inflammatory response (Figure 1). While M2
macrophages can be activated via different mechanisms, they are generally characterized by
low levels of IL-12 and IL-23 secretion along with high levels of IL-10 secretion. M1
macrophages can be distinguished from M2 macrophages by the expression of distinct sets of
chemokines and chemokine receptors [9]. It has been proposed that polarization of
macrophages towards the M2 form can create an environment that is favorable towards wound
healing, tissue regeneration and implantable biomaterials [10]. Consequently, the identification
of pathways that can be modified to regulate macrophages polarization will be extremely
beneficial for harnessing inflammation in pathologic states.

If the recruited M1 macrophages are unable to engulf an implant, they may release factors that
will induce them to coalesce to form foreign body giant cells (FBGC) in an attempt to better
engulf the implant [1]. Research by McNally et al., has shown that FBGC will form in the
presence of interleukin-4 (IL-4) and may be enhanced with the addition of granulocyte
macrophage colony stimulating factor (GM-CSF) [11]. The aggregation of FBGCs as well as
the collagen synthesized by fibroblasts in the area will result in the formation of a fibrous
encapsulation around the implant. The resulting capsule will surround the implant and isolate
it from the adjacent tissue environment, thereby reducing their positive effects. Implant fibrous
encapsulation has been shown to occur in virtually all tissues [12–14], except the brain and
central nervous system, where glial scars will form in order to maintain the blood brain barrier
and prevent lymphocyte infiltration [15]. In glucose sensors, this consequence nullifies the
ability of the probe to acquire analyte measurements by inhibiting analyte transport to the
sensor. In dynamic joints like the hip, a fibrous capsule limits joint range of motion, as well as
integration into boney tissue.

1.4 Biomimetic immune evasive biomaterials
A great deal of research has addressed the design of immune modulating materials in an effort
to reduce long-term inflammatory effects that may compromise the useful life of an implant.
A common mode for the modulation of the immune response has been to mediate the release
of pro-inflammatory cytokines or promote the release of pro-wound healing cytokines like
IL-10, TGF-β and IL-1ra, thereby decreasing the severity and length of inflammatory response
of the body to an implant while encouraging the healing of the area of interest. Current strategies
for the mediation of inflammatory immune responses are listed in Table 1 and are still in the
early stages of development. While these methods show promise, they are relatively
unsophisticated approaches towards modulating inflammation.

Nature, on the other hand, has evolved immune evasive strategies over millennia that may point
us in a new, biomimetic direction for combating inflammation. Specifically, both viruses and
bacteria have evolved strategies for evading the immune system [16–19] This review examines
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aspects of these bodies that effectively elude the immune system and proposes a novel paradigm
for the design of inflammation-evading biomaterials that can mimick these strategies.

2. Viral Immune Evasion
Viruses are biological vehicles that can infect both prokaryotic and eukaryotic cells by inserting
either DNA or RNA into the hosts, thereby inducing the host’s cellular machinery to replicate
the viral genetic material. In order to infect cells whilst minimizing the prospect of an immune
response, viruses have evolved elegant methods of circumventing the numerous mechanisms
of immune reaction.

2.1 Surface Interactions between Virus and Host
2.1.1. Viral Camouflage—The first event that occurs between viral particles and host cells
is contact of the virus with the cell surface. Initial recognition of non-self by an immune cell
would typically induce inflammation at the site of identification [1]. Unlike most foreign
implants that stimulate inflammatory immune responses, viruses use the opportunity for
surface interaction with the host to stealthfully dodge immune response through a variety of
mechanisms. Individual virus particles, known as virions, often can display host-derived
proteins on their surfaces, thus confusing the host into identifying the viral particle as a host
cell [20]. This technique of viral surface camouflage has been most documented in relation to
the Human Immunodeficiency Virus Type-1 (HIV-1) [20,21]. HIV-1 is particularly adept at
incorporating host surface-derived molecules onto its surface. Molecules like Human
Leukocyte Antigens I and II (HLA I–II), Intracellular Adhesion Molecule I and Lymphocyte-
Function Antigen I are expressed on the surface of the HIV molecule as a result of previous
interactions with a host cell (Figure 2) [21]. Expression of these transmembrane proteins
provides not only a decreased immune response, but also increased specificity and affinity for
binding between the virion and its target cell.

2.1.2. Viral Surface Secretions—Another method for viruses to elude the immune system
is to modulate the immune response via the secretion of immunomodulatory proteins at either
the infected cell surface or the viral surface [19]. Invasion of the immune system by foreign
objects or implants induces the secretion of cytokines to direct the extent and pace of the
immune response. The same responses may be seen upon viral invasion of a host organism.
Cytokine classes like interferons (IFN) and tumor necrosis factor (TNF) can induce anti-viral
states in infected regions as well as apoptosis in infected cells [22]. T-lymphocytes may also
be activated by cytokine secretion to combat viral infection via the killing of infected cells
[22]. Because cytokine and chemokine gradients are necessary in the activation of numerous
signaling pathways associated with immune response, the viral control of inflammatory
cytokine production is a key method for viral immune evasion [23,24]. This
immunomodulatory effect is achieved via the secretion of four different classes of modulating
proteins from an infected host.

2.1.2.1. Cytokine Inhibitors: Viruses can affect the release of proteins that can inhibit the
formation of pro-inflammatory cytokines within host cells. Cytokine inhibitors expressed by
either viruses or virus-infected cells inhibit cytokine function by either attenuating cytokine
production or reducing cytokine effector function [22]. One example of the former occurs in
the cowpox virus. It encodes for a cytokine response modifier protein (CrmA), which prevents
the cleavage of pro-IL-1β to mature IL-1β via attenuation of the production of the enzyme
caspase-1 (Figure 3a) [22]. Similarly, African swine fever virus encodes for an inhibiting
homologue of nuclear factor κB (NF-κB). When this viral protein binds to sites that normally
bind NF-κB, the expression of all cytokines mediated by the NF-κB pathway is inhibited
[22]. Modification of cytokine effector functions is found in mechanisms that can block
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apoptosis triggered by IFN or TNF. Epstein-Barr virus (EBV) encodes for a cytokine effector
modifier called latent membrane protein 1 (LMP1). This protein modifies the effector functions
of TNF cytokines by recruiting the TNF receptor signal transduction pathway to induce virus
replication instead of apoptosis [22].

2.1.2.2. Cytokine Homologues (Virokines): Viruses generate viral homologues within hosts
of pro-wound healing cytokines, anti-inflammatory cytokines, and chemokines in order to
modulate immune response. Many viruses such as herpesvirus and poxvirus avoid the immune
system through the secretion of a number of evasive factors. These viruses promote the
expression of molecules that will mimic cytokine function (virokines) as well as cytokine
receptor function (viroreceptors) [19,22,23]. Such proteins are found almost exclusively in
herpesvirus and poxvirus strains, as only these types of viruses have a genome large enough
to support the sequence encoding for the proteins (100–200 genes). Herpesvirus
immunomodulatory proteins are cytokine homologues while poxvirus immunomodulatory
proteins are cytokine receptor homologues [22]. Epstein-Barr virus (EBV) as well as the Orf
virus are known to induce the production of a homologue to IL-10, known as vIL-10 (Figure
3b) [25,26]. This homologue is able to downregulate immune response through the decreased
production of pro-inflammatory cytokines. Similar IL-10 homologues have been reported in
cytomegaloviruses, where the homolog has been shown to bind competitively to IL-10
receptors despite sharing only 27% homology with cellular IL-10 [27,28]. The Orf virus also
encodes for a viral homologue of vascular endothelial growth factor (VEGF), known as vVEGF
[29]. vVEGF is able to bind to the VEGF receptor VEGFR2 and induce pro-wound healing
effects like angiogenesis in the surrounding tissue. Another example of viral proteins that act
as cytokine homologues is in the human myxoma virus. This virus secretes a chemokine
homologue called MT-7 that has similar binding specificity as monocyte chemotactic protein
1 (MCP-1) to chemokine-specific receptors. This protein can then inhibit chemokine effects
by interacting with the conserved extracellular glycosaminoglycan binding domains of
chemokines, thereby interfering with the formation of extracellular ligand gradients necessary
for directed cell chemotaxis [16,30,31].

2.1.2.3. Cytokine Receptor Homologues (Viroreceptors): Viruses generate proteins within
hosts that will bind competitively to binding motifs on a cytokine. Cytokine receptor
homologues act on the principal that if the receptors can be competitively bound before
reaching the receptor region, the conformational change caused from binding to the receptor
will render the new cytokine/homologue complex unable to bind to the cell surface receptors,
thereby inhibiting downstream signaling pathways involved in the process of inflammation
(Figure 3c). An example of this behavior can be also seen from the myxoma virus, which can
secrete proteins from an infected cell to bind to the receptor binding domain on the surface of
the chemokine, thus forming a complex with a conformation that is unsuited for binding at the
chemokine surface receptor [16, 30, 31]. Soluble cytokine receptors have been documented
for the receptors of the TNF family, IL-1β, and IFN-γ [32–34]. By binding with high specificity
to cytokines, these virus-based soluble cytokine receptors provide an additional avenue for
viral immune evasion, allowing for immune latency in the target area that will allow the viruses
to infect surrounding cells. A very useful table listing a number of viral cytokines and
chemokines as well as viral cytokine and chemokine binding proteins may be found in a review
by Alcami in Nature Immunology [22].

2.1.2.4. Complement Inhibitors: Viruses create homologues of complementary regulatory
proteins on the surfaces of infected cells to block complement activation and elimination of
infected cells. Briefly, the complement system is a non-specific host defense mechanism that
is the major effector of the humoral branch of the immune system. The system consists of small
proteins in the blood that remain inactive until activated by a stimulus. Complement can be
activated by either the innate immune system’s recognition of pathogen-associated molecular
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patterns (PAMPs) or the antibodies in the adaptive system binding to foreign antigens. Once
activated, the complement system can perform a host of functions, including lysis of cells,
bacteria and virus, opsonization to promote phagocytosis, triggering cell function through
secretion of cytokines, and clearance of circulating immune complexes by cells in the liver or
spleen [2]. Viruses like human cytomegalovirus (HCMV) and vaccinia virus (VV) incorporate
host derived cellular surface factors to protect against complement-mediated lysis (Figure 3d)
[23], [35]. Each of these viruses display a host protein called CD59 that will protect host cells
from complement lysis, and therefore protect the virus from complement lysis.

Co-evolution of viruses and host organisms has brought about both improvements in the host
system for battling the onset of various viruses as well as improvements in the ability of viruses
to evade the immune system. Through both the stealth tactics of camouflage along with
homologue secretion, viruses have become the ultimate saboteurs of the immune system, often
using the immune system’s own machinery against itself.

3. Bacterial Immune Evasion
Once bacteria have developed a parasitic relationship with a host, they are classified as
pathogens. As causative agents of disease like tuberculosis, tetanus, meningitis and typhoid
fever, bacteria have also become efficient pathogenic vehicles. Unlike viruses, bacteria have
their own secretory pathways, allowing for evasive schemes that are not necessarily reliant on
the machinery of host cells [19]. The evasion and resistance of bacteria to outside forces has
been well documented in the case of bacteria evolving antibiotic resistance after successive
generations of treatment by the same antibiotic strains [36,37]. Much like viruses, the majority
of bacterial immune evasion occurs due to surface interactions with a host. More complete
reviews of bacterial immune evasion have been published by Foster [38] and Costerton and
Stewart [39].

3.1 Suspended bacterial evasive maneuvers
The primary defense against infection is the innate immunity provided by neutrophils,
macrophages, and dendritic cells. However, Staphylococcus aureus has the ability to thwart
neutrophils and macrophages by (a) inhibiting chemotaxis (by blocking formylated peptide
recognition, blocking C5a binding, secreting leukotoxins, and blocking LFA1-ICAM1
mediated extravasation), (b) negating opsonization (via protein G reverse IgG binding, plasmin
degradation of bound IgG and C3b, and blocking C3b binding), and (c) thwarting phagocytosis
(cell wall modifications to resist low endosomal pH, enzymatic degradation of endosomes)
[40], [38]. Staphylococcus epidermidis, another Gram-positive bacterium and the main species
isolated in the majority of nosocomial infections, avoids the immune system also through
protein G and A reverse binding of IgGs and through adhesion and biofilm formation [41].
Otto and coworkers have documented that Gram-positive bacteria actually sense antimicrobial
peptides released by neutrophils and macrophage and can coordinate a directed defensive
response [42]. They discovered an antimicrobial peptide sensor system that controls major
specific resistance mechanisms; the sensor contains a classical two-component signal
transducer and an unusual third protein, all of which are indispensable for signal transduction
and antimicrobial peptide resistance.

Complement evasion by many Gram-positive bacteria involves incorrect binding of
complement recognition factors by bacterial cell wall proteins (Protein A, G, M) [43]. Gram-
negative bacteria have evolved secretory proteins that can degrade complement factors or their
binding components, or that prove anti-chemotactic or toxic to immune cells.
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3.2. Formation of a Capsule or Biofilm
Bacterial surfaces are complex, multi-faceted structures that contain many different sites of
recognition for the immune system [19,38]. A common mechanism for masking proteins at the
bacterium surface is the expression of a carbohydrate capsule or biofilm formation (Figures 4a
and 4b) [44]. While complex in composition, it is known that the capsule is composed of a
number of different polymers collectively called exopolysaccharides [45]. Besides serving as
an effective camouflage, this carbohydrate capsule has functional properties that are immune
evasive as well. Numerous bacteria, like S. pneumoniae as well as S. aureus, exude capsules
with both anti-opsonic and anti-complement functions (Figures 4a,5a) [38]. Formation of the
capsule prevents antibody and complement deposition on the surface of the bacterium, thus
inhibiting opsonization and phagocytosis. Phagocytosis assays have shown that even with high
opsonin concentrations, the presence of a capsule on S. aureus will inhibit bacterial uptake by
neutrophils in vitro [38,46].

Other bacteria, like S. epidermidis and Pseudomonas aeruginosa, are unique in their formation
of a protective capsule, as they exude a biofilm upon contact with a biomaterial surface [39].
Biofilms provide a protective structure for survival in harsh conditions and behave as a
biologically active selectively permeable membrane. The polymer matrix secreted to form
biofilms contains conduits for nutrient transport while impeding the transport of antimicrobial
agents and proinflammatory cytokines to the surface of the bacterium for opsonization and
phagocytosis [39]. Mathematical models have been developed using reaction-diffusion theory
to characterize how the biofilm diffusion barriers inhibit the effectiveness of antimicrobial
agents [47]. These diffusion limitations were verified in an experimental artificial biofilm
system composed of beads in an alginate gel, further showing how biofilms limit transport of
anti-microbicides and pro-inflammatory cytokines [48]. In Gram-positive bacteria, the
adhesion of bacterial cells is mediated by surface proteins like autolysin, fibronectin receptors,
and fibrinogen binding protein [38]. The bridge between the biofilm and bacteria is formed by
a number of molecules such as polysaccharide intracellular adhesin, PIA, a charged
homopolymer comprised of a β-1,6-linked N-acetylglucosamine [41,45]. As the adhesive agent
between the cell and the biofilm, PIA is essential in the evasion of innate immunity. Vuong,
et al, have demonstrated that when de-acetylated with the surface protein IcaB, PIA was unable
to complex with the cell and biofilm, thus reducing the amount of biofilm and increasing the
amount of phagocytosis from neutrophils [41]. This occurrence is primarily due to the loss of
PIA’s cationic character, thus not allowing it to covalently interact with the negatively charged
surface of the bacterium.

Research has recently intensified to quantify the relationship between immune cell presence
and biofilm formation. Research published by Wu, et al., has shown that interactions between
bacterium surface proteins and pro-inflammatory cytokines may induce anti-inflammatory
reactions by the bacterium P. aeruginosa [49]. Using the gene expression of type- I P.
aeruginosa (PA-I) lectin, an adhesin of P. aeruginosa, as a representative output of virulence,
the response of the bacterium to different inflammatory cytokines was examined. It had been
previously established that the lethality of P. aeruginosa was dependent on expression of PA-
I lectin. Overall, IFN-γ was found to induce overexpression of PA-I lectin, suggesting that P.
aeruginosa may combat the immune system by monitoring host immune response and
triggering virulence factor production in response to it [49,50]. Walker et al., reported that
human neutrophils serve to enhance the initial development of P. aeruginosa biofilms [51].
The mechanism of biofilm enhancement by neutrophils was attributed to neutrophil-generated
polymers comprised of actin and DNA. The bacteria bind to F-actin and the free DNA promotes
biofilm matrix stability. Disruption of the polymers with DNase results in dispersion of the
biofilm bacteria and a reduction in biofilm development. The presence of these actin-DNA
polymers, with co-localization of P. aeruginosa, was confirmed in both neutrophil lysates and
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cystic fibrosis sputum. Introduction of additional neutrophils after 24 and 48 h further enhanced
P. aeruginosa biofilm development, while exposure to fewer neutrophils resulted in a lesser
degree of biofilm enhancement. Similarly, Chandra et al. showed that peripheral blood
mononuclear cells (PBMCs) enhanced the ability of the yeast, Candida albicans, to form
biofilms and that the majority of PBMCs were localized to the basal and middle layers of the
biofilm [52]. They also found that only viable PBMCs enhanced C. albicans biofilm formation
and that PBMCs cell surface components did not contribute to this biofilm enhancement; the
biofilm-enhancing effect is mediated by a soluble factor released into the medium, and that the
supernatant collected from cocultures contained differential levels of pro- and anti-
inflammatory cytokines. This research presents the bacterial biofilm as more than just a passive
partition between a bacterium and the surrounding environment, showing instead that biofilim
formation as well as inflammatory response may be a result of the bacterium to sense the
environment around it.

Through the formation of capsules and biofilms, bacteria present unique methods for immune
evasion through not only their anti-opsonic properties, such as limited capability of antibody
diffusion, but also through the evolution of systems that may monitor the behavior of the
immune system and create specified responses.

3.3. Bacterial Induction of Cytokine Secretion
In addition to evading the immune system through capsule formation, classes of bacteria have
displayed the ability to attenuate immune response through modulation of signaling molecules.
Similar to viruses, bacteria may induce cellular production of pro-wound healing and anti-
inflammatory cytokines to limit immune response (Figure 5b). Mycobacteria have been known
to infect macrophages by binding to cell-specific receptors on the cell surface [27]. Once
infected with the species Myobacterium tuberculosis, monocytes have been shown to
upregulate production of IL-10 compared to uninfected samples [53, 54]. Human monocyte
cell lines treated with M. tuberculosis purified protein derivative (PPD) along with TGF-β
expressed 70 times more IL-10 than unstimulated monocytes. Additionally, the coculture of
PPD-infected cells with uninfected cells inhibited production of IFN-γ in the uninfected cells,
demonstrating the ability to attenuate release of pro-inflammatory factors [55]. Such behavior
is also known to occur in Legionella pneumophila, Salmonella typhimurium, and Legionella
monocytogenes [27, 56]. P. gingivalis expresses unique immunosuppressive
lipopolysaccharides (LPS) that will stimulate dendritic cells to secrete IL-10 in vitro [57] and
in vivo [58]. Cytokine secretion is also limited through the specific inactivation of C-type lectin
receptors, thereby downregulating the signaling necessary for cytokine secretion as well as
maturation of dendritic cells [59].

Recent work by Gantner et al. suggests that there may be recognition signaling through C-type
lectin receptors that may cooperate with toll-like receptor (TLR) signaling in defining
inflammatory responses [60]. They examined how dectin-1, a lectin family receptor for β-
glucans, cooperates with TLRs in recognizing microbes. Dectin-1 expression enhances TLR-
mediated activation of NF-κB by β-glucan–containing particles. In both macrophages and
dendritic cells, dectin-1 and toll-like receptors are synergistic in mediating production IL-12
and TNF-α. Data demonstrate that collaborative recognition of distinct microbial components
by different classes of innate immune receptors is crucial in orchestrating inflammatory
responses.

Moreover, certain bacteria have been shown to completely inactivate pro-inflammatory
cytokine production. Porphyromonas gingivalis, an oral Gram-negative pathogen associated
with periodontitis, expresses a host of cytokine-specific proteases. Calkins et al., examined the
ability of Arg-specific hydroxyproline-rich glycoprotein (HRGP) and reversibly glycosylated
polypeptide 2 (RGP-2) and Lys-specific gingipain (KGP) to degrade TNF-α, a well-
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documented pro-inflammatory cytokine [61]. All three proteases were found by immunoblot
analysis to rapidly degrade TNF-α, thereby eliminating one of major mediators of
inflammation.

4. Applications to Biomaterial Science
4.1 Current Techniques

Table 1 summarizes a number of different techniques that have been utilized to evade implant-
related inflammation. As with viral and bacterial methods of immune evasion, these existing
techniques seek to modify the interactions that occur between the surface of the foreign object
(ie: virus, bacteria, implant) and the native milieu of the body.

4.1.1. Coating of material surfaces with non-biofouling substrates—Early studies
involved in the attenuation of inflammatory response from material implants involved treating
implant surfaces with membranes that resist the deposition and adsorption of proteins and cells,
known as biofouling, thereby reducing inflammatory processes like opsonization and
phagocytosis [62–64]. The goal of these non-biofouling surfaces was to resist protein and cell
deposition without hindering implant performance. Phospholipids, naturally derived materials
like chitosan, and synthetic hydrogels have all been shown to demonstrate anti-biofouling
properties [62,65]. Hydrogels in particular have been attractive options for non-biofouling
substrates as they produce a hydrophilic barrier at the surface of the bulk material that resists
protein adsorption and mammalian cell adhesion [62]. Additionally, physical properties of
these gels are tunable and may be altered by changing water content within the polymer[62].
Poly(hydroxyethyl methacrylate) (PHEMA) and poly(ethylene glycol) (PEG) have been used
as the crosslinking polymers within such hydrogels since they allow for water soluble solutes
to diffuse through the hydrogel [62,63,66,67]. In addition to being incorporated into hydrogels,
compounds like PEG have begun to be immobilized onto surfaces by conjugating PEG with
peptide mimics of mussel adhesive proteins [66,67]. Dalsin et al., described a particularly
attractive approach of combining PEG segments with peptides containing residues of 3,4
dihydroxyphenylalanine (DOPA), a major constituent of mussel adhesive proteins, to create a
composite molecule that could be immobilized to the surface of a material and ensure anti-
biofouling characteristics [66,67].

New technology in the realm of non-biofouling coatings has involved the deposition of
microgels onto the surfaces of materials [68]. Poly(N-alkylacrylamides), pNIPAm, are
hydrogels that when thermally triggered will hydrophobically collapse on themselves,
expelling their water soluble contents into the surrounding area. While these hydrogels present
a large promise for the field of drug delivery, their biocompatibility has yet to be well
characterized. Nolan et al. crosslinked microgel particles of pNIPAm with PEG chains and
spin coated the result onto a cationic glass substrate [69]. These substrates showed non-
biofouling behavior when compared to control samples. From this work, microgel films have
been created by the same group that have been shown to modulate acute inflammation by
creating a non-biofouling surface [70,71].

Recently, Mayorga et al., have demonstrated that deposition of PEG-like tetraethylene glycol
dimethyl ether (tetraglyme) onto fluorinated ethylene propylene (FEP) discs attenuated protein
adsorption and therefore monocyte adhesion that would lead to acute phase inflammation
[72]. Since fibrinogen has been shown to mediate the adhesion of phagocytic bodies to
materials through binding to the phagocytic Mac-1 integrin, it was posited that a surface with
ultra-low fibrinogen deposition would significantly attenuate immune response.

4.1.2. Release of anti-inflammatory drugs—Another strategy employed to reduce
inflammation at the site of implantation is the release of anti-inflammatory drugs.
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Glucocorticalsteroids, or glucocorticoids, are generally considered the most potent substances
for the control of chronic inflammatory diseases like asthma[73]. In particular, glucocorticoids
have been shown to have strong inhibitory effects on cytokine-related inflammation by
downregulating transcription of IL-1, TNF-α, GM-CSF, IL-3, IL-4, IL-5, IL-6 and IL-8 [73].
For these cytokines, once the steroid and its receptor have bound into a complex, this complex
will bind to negative glucorticoid response elements that exist close to promoter sequences on
cytokine-encoding genes, inhibiting transcription of the gene [73]. Glucocorticoids may also
act to reduce cytokine effects by downregulating the synthesis of cytokine receptors.

A frequently used anti-inflammatory glucocorticoid for material research is dexamethasone,
which has been used in steroid-eluting stents and pacemaker leads to reduce inflammation
[74,75]. Administration of dexamethasone microspheres was shown by Hickey et al to reduce
implant-related inflammation and has been documented to prevent restenosis when release
from coronary stents [76–78]. Additionally, dexamethasone release technology has been
merged with non-biofouling hydrogel technology. Research by a number of groups has
incoporated dexamethasone into non-biofouling hydrogel coatings and found both favorable
release characteristics as well as attenuated immune response when examined in vivo [79,80].

4.1.3. Release of pro-wound healing or anti-inflammatory factors—Work by
Norton et al and well as Patil et al has investigated the release of pro-wound healing cytokines
as a means of attenuating immune response [75,79,81,82]. In order to improve the life of probe
coatings of glucose sensors, probes were coated with hydrogels loaded with both vascular
endothelial growth factor (VEGF), a well characterized pro-angiogenic and pro-wound healing
cytokine, and dexamethasone [75]. Coating the surface of a sensor with a hydrogel containing
proangiogenic growth factors and anti-inflammatory drugs has been shown to increase
vascularization while decreasing inflammatory immune response [79]. Komeda et al, have
demonstrated pro-angiogneic effects upon delivery of basic fibroblast growth factor (bFGF)
via a biodegradable hydrogel in an effort to improve limb ischemia [83]. Additionally,
hydrogels composed of poly(hydroxyethylmethacrylate) (PHEMA) or poly(ethylene glycol)
(PEG) resist biofouling by inhibiting the accumulation of blood borne proteins onto the surface,
thereby mitigating one cause of implant-related failure [62].

The type I receptor of the IL-1 family of molecules is biologically active while the type II
receptor is a dummy receptor that sequesters IL-1 at the plasma membrane or as a soluble
receptor. When IL-1 binds to the functional type I receptor in the cell membrane it recruits a
second accessory protein to join the complex (IL-1R AcP) that activates intracellular cascades
leading to NF-κB and c-JUN transcription of several pro-inflammatory genes in a broad array
of cell types. The antagonist IL-1ra binds with comparable avidity to both types of receptors,
but blocks the activating step of IL-1R AcP association with type I receptor. Bresnihan et al.,
first examined the effect that administration of the anti-inflammatory IL-1ra could have upon
patients with rheumatoid arthritis [84]. At 24 weeks into the daily drug treatment, a significant
decrease in swollen, tender and stiff joints was observed over placebo. Work by Shamji et
al., reports on the release of IL-1ra, a receptor antagonist for the pro-inflammatory IL-1 family
of cytokines, in order to treat osteoarthritis-related instances of inflammation [85]. By fusing
the IL-1ra protein to an elastin like polypeptide (ELP), the complex was able to
thermosensitively trigger and release, allowing for controlled and sustained release to the body.
Additionally, administration of IL-1ra in vitro to fibrochondrocytes resulted in decreased
proinflammatory cytokine expression relative to control values.

TNF-α neutralization using an anti-TNF-α antibody or a soluble TNF-α receptor is now routine
clinical practice in cases of chronic and severe rheumatoid arthritis [86]. An example of a
commonly used therapeutic utilizing this approach is Etanercept (Enbrel), which is a fusion
protein of a soluble TNF-α receptor and the Fc component of human immunoglobulin G1
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(IgG1). This drug is able to mimic the function of TNF receptor by binding the cytokine,
creating a cytokine that will decrease the effect of the pro-inflammatory cytokine. And by
virtue of being fused to the Fc region of IgG1, the drug will persist in the bloodstream much
longer than native TNF-α receptor [87].

Current research has also investigated the release of factors like nitric oxide from hydrogel
coatings as a means of attenuating immune response [88–90]. Activated macrophages produce
reactive oxygen and nitrogen intermediates like nitric oxide, which kills bacteria in the
surrounding environment. By loading a hydrogel surface with species like nitric oxide, it is the
hope that the environment will be free of bacteria, reducing the potential for inflammation.

Delivery of the anti-inflammatory cytokine IL-10 has been widely studied for the treatment of
colitis [91], rheumatoid arthritis [92–94], Crohn’s disease [95] and multiple sclerosis [95].
IL-10 not only down-regulates Th1 cellular immunity, but also up-regulates Th2 humoral
immunity by stimulating the growth and proliferation of B cells [96]. IL-10 acts on monocytes/
macrophages by down-regulating the stimulated synthesis of pro-inflammatory TNF-α, IL-1,
IL-6, IL-8, and GM-CSF, as well as suppressing the synthesis of reactive oxygen intermediates,
nitric oxide, collagenase and gelatinase. In macrophages, IL-10 binding to its transmembrane
receptor co-activates the JAK/STAT, p38 and MAP kinase pathways that lead to the
transcription of heme oxygenase genes for the production of bilirubin and carbon monoxide.
It is believed that carbon monoxide is the agent that blocks transcription of pro-inflammatory
cytokines. Figure 6 illustrates the means by which both IL-1ra and IL-10 are able to attenuate
immune response.

4.1.4. Immobilization of pro-wound healing or anti-inflammatory cytokines onto
implant surfaces—Research conducted by Ito et al., established a precedent for the
immobilization of cytokines and growth factors onto material surfaces [97,98]. By
immobilizing erythropoietin onto culture plates, Ito’s group was able to create a substrate
dependent means for growth of a erythropoietin-dependent leukemia cell line, thus showing
the bioactivity of immobilized factors on surfaces [98]. Furthering the work by Ito et al., work
by Kim et al., have demonstrated in vitro the effect that immobilizing a surface with an anti-
inflammatory factor may have in attenuating immune response [99]. ELP-IL-1ra fusion
proteins were immobilized onto the surface of a self assembled monolayer. When exposed to
the fusion protein modified monolayer, lipopolysaccharide (LPS)-stimulated monocytes
exhibited attenuated inflammatory cytokine production relative to control surfaces.

Nakaji-Hirabayshi et al., have also achieved the immobilization of epidermal growth factor
(EGF) onto surfaces [100]. EGF was fused with a hexahistidine tag and this complex was
immobilized onto the surface of a self-assembled monolayer (SAM) through coordination
chemistry between surface immobilized Ni2+ ions and the hexahistidine tag. Subsequent
research found that EGF immobilized surfaces promoted the proliferation of neural stem cells
seeded onto the surface [101]. Moreover, when exposed to a micropatterned surface containing
islands of immobilized EGF surrounded by fibronectin, neural stem cells cultured on the EGF
island expressed a significantly higher amount of nestin, a marker for undifferentiated neural
stem cells, than those on the fibronectin surface, where glial differentiation was more prominent
[102]. Stefonek et al., demonstrated that immobilized gradients of EGF on the surface of a
biomaterial could induce keratinocyte migration in the direction of increasing growth factor
concentration [103].

Liu et al., have recently immobilized VEGF on self assembled monolayers to investigate the
effect of an immobilized cytokine gradient on cell migration [104]. While the slope of the
gradient formation was found to be statistically insignificant, an immobilized VEGF gradient
was found to induce directional migration towards the increasing slope from bovine aortic

Novak et al. Page 12

Biomaterials. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



endothelial cells (BAECs) that was two fold greater than on a surface of uniform VEGF
concentration. From a wound healing standpoint, this finding is significant, as rapid migration
of cells is essential for effective wound healing and angiogenesis.

DeLong et al., reported the immobilization of bFGF onto hydrogel scaffolds through
functionalization of the growth factor with acryloyl-PEG-NHS chemistry [105]. The growth
factor maintained mitogenic and chemotactic activity despite being immobilized and was found
to increase smooth muscle cell (SMC) proliferation by 41% and migration by 15%. When
exposed to a gradient of immobilized bFGF, the SMCs were found to align and migrate along
the gradient. Stefonek et al applied the findings of this study with their previous work to
investigate possible synergistic effects of gradients of both EGF and bFGF on the same surface
[106]. A review paper recently published by Ito provides a more thorough evaluation of
biosignal immobilization to biomaterials [107].

4.1.5. Cell-based implant surface modifications—Research by Prichard et al., has
demonstrated how immune response may be affected when the surface of an implant is attached
to adipose stem cells before implantation [108],[109]. When implanted into rat fat pads,
implants elicit a much different immune response than if they were implanted into
subcutaneous tissue (more neovascularization, smaller fibrous capsule). As a result, it has been
posited and shown that attachment of adipose derived stem cells harvested from these fat pads
to the surface of an implant will also promote neovascularization and small fibrous capsules.

4.2. Biomimetic Techniques
An understanding of the methods by which viruses and bacteria evade the immune system
provides an exciting new paradigm by which biomedical engineers can design material
implants. While some have investigated isolated effects of these biological agents in
attenuating immune response, these effects have yet to be applied in a salient, directly
translatable way to material science. This new biomimetic approach to material design could
serve to use well established and evolved cellular machinery for the evasion of the immune
system. This section will serve to outline a few potential approaches to applying immune
evasive capabilities of biological organisms to material design.

4.2.1. Application of Viral Techniques
4.2.1.1. Precedent Technologies: Research by Boomker et al., has provided precedent for the
use of viral proteins in combating inflammation [110]. The administration of a plasmid
containing the gene encoding for the MT-7 protein from the human myxoma virus to mice that
had been implanted with discs of cross linked collagen was shown to decrease leukocyte
recruitment by competitively binding to GAG domains in the extracellular domain surrounding
the site of injury. Similar findings have been shown with the vaccina virus complement control
protein (VCP) that occurs within poxviruses [111]. Work by Smith et al., shows that VCP,
through its ability to bind to glycosaminoglycans on the surface of human endothelial cells, is
able to block antibody binding to surface major histocompatibility complex class I molecules
[111]. Structurally, VCP is very similar to the human C4b-BP and the other complement control
proteins. Functionally it is most similar to the CR1 protein. VCP blocks both major pathways
of complement activation. In addition to binding complement, VCP also binds to heparin. These
two binding abilities can take place simultaneously and contribute to its many functions and
to its potential use in several inflammatory diseases or in reducing inflammation at an implant
site. In fact, researchers have isolated specific binding motifs within the protein itself that allow
it to bind preferentially to glycosaminoglycans like heparin, thereby reducing chemokine
binding to the extracellular matrix. Using these findings as a proof of concept that this specific
protein may attenuate immune response by limiting the formation of chemokine gradients, one
could seek to design a more feasible material construct utilizing this technology.
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4.2.1.2. Future Directions: One potential design would include the controlled release of the
protein to the surrounding milieu of the extracellular space. Much like in the research performed
by Boomker et al., cells could be transfected with a plasmid containing the gene encoding for
MT-7 protein. These cells could then be encapsulated in a biodegradable hydrogel coating that
could be adhered to the surface of a material implant. By encapsulating the cells in a
biocompatible and biodegradable hydrogel, one could be able to allow the cells to use their
own machinery to express the MT-7 protein, thereby creating a perpetually constant dose
source within the material construct. The encapsulation of cells and the release of cell-derived
proteins within hydrogels has been sufficiently studied and reported, allowing for the
modification of those current technologies for cell-mediated protein release [112–114]. This
coating would create an anti-fouling surface during the early stages of inflammation, thereby
further decreasing the inflammatory effects of the implant [62]. Table 2 gives a listing of
possible hydrogels that could be used for the release of these virally derived bioactive elements.
This design is also highly tunable in that the release profile as well as cell type used can be
altered for maximal release characteristics. Additionally, one could transfect cells with a
number of different virally-derived proteins, such as virokines mimicking wound healing
cytokines like IL-10, promoting a pro-wound healing environment while encouraging the M2
phenotype of macrophage. Table 3 gives examples of other viral based bioactive agents that
could be incorporated. Precedent for use of IL-10 exists, as the gene encoding for viral IL-10
in Epstein-Barr virus has also been isolated and delivered to mice subjected to rheumatoid
arthritis [93]. Despite its short half life, vIL-10 lacks the immunostimulatory properties of
human IL-10, making it a possibly more potent immunomodulator. Administration of vIL-10
was found to decrease incidence and severity of rheumatoid arthritis, thereby showing
demonstrating the capabilities of vIL-10 as an anti-inflammatory.

This design concept presents a marked increase in the efficiency MT-7 release compared to
the work by Boomker since we would be able to create protein using cellular machinery,
thereby circumventing the low transfection efficiencies that would be seen by administration
of plasmid to the area of inflammation. Figure 7b demonstrates a possible design where cells
transfected with the gene encoding for a virally evasive protein like MT-7 are encapsulated in
a non-fouling hydrogel coating to allow for synthesis of MT-7 and diffusion into the
surrounding cellular space. Of course, one caveat of this design is how the body will respond
to virally-derived proteins. Current methods of cytokine based treatment involve the
modification of human cytokines, so investigation would have to go into the immunogenicity
of the proteins themselves.

4.2.2. Application of Bacterial Techniques
4.2.2.1. Precedent Technologies: Material implants are decorated with a number of features
on their surfaces that may be easily recognized as foreign bodies by the body’s innate immune
system. Therefore, it may be advantageous to employ similar techniques to those used by
bacteria for immune attenuation in implants. The most obvious technique that may be utilized
is the masking of surface features by a carbohydrate capsule. Research by Griesser et al., has
provided the impetus for this approach by assessing protein absorption to nanometer thick
immobilized layers of polysaccharides [115]. Additional work has been done by Bumgardner
et al., on to show that chitosan, a derivative of the polysaccharide chitin, may bind to the surface
of a titanium disc [65]. While the deposition of a generic polysaccharide like chitosan has been
shown to discourage bio-fouling on the material surface, it could possibly be extended to induce
anti-opsonic and anti-complement properties.

4.2.2.2. Future Directions: The capsules formed by the bacterium Staphylococcus aureus
have been reported to have both anti-opsonic as well as anti-complement functions when
cultured on solid media [46]. Of the eleven different serotypes of capsules that may be formed,
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most S. aureus strains exhibit serotype 5 capsular polysaccharides [46,116]. This capsular
polysaccharide has been isolated and its chemical composition and structure has been found
[117]. It consists of D-glucose, D-galactose, 2-acteamido-2-deoxy-D-glucose, and sialic acid
in a molar rato of 3:2:1:1. With this known structure and composition, it may be possible to
synthesize this polysaccharide and to immobilize it onto the surface of a biomaterial. This
would represent an improvement in the surface modification of materials with polysaccharides,
as it would discourage opsonization and complement activity towards the implant. Such a
design could be modified by the immobilization of bacterium-derived pro-inflammatory
cytokine proteases to the material, thereby limiting further the presence of pro-inflammatory
factors. One limitation of this method is the specificity with which the proteases act on proteins
in the surrounding area. A schematic of the above designs is given in Figure 7c.

Bacterially derived factors may also be immobilized to the surfaces of materials to attenuate
immune response. Protein A is a wall-anchored protein with either four or five domains that
each bind to the Fc region of IgG antibodies [118]. The purpose of the interaction between
protein A and IgG in the bacterium, S. aureus, is to coat the surface of the cell with IgG
molecules that are in the incorrect orientation to be recognized by neutrophils or MØ Fc
receptors. If a material surface could be immobilized with protein A, then the material could
behave similar to S. aureus, negating the effects of IgG molecules. The S. aureus-secreted
extracellular fibrinogen-binding protein, Efb, is a virulence factor that is able to bind to
complement components, C3b [119,120]. Lee et al., have shown that opsonophagocytosis may
be inhibited by C3 binding to Efb in a dose-dependent manner [120]. A surface modified with
a recombinant form of Efb will decrease incidents of biofouling by limiting opsonin-driven
inflammatory responses. Similar anti-opsonic behavior could be achieved through the
immobilization of clumping factor A to the surface of a material. Clumping factor A (ClfA) is
the main fibrinogen-binding protein found in S. aureus during the stationary phase of growth
[38]. Since fibrinogen may bind to ClfA on the bacterium surface, the cell itself has become
anti-opsonic by virtue of the fact that opsonin cannot deposit on the surface [38]. Palmqvist et
al., have utilized the ability of ClfA to induce an anti-opsonic state by showing that ClfA
protected S. aureus from phagocytosis from both murine macrophages and neutrophils [121].
Table 3 lists possible bacterially derived factors that could be used to attenuate inflammation.

In addition, a possible strategy that would incorporate both viral and bacterial approaches could
involve the complexation of viral cytokine receptor homologues with immobilized bacterially
derived proteins. Figure 7d demonstrates possible strategies for the complexation of viral and
bacterial techniques. Much like the complexation of the biofilm coating with pro-inflammatory
cytokine proteinases, the complexation of bacterially derived proteins with these homologues
would create a multi-tiered approach to immune attenuation. First, the bacterially derived
proteins would limit opsonization and complement activity. Secondly, the viroreceptors would
be able to bind preferentially to pro-inflammatory cytokines in the site of implantation, with
the resulting complex inactivating the deleterious effects of the pro-inflammatory cytokines.
This design could also be expanded to include virally derived proteins such as CrmA as well,
limiting the formation of mature IL-1β, thereby decreasing the signals necessary for a pro-
inflammatory response.

5. Conclusions and Perspectives
Currently, a number of different types of surface modifications have been employed to
attenuate both acute phase and chronic immune responses as a result of material implantation.
However, as new mechanisms for immune evasion are devised, it is important to note how
biological bodies such viruses and bacteria have evolved immune evasive mechanisms over
millennia. As the scientific community’s awareness of different viral and bacterial immune
evasive properties comes to light, we as biomedical engineers may be able to mimic their
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machinery for novel approaches to improving material biocompatibility. It is therefore our
hope that unique biomimetic paradigms for biocompatible design based upon long standing
knowledge of the machinery at work within different biological bodies will advance the life
of material implants, thereby increasing implant efficacy and patient well-being.
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Figure 1.
Diagram of differentiation of macrophage phenotypes. M1 activation represents classical
activation and production of pro-inflammatory cytokines. M2 activation may take on three
different forms. All three share the properties of being either immunosuppressive or
immunoregulatory in nature. Figure adapted from [8].
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Figure 2.
Schematic of how HIV may both interrogate a host cell and incorporate host-derived proteins
onto its surface. The gp120 receptor on the HIV virion binds preferentially to CD4 receptors
on the host and the viral cargo is transmitted to the host through the gp120/CD4 complex.
During the budding process, the virion can incorporate host-derived proteins on the cell surface,
thereby providing itself with camouflage to disguise itself against immune response. Figure
modified from [137].

Novak et al. Page 24

Biomaterials. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Schematic of viral immune evasive secretions. a: Schematic of cytokine inhibition by viral
proteins. Cowpox virus encodes for CrmA, preventing cleavage of pro IL-1β to IL-1β. b: The
generation of vIL-10 from viruses activates JAK/STAT, p38 and MAP kinase pathways,
producing carbon monoxide. It is believed that carbon monoxide is the agent that blocks
transcription of pro-inflammatory cytokines. c: The complexation of a pro-inflammatory
cytokine with a virally derived receptor homologue will prevent cytokine binding and
activation of pro-inflammatory pathways in surrounding cells. d: Viruses incorporate host
derived proteins like CD59 that will inhibit complementary response.
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Figure 4.
Transmission electron micrographs of Staphylococcus haemolyticus. a: Visualization of the
bacterial capsule formed around the bacterium body. b: Images of bacteria that have yet to
form capsules. Borrowed from [42].
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Figure 5.
a: Means by which the bacterial capsule will attenuate inflammation. b: Bacterially secreted
proteases will attenuate immune response by degrading pro-inflammatory cytokines.
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Figure 6.
Schematic of signaling pathways involved in attenuating signaling pathways upon exposure
to IL-10 (left) and IL-1ra (right)
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Figure 7.
Outline of applications of different immune evasive tactics from virology and bacteriology to
biomaterials. a: Outline of inflammation when immune system is allowed to function
unfettered. b: Possible viral design. Virally derived proteins like MT-7 can be released from a
coating around the biomaterial to occupy chemokine binding domains and limit formation of
a chemokine gradient. c: Possible bacterial design: By coating the material in an artificial
derivative of a capsular polysaccharide, deposition of blood borne proteins will decrease,
thereby limiting opsonization and inflammatory response. A similar approach would be coating
the material in bacterially derived proteins that will inhibit complement deposition. d: A
possible combination of viral and bacterial mechanisms. By coating the material in an artificial
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derivative of a capsular polysaccharide, the surface will become anti-biofouling. Additionally,
the presence of viroreceptors will bind cytokines with high specificity, inhibiting the cytokine’s
ability to bind to cellular receptors.
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Table 1
Current Methods for Inflammatory Immune Evasion in Material Science

Method Description
Example Immune
Evasive Agent Ref

Coating material surface with non-fouling substrates

Coating with hydrogels Hydrogels are known to produce a
hydrophilic barrier between the bulk material
and cellular medium.

PHEMA
PEG

[60]

Immobilization of non-biofouling
substances to material surface

Non-biofouling compounds like PEG have
been conjugated with peptide mimics of
mussel adhesive proteins to facilitate
immobilization to a material surface.

PEG-DOPA [64,65]

PEO-like tetraglyme is known to inhibit the
deposition of fibrinogen, a mediator of
phagocytic response, when adsorbed to the
surface of a material.

Tetraglyme [70,120,121]

Coating with microgels Coating of microgel beads crosslinked with
PEG on a PET surface induces a 4-fold
decrease in leukocyte adhesion as well as
decreases in fibrinogen deposition and
MCP-1 concentration over controls.

PEG-pNIPAm [66–69]

Release of anti-inflammatory drugs

Release of glucocorticoids Dexamethasone is a known anti-
inflammatory that has been used in steroid-
eluting stents and pacemaker leads. Has been
shown to reduce implant related
inflammation.

Dexamethasone [71–75,77,79,80]

Delivery of pro-wound healing or anti-inflammatory factors

Release of pro-angiogenic factors VEGF has been released from hydrogels
coating glucose sensors to promote
angiogenesis.

VEGF [73,77,79,80]

bFGF has been delivered via a biodegradable
hydrogel to improve limb ischemia via
angiogenesis.

bFGF [81]

Release of pro-inflammatory receptor
antagonists

The receptor antagonist for the IL-1 family
of cytokines has been delivered for the
treatment of rheumatoid arthritis and
osteoarthritis. Delivery of both the receptor
and the gene encoding the receptor has been
studied.

IL-1ra
ELP-IL-1ra

[82,83,122,123]

Release of nitric oxide Activated macrophages produce reactive
oxygen and nitrogen intermediates like nitric
oxide, which kills bacteria in the surrounding
environment. By loading a hydrogel surface
with species like nitric oxide, the
environment will be free of bacteria,
reducing the effect of inflammation.

Nitric oxide [86–88]

Release of anti-inflammatory
cytokines

IL-10 has been delivered for the treatment of
a number of inflammatory diseases and is
known to down-regulate the synthesis of pro-
inflammatory cytokines. Delivery of both the
cytokine and the gene encoding the cytokine
has been studied.

IL-10 [89–93,124,125]

Immobilization of pro-wound healing or anti-inflammatory factors onto material surfaces

Immobilization of erythropoietin Erythropoietin was immobilized and
patterned onto a substrate and its bioactivity
was verified by examining the proliferation
of a erythropoietin-dependent cell line.
Provided impetus for later immobilization
studies.

Erythropoietin [95,96,105]

Immobilization of pro-inflammatory
receptor antagonists

The receptor antagonist for the IL-1 family
of cytokines was immobilized onto a SAM.
The modified surface exhibited attenuated

ELP-IL-1ra [97]
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Method Description
Example Immune
Evasive Agent Ref

inflammatory cytokine production relative to
a control.

Immobilization of EGF EGF has been immobilized in gradients on
material surfaces to encourage keratinocyte
migration and increased wound healing
response.

EGF [98–101,104]

Immobilization of bFGF bFGF has been immobilized onto hydrogel
scaffolds and was able to maintain mitogenic
and chemotactic activity. Both gradient
immobilization and co-immobilization with
EGF have been considered.

bFGF [103,104]

Immobilization of VEGF VEGF gradients were immobilized on SAMs
to investigate cell migration and potential for
inducing angiogenesis. VEGF gradients
were found to increase directional migration
2-fold compared to controls.

VEGF [102]

Cell-based surface modifications

Attachment of adipose-derived stem
cells to the surface of an implant

When implanted into rat fat pads, implants
elicit a much different immune response than
if they were implanted into subcutaneous
tissue (more neovascularization, smaller
fibrous capsule). Attachment of adipose
derived stem cells harvested from fat pads to
the surface of an implant promotes
neovascularization and small fibrous
capsules.

ASCs [106]
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Table 2
Possible biomaterials to be used for the controlled release of bioactive agents in Table 3.

Hydrogel Synthetic/Naturally Derived Advantages Ref

Dextran Naturally derived Ubiquitous in medical applications: blood plasma
substitute, drug delivery vehicle.
Dextran-HEMA hydrogels degrade in a controlled manner
at physiologic temperature and pH.

[126,127]

Poly (ethylene
glycol) (PEG)

Synthetic Non-cytotoxic, biodegradable.
Does not interact with blood and cellular proteins.
Numerous methods of polymerization.
Responsive to a number of stimuli: temperature, pH,
cellular milieu.

[126,128]

Alginate Naturally derived Fast kinetics of gel formation.
Tunable porosity allows for controlled drug release.

[126,127]

Chitosan Naturally derived Has natural wound healing properties. Used in wound
dressings.
Easily complexes with other chemicals (ie: alginate,
gellan).

[127]

Gelatin Naturally derived Extensively used in pharmaceutical and medical
applications.
Electrical properties of gelatin matrix may be altered by
collagen extraction method.

[129]

Hyaluronic Acid Naturally derived Well established in drug delivery.
Negative charge allows for complexing with cationic
compounds.
Biocompatible; major component of extracellular matrix.

[126,130]

Poly(acrylic acid) Synthetic Used for controlled release of insulin, lysozyme, albumin
and fibrinogen.
Has tunable porous and mucoadhesive properties.

[126]
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Table 3
Possible viral or bacterial agents for biomimetic immune evasive design

Bioactive Element Sources Effects Ref

Viral Agents

Cytokine response modifier A
protein (CrmA)

Cowpox virus (CPV) Inhibits the production of caspase-1.
Prevents formation of mature IL-1β from
pro-IL-1β.

[22,24]

vIL-10 Epstein Barr virus (EBV)
Human cytomegalovirus
(HCMV)
Orf virus (OV)

Produces homologue to pro-wound healing
and anti-inflammatory IL-10.

[22,26,28]

vVEGF OV Binds to VEGFR2. Induces pro-wound
healing and pro-inflammatory effects of
VEGF.

[22,29]

vTNFR CPV
HCMV

Secreted to bind to TNF class of cytokines.
Inhibits effect of TNF.

[22,131]

vIL-18BP EBV
OV
Molluscum contagiosum virus
(MCV)

Binds to IL-18. Inhibits IL-18-dependent
IFN-γ production.

[22,132]

vGM-CSFBP EBV Binds to granulocyte macrophage colony
stimulating factor. Modulates colony
formation of macrophages.

[22,133]

vMIP2 Kaposi’s sarcoma- associated
virus (KSHV)

Binds MIP2. Inhibits chemokine effect for
immune evasion.

[22,134]

vCKBP2 Vaccinia virus Interacts with receptor binding domain of
monocyte chemoattractant protein-1
(MCP-1). Blocks chemokine-receptor
interactions.

[22,135]

MT-7 Human myxoma virus (HMV) Binds to chemokine binding motifs on
GAGs in extracellular matrix. Disables the
chemokine from binding. No chemokine
gradient may be formed and maintained.

[16,22,108,
136]

Bacterial Agents

Cytokine-specific proteases Porphyromonas gingivalis Arg-specific HRGP and RGP2 and Lys-
specific KGP proteases degrade TNF-α,
eliminating one of major mediators of
inflammation.

[59]

Protein A Staphylococcus aureus Protein A binds to the Fc region of IgG
antibodies. Once bound, the IgG molecules
are in the incorrect conformation for
recognition from neutrophils or
macrophages

[116]

Extracellular fibrinogen-
binding protein (Efb)

Staphylococcus aureus Efb, is a virulence factor that is able to bind
to complement components, C3b. Is able to
inhibit complementary opsonization.

[117,118]

Clumping factor A (ClfA) Staphylococcus aureus ClfA is the main fibrinogen-binding protein
found in S. aureus during the stationary
phase of growth. Through surface
deposition of fibrinogen, the material
becomes anti-opsonic.

[119]
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