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Abstract
The feedback dynamics from mosquito to human and back to mosquito involve considerable time
delays due to the incubation periods of the parasites. In this paper, taking explicit account of the
incubation periods of parasites within the human and the mosquito, we first propose a delayed Ross–
Macdonald model. Then we calculate the basic reproduction number R0 and carry out some sensitivity
analysis of R0 on the incubation periods, that is, to study the effect of time delays on the basic
reproduction number. It is shown that the basic reproduction number is a decreasing function of both
time delays. Thus, prolonging the incubation periods in either humans or mosquitos (via medicine
or control measures) could reduce the prevalence of infection.
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1. Introduction
Malaria is found throughout the tropical and subtropical regions of the world and causes more
than 300 million acute illnesses and at least one million deaths annually (World Health
Organization, 2005), especially in Africa. Globally, it is one of the three most dangerous
infectious diseases (the others are HIV/AIDS and tuberculosis).

Human malaria is caused by one or a combination of four species of plasmodia: Plasmodium
falciparum, P. vivax, P. malariae, and P. ovale. The disease caused by each species is different
in terms of the way the species responds to drugs, behaves in the mosquito phase and behaves
once inside the human (Kreier, 1980). P. falciparum causes malignant tertian malaria, which
causes death more often than the other species. However, P. vivax remains in the body longer
than P. falciparum, causing a more gradual health deterioration. P. malariae causes the third
most common type of malaria in the world, although it grows slower than the other three
species. P. ovale causes the least common and least pathogenic malaria of the four human
malaria species (Kreier, 1980).

The parasites are transmitted through the bite of infected female mosquitoes of the genus
Anopheles. Mosquitoes can become infected by feeding on the blood of infected people, and
the parasites then undergo another phase of reproduction in the infected mosquitoes. Infection
of a human host begins with the bite of a female anopheline mosquito and the injection of
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sporozoite stages into the bloodstream. Once injected into the human host, these parasite stages
are carried to the liver where they develop in the parenchymal cells. After an incubation period
of several days (see Macdonald, 1957) or even months (see reports Bray and Granham
(1982), Lysenko et al. (1977) for P. vivax), these exoerythrocytic stages grow, divide, and
release merozoites back into the bloodstream. The merozoites penetrate red cells, where they
grow and subdivide to produce more merozoites that rupture the host cells and invade other
red cells. At some point of this process, a proportion of the merozoites develop into sexual
stages, the gametocytes. Only gametocytes are infective to the mosquito. When a vector
mosquito bites a human and ingests male and female gametocytes, these are free from the blood
cell, the female gamete is fertilized. Once fertilized, ookinetes are formed in the gut; these
cross the wall of the midgut and become oocysts which take 10 days or so to mature (Aron and
May, 1982), releasing sporozoites, which circulate through the mosquito, eventually arriving
at the salivary glands where they can then be injected into a host when the mosquito next feeds
(Oaks et al., 1991).

The earliest attempt to provide a quantitative understanding of the dynamics of malaria
transmission was that of Ross (1911). Ross' models consisted of a few differential equations
to describe changes in densities of susceptible and infected people, and susceptible and infected
mosquitoes. Based on his modeling, Ross (1911) introduced the concept of a threshold density
and concluded that “… in order to counteract malaria anywhere we need not banish
Anopheles there entirely—we need only to reduce their numbers below a certain figure.” The
analyses of Ross were extended by Lotka (1923). Macdonald (1952, 1956, 1957) extended
Ross' basic model, analyzed several factors contributing to malaria transmission, and
concluded that “the least influence is the size of the mosquito population, upon which the
traditional attack has always been made” (Macdonald, 1956).

Assume that r is the per capita rate of recovery in humans such that 1/r is the duration of the
disease in humans, μ is the per capita rate of mortality in mosquitos such that 1/μ is the life
expectancy of mosquitos, m is the number of mosquitoes per human host, a is the rate of biting
on human by a single mosquito (number of bites per unit time), b is the proportion of infected
bites on human that produce an infection, c is the transmission efficiency from human to

mosquito. The basic reproduction number  was first introduced by Macdonald
(1957) as the average number of secondary cases produced by an index case during its
infectiousness period. In a disease which involves only one host and one vector, the basic
reproduction number coincides with the threshold that breaks the stability of the trivial (disease
free) steady state (Anderson and May, 1991). Recently, Smith and McKenzie (2004) refined
the classical Ross–Macdonald model, in particular, they rederived the related entomological
parameters to malaria transmission.

The Ross–Macdonald model has some interesting features. First, the threshold result states that
malaria can persist in a population only if the number of mosquitoes is greater than a given
threshold. Secondly, the prevalence of infection in the human and the mosquito hosts depends
directly on the basic reproduction number and the relationship is non-linear. Thirdly, the model
has a stable positive equilibrium when the basic reproduction number is greater than 1. This
means that temporary intervention can lead to a temporary reduction of prevalence, when the
intervention is relaxed prevalence again increased to the original values (Koella, 1991; Smith
and McKenzie, 2004).

Macdonald (1957) performed a sensitivity analysis of the basic reproduction number on the
parameters. He found that halving the mosquito population (e.g., by larvicides) reduces R0 by
a factor of two whilst halving biting rate (e.g., with bed nets) reduces R0 by a factor of four.
The largest reduction of R0 is expected for increase in adult mosquito mortality (e.g., by
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imagicides) because of their exponential relationship. An important conclusion is thus that
imagicides are more effective for controlling malaria than larvicides. The work of Macdonald
(1957) had a very beneficial impact on the collection, analysis, and interpretation of epidemic
data on malaria infection (Molineaux and Gramiccia, 1980) and guided the enormous global
malaria-eradication campaign of his era.

The classical Ross–Macdonald model is highly simplified. Subsequent contributions have been
made to extend the Ross–Macdonald malaria models considering age structure in the human
population (Aron and May, 1982; Dietz, 1988; Anderson and May, 1991), acquired immunity
(Aron and May, 1982; Aron, 1988), latency (Koella, 1991; Lopez et al., 2002; Koella and Antia,
2003; Koella and Boëte, 2003), spatial heterogeneity (Dye and Hasibeder, 1986; Hasibeder
and Dye, 1988; Gupta and Hill, 1995; Gupta et al., 1994; Torres-Sorando and Rodriguez,
1997; Rodriguez and Torres-Sorando, 2001), individual-based models (Gu et al., 2003a),
habitat-based models (Gu and Novak, 2005), integrated models (McKenzie and Bossert,
2005), among other aspects (Bailey, 1982; Chitnis et al., 2006; Gu et al., 2003b; Killeen et al.,
2000; McKenzie, 2000; Ngwa, 2006; Smith et al., 2004, 2005).

Another omission in the classical Ross–Macdonald model is the incubation periods of the
parasite in mosquitos (during which period there are no sporozoites in the salivary glands of
the “infected” mosquitoes or this incubation period is comparable to the mean life span of the
mosquito) and in humans (during which period infections are lost by infective people returning
to the uninfected class at a characteristic recovery rate). The feedback dynamics from mosquito
to human and back to mosquito involve considerable time delay due to the incubation periods
of the several forms of the parasites. Long incubation periods of P. vivax greater than 6 months
increase the risk of importing malaria to the United States via the overseas military personnel,
with potential for establishing autochthonous transmission (Claborn et al., 2002). Such an
increased risk is due to the delayed onset of symptoms, which may not occur until the individual
has returned to the US or even left the US Army (Walter Reed Army Institute of Research,
1998). Analysis of Gu et al. (2003b) also shows that prevalence of P. falciparum is significantly
correlated with infectious exposures occurring 10–11 months previously. The goal of this
article is to model the incubation periods in both human and mosquito and to study the effect
of the incubation periods on the basic reproduction number and the dynamics of the
transmission models.

In this paper, taking explicit account of the incubation periods of parasites within both the
human and the mosquito, we propose a delayed Ross–Macdonald model. We calculate the
basic reproduction number R0 and carry out some sensitivity analysis of R0 on the incubation
periods (as Macdonald, 1957 did for other parameters), that is, to study the effect of time delays
on the basic reproduction number. In the case when there is an endemic steady state, we
determine the effect of the time delay on its stability. Numerical simulations are carried out to
illustrate the obtained results.

2. The delayed Ross–Macdonald model
Consider the human-mosquito interaction for malaria transmission without immunity in which
the current density of infectious mosquitos is related to the density of infectious humans at
earlier times. The human population is divided into two classes, susceptible and infectious,
whereas the mosquito population is divided into three classes, susceptible, exposed, and
infectious. Suppose that the infection in the human confers negligible immunity and does not
result death or isolation. All new-born are susceptible. For the transmission of the pathogen,
it is assumed that a susceptible human can receive the infection only by contacting with
infective mosquitos, and a susceptible mosquito can receive the infection only from the

Ruan et al. Page 3

Bull Math Biol. Author manuscript; available in PMC 2009 April 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



infectious human. Also, a susceptible mosquito becomes exposed when it receives the infection
from an infective human. It remains exposed for some time and then becomes infectious.

For simplicity, assume the total populations of both humans and mosquitoes are constants and
denoted by H and M, respectively. Let X(t) and Y(t) denote the numbers of infected humans
and mosquitoes at time t, respectively. Let a be the rate of biting on humans by a single mosquito
(number of bites per unit time). Then the number of bites on humans per unit time per human
is a/H. If b is the proportion of infected bites on humans that produce an infection, the
interaction between the infected mosquitoes Y(t) and the uninfected humans H − X(t) will
produce new infected humans of (a/H)b[H − X(t)]Y(t). The incubation period in a human has
duration τ1; it is possible that some individuals recovered from parasitemia during this
incubation period (Smith and McKenzie, 2004). Thus, of those individuals infected τ1 unit
times ago, only a proportion (a/H)b[H − X(t − τ1)]Y(t − τ1)e−rτ1 is infectious at the present time
t, where r is the per capita rate of recovery in humans so that 1/r is the duration of the disease
in humans. Therefore, the equation for the rate of change in the number of infected humans is

Similarly, if μ is the per capita rate of mortality in vectors so that 1/μ is the life expectancy of
mosquitoes, the incubation interval in the mosquito has duration τ2, and c is the transmission
efficiency from human to mosquito, then we have the equation for the rate of change in the
number of infected mosquitoes:

Now define

Then x(t) and y(t) are the proportion of infected humans and mosquitoes at time t, respectively,
m is the number of mosquitoes per human host, and we obtain the following delayed Ross–
Macdonald model (variables and parameter values are listed in Table 1):

(1)

To deduce the threshold for the disease to establish in the human population, we have to analyze
the existence of equilibria and their stability for model (1). Define the basic reproduction
number by

(2)

An heuristic derivation is as follows. Take a primary case with a recovery rate of r, the average
time spend in an infectious state is 1/r. During this time, since the incubation period in humans
has duration τ1, the average number of mosquito bites received from m susceptible mosquitoes
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each with a biting rate a gives a total of acme−rτ1/r mosquitoes infected by the primary human
case. Each of these mosquitoes survives for an average time 1/μ and with another incubation
period τ2 in mosquitoes, makes a total of abe−μτ2/μ infectious bites. The total number of
secondary cases is thus a2bcme−rτ2−μτ2/(rμ), which is (2). Notice that a appears twice in the
expression since the mosquito biting rate controls transmission from humans to mosquitoes
and from mosquitoes to humans. Then we have the following results on the existence of
equilibria.

Lemma 2.1. In the first quadrant, system (1) has at most two equilibria. More precisely,

(i) IfR0 ≤ 1, then system (1) has a unique trivial equilibrium (0, 0);

(ii) IfR0 > 1, then system (1) has two equilibria, the trivial equilibrium (0, 0) and the positive
equilibrium (x*, y*), where

(3)

Next we discuss the stability of (0, 0) and (x*, y*). First we consider the linearized system of
(1) at (0, 0)

(4)

The characteristic equation associated with system (4) takes the form

(5)

Let

It is clear that F(λ, τ1, τ2) is an analytic function. F(0, τ1, τ2) = rμ(1 − R0), and F(λ, 0, 0) = λ2

+ (r + μ)λ + rμ − a2bcm. To discuss the distribution of the roots of the transcendental Eq. (5),
we consider three cases.

(i) If R0 < 1, then F(0, τ1, τ2) > 0 and  for all positive λ, τ1 and τ2. Hence, Eq. (5)
has no zero root and positive roots for all positive τ1 and τ2. Now we claim that Eq. (5) does
not have any purely imaginary roots. Suppose that Eq. (5) has a pair of purely imaginary roots
±ωi, ω > 0 for some τ1 and τ2. Then ω must be a positive root of

(6)

However, Eq. (6) does not have nonnegative real roots since R0 < 1. Hence, Eq. (5) does not
have any purely imaginary roots.

On the other hand, F(λ, 0, 0) = 0 has two negative real roots λ± since R0 < 1, where
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Also . By the implicit function theorem and the continuity of F(λ, τ1, τ2), we
know that all roots of (5) have negative real parts for positive τ1 and τ2, which implies that (0,
0) is stable.

(ii) If R0 = 1, then F(0, τ1, τ2) = 0 and  for λ ≥ 0, τ1 > 0 and τ2 > 0. Hence, Eq.
(5) has a simple zero root and no positive root for all positive τ1 and τ2. Using a similar argument
as in (i), we can obtain that except a zero root, all roots of (5) have negative real parts for
positive τ1 and τ2. Thus, (0, 0) is a degenerate equilibrium of codimension one and is stable
except in one direction.

(iii) If R0 > 1, then F(0, τ1, τ2) < 0 and  for λ ≥ 0, τ1 > 0 and τ2 > 0. Hence, Eq.
(5) has a unique positive real root for all positive τ1 and τ2.

On the other hand, F(λ, 0, 0) = 0 has at least one negative real root λ−. From the implicit function
theorem, (5) has a root with negative real part for small τ1 and τ2. Therefore, (0, 0) has both
stable and unstable manifolds for some τ1 and τ2. To determine the unstable manifold of (0, 0)
when R0 > 1, we discuss the stability of the other equilibrium (x*, y*) when R0 > 1.

Remark 2.2. We would like to point out, as suggested by one of the referees, that the stability
of the trivial equilibrium (0, 0) can also be analyzed via the real eigenvalues of its Jacobian
matrix by using a theorem on page 92 in Smith (1995).

Consider the linearized system of (1) at (x*, y*)

(7)

The characteristic equation associated with system (7) takes the form

(8)

Let G(λ, τ1, τ2) denote the function on the left-hand side of the last equation. Note that

Case (i). When τ1 = τ2 = 0, the equilibrium (x*, y*) becomes

(9)

The characteristic Eq. (8) becomes
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where

The above equation has two negative real roots

i.e. λ− < λ+ < 0.

Case (ii). When τ1 > 0, τ2 = 0, the equilibrium (x*, y*) becomes

(10)

Notice that the equilibrium (x*, y*) exists under the assumption R0 > 1, that is,

(11)

The characteristic Eq. (8) becomes

(12)

where

By the implicit function theorem and the continuity of the right-hand side function, Eq. (12)
has negative real roots for small τ1. Now we want to show that Eq. (12) has negative real roots

for all . To do so we show that Eq. (12) does not have any purely imaginary roots

for all .

Suppose Eq. (12) has a pair of purely imaginary roots ±ωi, ω > 0, for some . Then
ω must satisfy the following system
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Thus, ω must be a positive root of

(13)

where

Clearly, Eq. (13) has no positive roots ω2 if and only if either (i) C1 ≥ 0 and B1 ≥ 0 or (ii)
. We have

Similarly, after some tedious computations, we have

Note that B1 > 0 and C1 > 0 if acr + 2rμ ≥ a2bcm. Therefore, Eq. (13) has no positive roots
ω2 if 1 < R0 and a2bcm ≤ acr + 2rμ. Consequently, Eq. (12) does not have any purely imaginary

roots for all  so that Eq. (12) only has negative real roots for all .

Case (iii). For , consider τ2 > 0 so that 1 < R0 and a2bcm ≤ acr + 2rμ such that the
equilibrium (x*, y*) given by (3) exists; that is,

(14)

Clearly, the left-hand side of the characteristic Eq. (8) is analytic in λ and τ1, τ2. As τ2 varies,
by Theorem 2.1 of Ruan and Wei (2003), the sum of the multiplicity of zeros of the left hand
side of (8) on the open right half-plane can change only if a zero appears on crosses the
imaginary axis.

By Case (ii), Eq. (8) only has negative real roots for τ2 = 0 and . It follows that there
is a τ̄2(τ1), , such that Eq. (8) only has [negative real roots for τ2 < τ̄2(τ1).

We show that . If  for , there must be a τ̃2(τ1),

, such that the Eq. (8) has nonnegative real roots for τ2 = τ̃2(τ1). By the

continuity of τ2 in τ1, we have  with τ1 = 0. However, using a similar
argument as in Case (ii), we know that the Eq. (8) only has negative real roots for τ1 = 0 and

. Thus, .
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This implies that the positive equilibrium (x*, y*) is stable for  and

.

Summarizing the above analysis, we have the following results on the stability of the equilibria.

Theorem 2.3. IfR0 < 1, system (1) has a unique trivial equilibrium (0, 0) which is stable. If 1
< R0 anda2bcm ≤ acr + 2rμ, system (1) has two equilibria, the trivial equilibrium (0, 0) which
is a saddle, and a positive equilibrium (x*, y*) which is stable.

Remark 2.4. Notice that the condition R0 > 1 can be rewritten as

(15)

Thus, the existence and stability of the positive equilibrium depend on the delays. However,
Hopf bifurcation does not occur at (x*, y*) since it will vanish once the delays are increased
so that the Condition (15) does not hold (see the numerical simulations in Section 3).

Notice that when τ1 = τ2 = 0, system (1) becomes the well-known Ross–Macdonald model of
two ordinary differential equations (Anderson and May, 1991)

(16)

Therefore, by Theorem 2.3, we have the following results on the dynamics of the Ross–
Macdonald model (16) (see Aron and May, 1982; Anderson and May, 1991).

Corollary 2.5. Define

(17)

IfR0 < 1, then the Ross–Macdonald model (16) has a unique equilibrium, the trivial
equilibrium (0, 0), which is stable. IfR0 > 1, then the Ross–Macdonald model (16) has two
equilibria, the trivial equilibrium (0, 0) which is unstable, and the positive equilibrium

(18)

which is stable.

Notice that the steady state values x* and y* given by (18) are positive only if R0 > 1. The
above conclusions give the basis for Ross' threshold theorem of malaria (Ross, 1911): the
amount of malaria in a locality tends towards a fixed limit determined by the number of malaria-
bearing mosquitoes and by other factors; if the number of malaria-bearing Anophelines is below
a certain figure, that limit will be zero. A similar threshold theorem of malaria holds for the
delayed Ross-Macdonald model (1).
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3. Numerical simulations
To numerically illustrate the results, we need to choose some parameter values (see Table 1).
The per capita human recovery rate R varies from 0.01 to 0.05 per day (Macdonald, 1957;Aron
and May, 1982;Smith et al., 2004;Le Menach et al., 2005), we take r 0.05. The biting rate on
man by a single mosquito is about 0.2 to 0.5 per day (Macdonald, 1957;Dietz et al., 1974;Smith
et al., 2004), here we take a = 0.2 per day. The proportion of infected bites on both human and
mosquito that produces an infection is b = c = 0.5 (Gu et al., 2003a;Smith et al., 2004;Le Menach
et al., 2005). The number of mosquitoes per human host could be various, we take m = 2
(Harada et al., 1998;Ishikawa et al., 2003). The per capita mortality rate of mosquitoes μ varies
from 0.05 to 0.5 per day (Macdonald, 1957;Aron and May, 1982;Le Menach et al., 2005), here
we take μ = 0.05 per day. The incubation period for P. vivax in human varies from 10 to 100
days (Bray and Granham, 1982;Beier, 1998;Smith et al., 2004), here it is taken to be τ1 = 15
days. The incubation period in the mosquitoes is temperature-dependent and varies for different
species (Beier, 1998). The period for P. vivax is estimated to be about τ2 = 9 days under ideal
condition (Macdonald, 1952;Beier, 1998). We can see that the basic reproduction number R0
= 2.4096 > 1 and the positive equilibrium (0.3825, 0.3279) is asymptotically stable (see Fig.
1).

If the per capita mortality rate of mosquitoes is increased to μ 0.105 per day, then the basic
reproduction number is reduced so that R0 = 0.5376 < 1. Prevalence levels in both human host
and mosquito decrease and the solutions are approaching the trivial equilibrium (0, 0) (see Fig.
2).

The basic reproduction number R0 depends on the delays and is a decreasing function of the
delays.

is a decreasing function of both delays τ1 and τ2. Numerically, with r 0.05, a 0.2, b = 0.5. c =
0.5, m = 2, μ = 0.05, τ1 = 15, τ2 = 9, we have R0 = 2.4096 > 1. Thus, the positive equilibrium
(0.3825, 0.3279) is asymptotically stable (see Fig. 1). Now increasing τ1, the incubation period
in the human, will decrease R0 so that R0 passes through 1 and eventually becomes less than
1. Correspondingly, via backward bifurcation, the steady state value of proportion of the
infectious human density decreases and eventually approaches to zero as time tends to infinity
(see Fig. 3). The delay τ2 (the incubation period in the mosquito) plays a similar role (see Fig.
4). The simulations in Figs. 3 and 4 indicate that the steady state values are more sensitive in
the incubation period τ2 in the mosquito population than in the incubation period τ1 in the
human population, since small changes in τ2 induce fast increases in the steady state values
while lager changes are required in τ1 in order to have similar increases in the steady states
values. As a function of the incubation periods in both humans and mosquitoes, the basic
reproduction number R0 is plotted against the two delays τ1 and τ2 (see Fig. 5).

Our results also show that local threshold densities of mosquitoes with respect to malaria
extinction exist, as Ross (1911) suggested. For example, it can be expressed as

Threshold prevalence exists within a transmission system, akin to Macdonald's “basic
reproduction rate” (Macdonald, 1957), but it is likely to be dependent of vector mortality, host
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infectivity, and other factors within the transmission system. For example, increases in the per
capita mortality rate of the mosquito can decrease the basic reproduction number and reduce
the human infection level (see Fig. 6).

4. Discussion
Successful interventions in malaria require a better understanding of the relative influence of
each of the biological and ecological factors. These factors and their interactions can be
represented by measurable parameters in the models. In this paper, we have modified the
classical Ross–Macdonald model to include time delays that describe the incubation periods
of parasites within both the human and the mosquito. We evaluated the basic reproduction
number R0 and studied the existence of the disease-free equilibrium and the endemic
equilibrium. In both models, we found that if R0 < 1, then the disease-free equilibrium is the
unique equilibrium and is stable. If R0 > 1, then the endemic equilibrium exists and is stable
when the delays are small.

It should be mentioned that for the delayed Ross–Macdonald model (1) we only proved the
asymptotic stability of the positive steady state for small delay values. However, our numerical
simulations (see Figs. 1, 3 and 4) demonstrate that the positive steady state of the delayed Ross–
Macdonald model (1) is asymptotically stable for all delay values as long as the reproduction
number is greater than one. Since R0 defined by (2) and the steady state values given in (3) are
all delayed dependent, increasing the delay values will decrease R0 to make it equal to 1 and
will make the positive steady state to coincide with the trivial equilibrium. Thus, Hopf
bifurcation does not occur when the delay increases and there are no bifurcating periodic
solutions due to the increase of the delay values.

Global warming affects disease vectors, which in turn may alter the current patterns of vector-
borne diseases (Rogers et al., 2002). Malaria is among the many vector-borne diseases that
have been affected by climate (Hay et al., 2000) since warm and moist climates are most
conductive to mosquito propagation and survival. Recently, various models of malaria
transmission have been developed to improve our understanding of the likely impact of climate
change on malaria transmission (Craig et al., 1999; Martens et al., 1995; Rogers and Randolph,
2000; Hoshen and Morse, 2004). The sporogonic incubation of the parasite can strongly
influence transmission intensity and can vary seasonally (Burkot et al., 1990; McKenzie et al.,
2001) or with longer term climate cycles (Craig et al., 1999). Warming temperatures tend to
decrease the duration of the extrinsic incubation period, which will increase the basic
reproduction number R0. Thus, climate changing can induce fluctuations of the basic
reproduction number R0 and possible oscillations in the malaria cases (Teklehaimanot et al.,
2004). For example, as in Aron and May (1982), assume m = m(t) = p + q sin(2πt) is periodic
with p = 1.5and q = 1, then the proportion of infected human population approaches a periodic
value as time involves (see Fig. 7).

The analyses and numerical simulations indicate that prolong (via medical drugs or control
measures) either of the incubation periods could reduce the proportions of the infected human
and mosquito populations and thus could control the disease locally. However, long incubation
periods may have a significant role in the “nonlocal” transmission of the disease if we take the
migration of both humans and mosquitoes into consideration, since exposed humans and
mosquitoes can certainly spread the parasites to different locations, as the exposed US military
personals brought the parasites from the South Korea to the US; see Claborn et al. (2002). In
modern time, humans travel more frequently on scales from local to global. One million people
are reported to travel internationally each day, and one million people travel from developed
to developing countries (and vice versa) each week (Garrett, 1996). Almost all existing malaria
transmission models assume enclosed systems of people, parasites, and vectors in which neither
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emigration nor immigration is considered. Travel or migration of exposed individuals can
spatially spread infectious diseases (Hasibeder and Dye, 1988; Gupta and Hill, 1995; Gupta et
al., 1994). Also, approximately 60% of the 1,500 malaria cases occur each year in the United
States are among US travelers (Newman et al., 2004). Therefore, it is more reasonable to
consider the combined effect of incubation periods and spatial structure in modeling vector-
host interactions (see Ruan, 2006; Ruan and Xiao, 2004 and the references cited therein) in
order to understand the spatial spread of malaria.
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Fig. 1.
The positive steady state of the delayed Ross–Macdonald model (1) is asymptotically stable
and the disease is endemic. Here, r = 0.05 per day, a = 0.2 per day, b = c = 0.5, m 2, μ = 0.05
per day, τ1 = 15 days, and τ2 = 9 days.
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Fig. 2.
The prevalence levels decrease as the per capita mortality rate of mosquitoes is increased. Here
μ = 0.105 per day, all other parameter values are as in Fig. 1.
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Fig. 3.
In the delayed Ross–Macdonald model (1), increasing in the incubation period in the human
will decrease the proportion of infective human population. Here τ1 increases from 15 days to
24 days.
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Fig. 4.
In the delayed Ross–Macdonald model (1), increasing the incubation period in the mosquito
can also decrease the proportion of infected mosquito population. Here τ2 is increased from 9
days to 18 days.
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Fig. 5.
In the delayed Ross–Macdonald model (1), the plot of the basic reproduction number R0 as a
function of the incubation periods in human τ1 and in the mosquito τ2.
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Fig. 6.
The plots of the proportion of infective humans in the delayed Ross–Macdonald model (1)
when the per capita mortality rate of the mosquito increases from μ = 0.05 per day to μ = 0.075
per day.
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Fig. 7.
The plots of the proportion of infective humans in the delayed Ross–Macdonald model (1)
when the number of mosquitoes per human host is a periodic function, m(t) = p + q sin(2πt)
with p = 1.5 and q = 1.
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Table 1
Variables and parameters

Parameters and Variables Values References

Dependent Variables

x(t) proportion of infected humans

y(t) proportion of infected mosquitoes

Parameters and Constants

m ratio of mosquitos to humans 2 [1,2]

a biting rate on a human per mosquito 0.2–0.5/day [3,4,10]

b infected mosquito to human transmission efficiency 0.5 [5,6,10]

c infected human to mosquito transmission efficiency 0.5 [5,6,10]

r per capita human recovery rate 0.01–0.05/day [3,6,7,10]

μ per capita mortality rate of mosquitos 0.05–0.5/day [3,6,7]

τ1 incubation period for P. vivax in humans 10–100 days [8,9,10]

τ2 incubation period in mosquitos 5–15 days [3,9]

References: [1] = Harada et al. (1998), [2] = Ishikawa et al. (2003), [3] = Macdonald (1957), [4] = Dietz et al. (1974), [5] = Gu et al. (2003a), [6] = Le
Menach et al. (2005), [7] = Aron and May (1982), [8] = Bray and Granham (1982), [9] = Beier (1998), [10] = Smith et al. (2004)
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