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Abstract
We propose a novel semi-supervised clustering method called GO Fuzzy c-means, which enables
the simultaneous use of biological knowledge and gene expression data in a probabilistic clustering
algorithm. Our method is based on the fuzzy c-means clustering algorithm and utilizes the Gene
Ontology annotations as prior knowledge to guide the process of grouping functionally related genes.
Unlike traditional clustering methods, our method is capable of assigning genes to multiple clusters,
which is a more appropriate representation of the behavior of genes. Two datasets of yeast
(Saccharomyces cerevisiae) expression profiles were applied to compare our method with other state-
of-the-art clustering methods. Our experiments show that our method can produce far better
biologically meaningful clusters even with the use of a small percentage of Gene Ontology
annotations. In addition, our experiments further indicate that the utilization of prior knowledge in
our method can predict gene functions effectively. The source code is freely available at
http://sysbio.fulton.asu.edu/gofuzzy/.
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Introduction
A clustering algorithm is often applied on microarray data to group genes whose similar
expression patterns suggest that they may be co-regulated. Genes that are co-regulated may
possibly be involved in a similar biological function. Among the clustering algorithms,
hierarchical clustering and k-means clustering are most frequently used for microarray data.
Both hierarchical and k-means clustering algorithms can be seen as traditional clustering
approaches that generate partitions [1], in which each gene can be assigned to only one cluster.

However, it is commonly the case that the protein products of genes are involved in multiple
biological processes and thus the genes producing these proteins can be co-regulated in
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different ways under different conditions. When a gene experiences differential co-regulation
in different samples of the same dataset as a result of being involved in differing functional
relationships, traditional clustering approaches are inadequately flexible to represent this
behavior. Therefore, several papers [2-4] have proposed the use of fuzzy c-means clustering
algorithm on gene expression data. Fuzzy c-means clustering [5] associates each variable with
every cluster using a membership function that expresses the variable strength of the
association. This produces sets of non-exclusive clusters that allow genes to have memberships
in multiple clusters, rather than only in exclusive partitions. Using a fuzzy c-means algorithm
to cluster microarray data has the advantage of being able to group genes exhibiting more than
one type of co-regulation to multiple clusters. Variations of fuzzy c-means clustering have been
proposed over the years, and among them are Fuzzy J-means [6] and FuzzySOM [7]. Fuzzy J-
means addresses the issue of having the local minima as the final clustering results, while
FuzzySOM extends the fuzzy c-means algorithm by incorporating the idea of self-organizing
maps (SOM) [8] for the assignment of centroids.

While fuzzy clustering can increase the accuracy of the cluster representations, there remain
several more fundamental sources of ambiguity in clustering. One of these problems is deciding
what initial seeds to use to form clusters. Clustering techniques such as fuzzy c-means and k-
means clustering algorithms require initial memberships of data points in the process of
clustering. Both clustering algorithms rely on the random assignment of memberships of genes
to the clusters as the initialization process. As a result, clustering results generated by traditional
fuzzy c-means and k-means clustering algorithms suffer the drawback of producing
inconsistent clustering results. In multiple runs of the same data, different initial cluster
seedings do not converge to the same final set of clusters. To mitigate this problem, Gasch and
Eisen [4] modified the initialization method of fuzzy c-means by performing PCA on
eigenvectors that describe variation in thgene-expression data to seed centroids. Another source
of ambiguity is the requirement of both fuzzy c-mean and k-means clustering algorithms is to
specify k (or c in the case of fuzzy c-means), the number of clusters expected.

Once clusters are found, biological knowledge is employed to search for evidence of process-
based association within the clusters. Gene Ontology (GO) annotations [9] are quite often used
to associate each cluster with appropriate biological processes. Various computational tools
and statistical methods have been proposed to detect such associations in the data resulting
from expression profiling experiments [10-13].

In this study, we propose an enhanced version of the distance-based fuzzy c-means algorithm,
named as GO Fuzzy c-means, that incorporates existing biological knowledge to initially assign
and update memberships of genes to clusters. Particularly, we introduce the application of the
prior knowledge available in GO annotations as a part of the process of clustering for our
modified fuzzy c-means algorithm. The choice of GO annotation as a knowledge set for the
method rather than protein-protein interaction data or pathway data is reasonable since it is the
most widely applicable, best developed and well structured form of biological prior knowledge.
However, the methodology proposed is not limited to the use of GO annotation as prior
knowledge.

In related work, Cheng et al. [14] developed an algorithm that utilizes the similarity of genes
based on the GO hierarchy to find gene clusters. The similarity of genes was further used to
form a similarity matrix for the use of hierarchical clustering on gene expression data. Liu et
al. [15] incorporates the GO hierarchy as prior knowledge into the subspace clustering
algorithm. Fang et al. [16] utilized the GO hierarchy to determine clusters of genes but genes
can only be assigned to already known functions. Huang and Pan [17] proposed an extension
of a k-medoids algorithm by incorporating GO annotations. While genes of unknown functions
can be assigned to clusters with genes of known functions, their method does not allow genes
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with known functions to be assigned to other clusters. This can potentially limit the ability to
find new functions of already annotated genes by association with other known functions.
Brameier and Wiuf [18] proposed a co-clustering algorithm using both expression profiles and
GO annotations based on self-organizing maps (SOM) [8]. The method assigns cluster
membership of genes initially by random so that the generated clusters can be inconsistent in
different runs. On the other hand, the initialization step of our GO Fuzzy c-means algorithm
allows the generation of repeatable clustering results and alleviates the need to predefine the
number of clusters to be formed. The use of GO annotations as prior knowledge is not restricted
to distance-based clustering algorithms. Pan [19] and Huang et al. [20] applied GO annotations
to model-based clustering algorithms, which assumes the underlying data to follow some
probability distributions. Chopra et al. [21] showed that by obtaining genes that are associated
with the chosen biological processes in the process of clustering gene expression data, multiple
biological contexts of the data can be identified.

The main idea behind our GO Fuzzy c-means algorithm is that by incorporating GO annotations
in the cluster seed steps as well as the membership updating steps, genes involved in the same
biological process are more likely to be assigned to the same clusters. The clustering results
produced by GO Fuzzy c-means are consistent since it does not assign initial clusters randomly.
As the algorithm uses existing biological knowledge to make more informed choices in the
estimates of the number and membership of seed clusters, the results it produces could
accommodate the known multiplicity of protein functions in a more natural manner and
therefore more biologically meaningful compared to results produced by clustering algorithms
without using prior knowledge. A further benefit of using GO Fuzzy c-means is the elimination
of the extra manual effort to identify the functions associated with the clusters.

The use of prior knowledge is common in the area of semi-supervised learning in the machine
learning community. The incorporation of even small amounts of labeled data improves the
performance of classification and clustering of unlabeled data [22-24]. In the case of semi-
supervised clustering techniques, a small amount of labeled data is used to facilitate the
clustering results. The labels for the data usually come from domain knowledge, which can be
seen as prior knowledge. Several semi-supervised versions of the k-means algorithm, such as
seeded k-means [25], constrained k-means [26] and COP k-means [27], have been proposed to
utilize partial label information.

Methods
Gene Ontology

The Gene Ontology (GO) [9] is a hierarchy of terms using a controlled vocabulary that includes
three independent ontologies for biological process, molecular function and cellular
component. Standardized terms known as GO terms describe roles of genes and gene products
in any organism. GO terms are related to each other in the form of parent-child relationships.
A gene product can have one or more molecular functions, can be used in one or more biological
processes, and can be associated with one or more cellular components [9]. As a way to share
knowledge about functionalities of genes, GO itself does not contain gene products of any
organism. Rather, expert curators specialized in different organisms annotate biological roles
of gene products using GO annotations. Each GO annotation is assigned with an evidence code
that indicates the type of evidences supporting the annotation.

GO is an organism-independent ontology that covers a wide range of biological terms for the
three different ontologies, containing tens of thousands of terms for each ontology. While it is
informative for gene products to be annotated as specifically as possible, sometimes such
details can complicate the process of analyzing genes, such as identifying the common
functions of the genes. To aid the interpretation of GO, a set of general GO terms called
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GOSlim1 terms is defined for various organisms as well as generic use. Examples of general
GO biological process terms for yeast are “cell cycle” and “protein biosynthesis”.

In this paper, GOSlim biological process terms defined by SGD2 were used to interpret the
functions of genes at a general level. The use of GOSlim terms can be seen as a way to determine
the similarity of genes. Suppose two genes are annotated to two different GO terms and the
two GO terms are descendants of a GOSlim term, then we say that the two genes are similar
due to the association with the same GOSlim term. Using this notion of similarity of genes,
genes annotated to the same GOSlim term are assigned to the same initial cluster. Other
common methods of measuring the similarity of genes using GO annotations are distance
measures between GO terms based on levels and lowest common ancestors [28]. Using the
number of levels that separate two different GO terms to determine similarity can sometimes
be misleading, as the levels of details in GO in each sub-hierarchy can be arbitrary. Besides,
making these measures is usually computationally expensive when dealing with a large number
of genes.

Datasets
We applied our GO Fuzzy c-means algorithm to analyze two well-known yeast microarray
datasets compiled from a variety of expression experiments [4,29] that provide expression
profiles for yeast carrying out a variety of cellular programs and responding to a variety of
applied stimuli. The diversity of cellular activities represented by these compiled datasets
provides a serious test of the ability to recognize multiple functionalities supported by genes.
The first data set [29], denoted as dataset A, contains about 6200 genes with 80 samples, while
the second data set [4], denoted as dataset B, contains about 6100 genes with 93 samples. There
are 3962 genes in Set A and 3957 genes in Set B with GO functional annotations. The following
versions of various data files were used in the results presented in this section: the Gene
Ontology used in the study was created in September 20053, the GOSlim terms by
Saccharomyces Genome Database (SGD)4 were compiled on September 29, 2005 and the yeast
GO annotation5 used was generated on September 30, 2005. The reason for using outdated
GO annotations is to evaluate the ability of predicting new gene functions for our algorithm.
However, the latest version of the annotations can be used with the algorithm.

GO Fuzzy c-means Algorithm
The fuzzy c-means clustering algorithm [5] is a variation of the popular k-means clustering
algorithm, in which a degree of membership of clusters is incorporated for each data point.
The centroids of the clusters are computed based on the degree of memberships as well as data
points. The random initialization of memberships of instances used in both traditional fuzzy
c-means and k-means algorithms lead to the inability to produce consistent clustering results
and often result in undesirable clustering results [3]. We replace the random initialization of
memberships with the use of gene annotations, so that clustering results generated by GO Fuzzy
c-means are guaranteed to be repeatable. Since we utilize pre-defined classes in GOSlim, unlike
the traditional fuzzy c-means and k-means algorithms, the number of clusters does not need to
be determined ahead of time in GO Fuzzy c-means clustering.

In this section, we describe our modified fuzzy c-means algorithm called GO Fuzzy c-means
by first describing how the initial memberships of clusters are assigned for each gene, which
is an essential component that differs from a traditional fuzzy c-means algorithm. We then

1http://www.geneontology.org/GO.slims.shtml
2http://www.geneontology.org/GO_slims/goslim_yeast.obo
3http://www.geneontology.org/GO.downloads.shtml
4http://www.geneontology.org/GO_slims/
5http://www.geneontology.org/GO.current.annotations.shtml
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illustrate how to utilize gene annotations as well as gene expression values to update
memberships for our GO Fuzzy c-means algorithm. To generate optimal clusters, a validity
measure is used to verify that the clusters generated by GO Fuzzy c-means are compact with
clear separation among them.

Initial membership assignment—Given a set of genes G, the corresponding GO
annotations with respect to the biological process ontology are then utilized for the initialization
of the fuzzy membership for the fuzzy c-means clustering algorithm. We utilize the set of
GOSlim biological process terms defined by SGD [30] which have 32 GOSlim biological
processes listed in Table 1. Genes are assigned to the GOSlim biological process terms, denoted
as GOBP, as follows. Each distinct GOSlim biological process term is considered as a cluster.
Suppose gene g is associated with biological process bp according to the GO annotation, and
bp is a descendant of sbp in the GO hierarchy, where sbp ∈ GOBP. Then g is assigned to the
general biological process sbp. The degree of belief for g to be in cluster associated with sbp
depends on the evidence code of the GO annotation.

The idea of initial membership assignment can be illustrated by the following pseudo code:

Let uij
(k) be the membership of gene gi in cluster clj in the k-th iteration, in which

cluster clj corresponds to biological process bj. So uij
(0) represents the initial

assignment of membership of gene gi in cluster clj. Let pij be the degree of belief
according to the evidence code that support the annotation gi being associated with
bj, such that 0 ≤ pij ≤ 1. Let α, r be values between 0 and 1 (0 ≤ α, r < 1). Then, for
each gene gi,

1. Initialize uij
(0) as α · r.

2. If gi is involved in biological process bj, assign uij
(0) = pij (1 - α) + α · r. The most

reliable evidence code is used if there are multiple evidence codes for the annotation.

The role of r is the degree of belief (constant) when gi is not associated with bj. While r
intuitively should be a small constant, it is necessary to allow genes that are not known to be
associated with bj to be assigned to bj based on their transcriptional patterns. The role of α in
the assignment of uij

(0) is to allow variation in the degreeof dependency of the membership
uij

(k) on gene annotation and gene expression (see the algorithm for details). When α = 0, it
implies that the assignment of membership is totally dependent upon gene annotation. On the
other hand, the assignment of membership is less dependent on gene annotation when α
approaches 1. Assignment of membership is dependent on both gene annotation and gene
expression values when 0 < α < 1.

GO Fuzzy c-means algorithm—Once initial membership is assigned to each gene based
on GO annotations, we now proceed to update the membership of each gene to clusters based
on both data and GO annotations. The algorithm to update the memberships as well as initial
membership assignment is illustrated in the following.

Let xi be a vector of expression values for gene gi.

1. Initialize membership uij of gene gi of cluster clj, as described in the previous
subsection, so that U(0) = [ uij ], the validity of cluster measure S* = ∞, fuzzy centroid
C* = C(1), fuzzy membership U* = U(0). U(0) is obtained from GO annotations.

2. At the k-th step, compute the fuzzy centroid C(k) = [ cj ] for j = 1, .., nc, where nc is
the number of clusters, using
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where m is the fuzzy parameter, xi is the expression vector for gene gi, and n is the
number of genes.

3. Update the fuzzy membership U(k) = [ uij ], usingwhere

4. Compute validity of cluster measure S using

5. If S < S*, then S* = S, C* = C(k) and U* = U(k).

6. Repeat steps 2 to 6 until stopping criteria.

The stopping criterion for GO Fuzzy c-means is when a predetermined number of iterations
are reached. When the algorithm reaches the stopping criteria, the optimal cluster C* and
memberships U* are the output of the algorithm. A cluster is determined as optimal if S, the
validity measure of the cluster, is minimal among the iterations. The fuzzy parameter m in step
2 is set to 2. Notice that steps 3 and 4 are different from the original fuzzy c-means algorithm,
in the sense that the initial membership derived from GO annotations is also utilized during
the update of membership. Step 4 is a measure of validity of clusters [31], in which the minimal
S produces the most compact clusters but with the furthest separation between the clusters. We
say that a gene gi is potentially associated with biological process bj if uij

(*) > δ, where δ was
set as 0.05 in our experiments. While GO Fuzzy c-means, as in the original fuzzy c-means
algorithm, is able to assign instances to multiple clusters, there is no clear distinction between
uncertain cluster membership and membership in multiple clusters. The source code of GO
Fuzzy c-means implementation is freely available at http://sysbio.fulton.asu.edu/gofuzzy/.

Results
One of the main differences between fuzzy c-means clustering and other typical clustering
algorithms is that fuzzy c-means allows an instance to be assigned to multiple clusters. This
key feature allows a more suitable representation of the relationships of genes, as gene products
are usually involved in multiple roles in the functioning of the cell. Using datasets A and B
(described in Methods section), Table 2 shows that about 50% of the assigned genes (i.e. genes
assigned to at least one of the 32 clusters) belong to moren 1 cluster in the clustering results
produced by GO Fuzzy c-means. Such multifunctional behavior cannot be represented by
traditional clustering algorithms such as hierarchical and k-means. In addition, the proposed
method provides another advantage; each cluster generated by our method is automatically
annotated with certain biological processes. This alleviates the need for a complete secondary
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analysis (biological interpretation) of each of the clusters, which can be a time-consuming
process.

Another unique feature of our GO Fuzzy c-means algorithm is that the initial assignment of
the membership relies on the GO annotation. Every GO annotation comes with an evidence
code indicating the type of experiments supporting the annotation. The evidence codes can be
used as a measure of reliability of the annotation, and such evidence codes are used as degrees
of belief of the annotation for the initial assignment. Table 3 shows the degrees of belief
assigned for various evidence code, based on the hierarchy of reliability of GO evidence6.
When there is no GO support for assigning a gene to a particular cluster, it can be assigned
based solely on expression data. In this case, a small degree of belief r is assigned.

Optimality of clusters
We first analyzed the effect of α and r, the level of dependency on gene annotation and the
degree of belief for no annotation support, on the quality of clusters in terms of cluster
compactness and separation. Different degrees of α allow varying the influence of the gene
annotations and gene expression values in determining the gene memberships in each cluster.
The compactness was measured by a well-known validity measure [31,32], based on a ratio of
cluster compactness to separation. The biological significance of the clusters, denoted as the
z-scores, was measured as well using ClusterJudge [33]. The higher the value of the z-score,
the less chance for the clusters to be produced by random, which indicates the biological
significance of the clusters. Tables 4 and 5 show the values of validity (computed as in step 4
of the algorithm Materials and Methods) and z-scores, for the clusters formed using different
degrees of α and r. From the values presented in Tables 4 and 5, it can be seen that the clustering
results achieve the most compact clusters with furthest separation between the clusters when
α = 0.3 and r = 0.2 for dataset A and α = 0.1 and r = 0.3 for dataset B. This suggests that highly
compact clusters can be achieved with the use of both gene annotation and gene expression
values. The optimal clustering results can be downloaded from
http://sysbio.fulton.asu.edu/gofuzzy/ and the results can be visualized using MapleTree7.

It is also important to investigate the effects of the different degrees of α and r on the goodness
of the clusters with respect to the biological meaning. The z-scores indicate that quality of the
clusters is not significantly different from each other, except in one case when α = 0.5 and r =
0.5. This shows that the quality of the clusters produced are robust, in terms of z-score, despite
of the values of α and r.

Influence of the richness of GO annotations
From the previous sub-section, it becomes apparent that optimality of the clusters is reached
when α is small, meaning a higher dependence of the use of GO annotations in the process of
clustering. We also investigated how the richness of the GO annotations affects the
performance of GO Fuzzy c-means. This allows us to gain insights in the performance of GO
Fuzzy c-means when it is applied to organisms that do not have annotations as rich as yeast.

We explored the effects of the richness of the GO annotations on GO Fuzzy c-means by
performing experiments using 25%, 50% and 75% of the original GO annotation, and compare
the clustering results against the original GO annotation (100%). The evaluation was performed
by estimating the accuracy of the assignment of functions of all the genes in the optimal clusters
using the original GO annotations as the reference. This acts as a measure of the overall quality
of the assignment of gene functions. Tables 6 and 7 show the number of annotations used and

6http://www.geneontology.org/GO.evidence
7MapleTree: http://mapletree.sourceforge.net/
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the number of genes assigned for different samplings of the original annotation. The overall
accuracies of formed clusters are 77% - 99%, as illustrated in Figures 1 and 2. The results
showed that despite using various degrees of annotation, high rates of accuracy are achieved
in assigning genes to correct GO clusters according to the original full annotation. These results
show that GO Fuzzy c-means is suitable to be applied to the analysis of gene expression data
that involve organisms whose annotations are not as rich as yeast.

Performance comparison
We compared the performance of GO Fuzzy c-means with FuzzyK [4], which is a modification
of the fuzzy c-means algorithm, using datasets A and B. To achieve a fair comparison, we set
the number of clusters k to be 32 for FuzzyK, which is the same number of clusters generated
by GO Fuzzy c-means. The membership cutoff value was chosen as 0.08, which is the same
value reported in [4]. As shown in Table 8, the z-scores computed by ClusterJudge [33] indicate
that GO Fuzzy c-means using 25% of the annotation performs about the same with FuzzyK.
However, GO Fuzzy c-means has a better performance over FuzzyK when 50 or higher
percentage of annotation was used. We compared our GO Fuzzy c-means algorithm with other
fuzzy clustering techniques, such as regular fuzzy c-means and FuzzySOM. Using the
implementation in WEKA [34], we configured the algorithms by setting the number of clusters
to be 32 with the fuzzy parameter as 1.2, and the maximum iterations as 500. Euclidean distance
was used as for the computation of similarity. As indicated in Table 8, we can see that GO
Fuzzy c-means performs significantly better. We also performed a similar comparison with
FLAME [34], which is a fuzzy clustering algorithm that is capable of handling non-linear
relationships and non-globular clusters. Since the number of clusters is automatically
determined by FLAME, the default setting (number of k-nearest neighbors = 10 with the
maximum number of approximation = 500) was used to perform clustering on datasets A and
B. Using Euclidean distance for the computation of similarity, 21 and 28 clusters were
generated by FLAME for both datasets A and B. We showed that GO Fuzzy c-means also
performs better compared to FLAME as illustrated in Table 8.

We performed further comparisons of GO Fuzzy c-means with other state-of-the-art clustering
methods that do not utilize prior knowledge such as self-organizing maps (SOM) [8] and
Gaussian mixture model. The implementations used in our experiments for SOM and Gaussian
mixture model were obtained from [35] and [36]. As in the comparison with FuzzyK, we set
the number of clusters to be 32 for both SOM and Gaussian mixture model, with the maximum
number of iterations of 100,000 and 100 respectively. Since SOM is a non-deterministic
algorithm, we performed 5 runs for both datasets. As in Table 8, we can observe that GO Fuzzy
c-means outperforms SOM and Gaussian mixture model clustering algorithms for both
datasets. While it is more reasonable to compare our GO Fuzzy c-means with other clustering
algorithms that utilize prior knowledge, it is unfortunate that the current implementations of
these algorithms are not implemented for general use. Thus, it is not feasible to perform such
comparison.

Initialization of clusters
We compared the clusters between initialization of cluster memberships of genes based on
gene annotations and random initializations. We found that similar clusters were achieved
when using random initialization of memberships with update of memberships dependent on
both expression values and gene annotations. However, our initialization method ensures that
the clustering results for both datasets were deterministic.

Function prediction
Clustering of genes based on expression behavior is a powerful way to uncover unknown
functions of genes. By assigning genes with unknown functions to a group of genes whose
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functions have already been identified, the functions of the unannotated genes can then be
inferred based on the similarity of their expression profiles. While the majority of the genes
assigned in our clustering results are consistent with the gene annotations, it is important to
study the genes that have new assigned functions that were not previously known. Tables 9
and 10 show the number of genes with newly proposed functions for datasets A and B,
respectively. These genes have been further investigated. One interesting finding is that the
gene YER036C is clustered in the group GO:42254 in our clustering results for both datasets
A and B. This suggests that YER036C is involved in ribosome biogenesis and assembly. The
GO annotation from SGD which was used to generate the clusters was created in September
2005. From this version of the annotation, YER036C was assigned to biological process
unknown (GO:0000004). According to SGD [30], YER036C was assigned a new name
ARB1 (ATP-binding cassette protein involved in Ribosome Biogenesis), and was assigned to
be involved in ribosome biogenesis on Jan 5, 2006 based on the published article [37]. The
correct assignment of the gene function of ARB1 can be explained by the similarity of the
expression values of ARB1/YER036C with the values of the genes that are annotated to be
involved in ribosome biogenesis. Similarly, the correctness of the gene function assignment
based on the latest GO annotation dated in July 2006 is confirmed for 6 other genes. The genes
ALB1/YJL122W [38] and RSA4/YCR072C [39] are assigned to the cluster that corresponds to
ribosome biogenesis using datasets A and B, in which the genes are associated with ribosomal
large subunit biogenesis (GO:0042273) and ribosomal large subunit assembly and maintenance
(GO:0000027) respectively according to the latest GO annotation. While not as specific, SAE3/
YHR079C-A8 [40,41] is assigned to the cluster that corresponds to meiosis (GO:0007126) using
dataset A, and TMA19/YKL056C [42], ASC1/YMR116C [43] and ZUO1/YGR285C [44] are
assigned to protein biosynthesis (GO:0006412) using dataset B. These genes are summarized
in Table 11.

Further analysis of the cluster GO:16070 for dataset B reveals genes with known interactions
being assigned to the same cluster. CNS1, HGH1 and CPR7 are members of this cluster.
According to Yeast GRID9, CNS1 is known to interact with HGH1 physically [45], while
CPR7 has genetic interaction with CNS1 based on various evidence including MIPS [46-48].
The clustering results also suggest some potential interactions within the members of the
clusters.

Conclusion
The methodology of utilizing prior knowledge to guide clustering is common among semi-
supervised clustering algorithms [25-27]. Our modified version of the fuzzy c-means clustering
algorithm is capable of generating consistent clusters by assigning initial clusters using prior
knowledge. In this paper, we illustrated the capability of our algorithm by incorporating GO
annotations as prior knowledge for clustering gene expression data. This modified form of
clustering can be seen as a template for the use of other biological data such as protein-protein
interaction and pathway data. By following the approach of using prior biological knowledge
for the fuzzy c-means algorithm, other clustering algorithms such as hierarchical and k-means
can be adapted to use prior biological knowledge as well. As the clustering results generated
by GO Fuzzy c-means are consistent with GO annotations, and this approach can identify
previously unknown functions for genes as well, this method has clear biological relevance.

8Even though this gene function was assigned in the Sep 2005 annotation which we used, GO Fuzzy c-means treated this gene as a gene
with no annotation due to its name in the yeast dataset. The name of this gene in the annotation files is SAE3/YHR079C-A, while it is
called YHR079BC in dataset A.
9http://biodata.mshri.on.ca/yeast_grid/
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Some of the unique features that distinguish our GO Fuzzy c-means from the one used in the
previous study [4] are: (i) the user no longer needs to define the number of clusters, and (ii)
the biological annotation of the generated clusters is now automatically assigned. Both are
significant advantages, as it is usually non-trivial to define an appropriate number of clusters
and time-consuming to analyze the clusters of genes directly from literature. Huang and Pan
[17] proposed an extension of a k-medoids algorithm by incorporating GO annotations. While
genes of unknown functions can be assigned to clusters with genes of known functions, their
method does not allow genes with known functions to be assigned to other clusters. This can
potentially limit the ability to find new functions of already annotated genes by association
with other known functions.

On the other hand, there are certain limitations of the current GO Fuzzy c-means algorithm. It
is important to notice that it is not conclusive if the cluster membership of a gene is assigned
by chance, in particular for the membership values that are low. The number of clusters is
dependent on the number of GOSlim biological process terms, which can be seen as general
GO biological process terms, and only GOSlim biological processes can be identified other
than the GOSlim biological processes used in the algorithm. However, one can expand GOSlim
terms or use other more extensive prior knowledge without modifying the basic algorithm
described in the paper. It is also important to note that the GO Fuzzy c-means algorithm can
be applied to organisms other than the budding yeast Saccharomyces cerevisiae. Our method
presented in this paper utilizes the GOSlim biological process terms for yeast, but there are
other kinds of GOSlim terms defined for various organisms that can be used instead. Given
the gene expression data and the prior knowledge, the ability for GO Fuzzy c-means to generate
consistent clustering results as a global view of the data is important. However, as demonstrated
in work by Chopra [21], different clustering results can be obtained for the same gene
expression data by choosing different biological processes to analyze. It is important to
investigate how such local context can be incorporated into our algorithm as future work. As
in traditional fuzzy c-means clustering algorithm, determining the value of membership cutoff
is fairly arbitrary. However, the choice of 0.05 as the membership cutoff value is intuitively
reasonable, as it is higher than the uniformly distributed membership (0.03125). The choice of
this membership cutoff value is also justified by the observation that about 96% of the genes
had membership values of ≤ 0.05, while about 3.6% of the genes had membership values of ≥
0.1. Another limitation of our algorithm is that the value of α needs to be experimentally
determined. It should also be mentioned that since this algorithm is by design strongly biased
towards clustering based on the type of prior knowledge used, it is probably not best suited for
clustering where associations based on that particular type of prior knowledge are not directly
related to the analysis.

While there are certain limitations to GO Fuzzy c-means, the reported results demonstrate that
incorporating prior knowledge improves the coherence of the clusters relative to the knowledge
domain. Similarly, the ability to assign memberships of genes to multiple clusters improves
the biological relevance by allowing the representation of the diverse roles of genes. The
experimental results suggest that GO Fuzzy c-means is quite efficient in exploiting even a small
percentage of GO annotations in order to assign gene functions. This implies that our GO Fuzzy
c-means algorithm will be very useful when applied to gene expression data for organisms in
which the annotations are not as rich as in yeast. Our results also show that GO Fuzzy c-means
outperforms the state-of-the-art clustering algorithms such as SOM and Gaussian mixture
model using a small percentage of GO annotations. This suggests that the use of GO annotations
improves the prediction of correct gene functions.
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Figure 1.
Accuracy of the assignment of gene functions by GO Fuzzy c-means using various degrees of
GO annotations for dataset A.
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Figure 2.
Accuracy of the assignment of gene functions by GO Fuzzy c-means using various degrees of
GO annotations for dataset B.
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Table 1
A list of 32 GOSlim biological process terms used in GO Fuzzy c-means

GO id Description

GO:0007114 cell budding

GO:0016070 RNA metabolism

GO:0006091 generation of precursor metabolites and energy

GO:0030435 sporulation

GO:0005975 carbohydrate metabolism

GO:0006464 protein modification

GO:0016192 vesicle-mediated transport

GO:0000746 conjugation

GO:0007126 meiosis

GO:0007124 pseudohyphal growth

GO:0007049 cell cycle

GO:0006350 transcription

GO:0007047 cell wall organization and biogenesis

GO:0009653 morphogenesis

GO:0000910 cytokinesis

GO:0007010 cytoskeleton organization and biogenesis

GO:0030163 protein catabolism

GO:0006412 protein biosynthesis

GO:0019725 cell homeostasis

GO:0042254 ribosome biogenesis and assembly

GO:0006997 nuclear organization and biogenesis

GO:0006259 DNA metabolism

GO:0007165 signal transduction

GO:0006950 response to stress

GO:0006118 electron transport

GO:0006810 transport

GO:0006766 vitamin metabolism

GO:0006629 lipid metabolism

GO:0016044 membrane organization and biogenesis

GO:0006519 amino acid and derivative metabolism

GO:0006996 organelle organization and biogenesis

GO:0045333 cellular respiration
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Table 2
Assignment of genes to clusters for both datasets A and B with value of membership cutoff = 0.05

Number of genes assigned Number of genes assigned to > 1 cluster

Dataset A
(α = 0.3, r = 0.2)

4067 1979 (48.66%)

Dataset B
(α = 0.1, r = 0.3)

4111 2054 (49.96%)
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Table 3
Degrees of belief assigned according to the evidence code

Evidence code Degree of belief

TAS, IDA 0.9

IMP, IGI, IPI 0.8

IC, RCA, ISS, IEP 0.7

NAS 0.6

IEA 0.5
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Table 6
Average number of annotations randomly sampled in 30 repetitions from the original 7483 annotations with respect
to the genes in dataset A. Annoi% indicates the percentage of GO annotation used.

Anno25% Anno50% Anno75%

α = 0.1 1855.23 3735.00 5601.00

α = 0.2 1853.93 3747.77 5610.23

α = 0.3 1881.00 3744.37 5615.93
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Table 7
Average number of annotations randomly sampled in 30 repetitions from the original 7454 annotations with respect
to the genes in dataset B. Annoi% indicates the percentage of GO annotation used.

Anno25% Anno50% Anno75%

α = 0.1 1525.37 2606.73 3371.67

α = 0.2 1528.53 2612.23 3379.13

α = 0.3 1548.20 2611.63 3379.00
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Table 8
Comparison of the clustering performance among GO Fuzzy c-means, FuzzyK, SOM and Gaussian mixture model
using datasets A and B. GOFuzzyx% represents x percentage of GO annotation was used in GO Fuzzy c-means.
ClusterJudge [33] was used to compute the z-scores with 10 runs for each of the clustering results. A clustering result
with higher z-score indicates that the clusters are more likely to be biologically relevant.

Method z-scores and standard
error for Dataset A

z-scores and standard
error for Dataset B

GOFuzzy25% 91.18 ± 3.22 119.10 ± 3.47

GOFuzzy50% 175.90 ± 4.68 181.20 ± 3.36

GOFuzzy75% 248.40 ± 3.81 255.10 ± 4.65

GOFuzzy100% 323.10 ± 7.59 316.60 ± 6.04

FuzzyK 102.33 ± 1.85 108.10 ± 2.32

Fuzzy c-means 68.08 ± 5.52 83.12 ± 4.57

FuzzySOM 68.56 ± 2.66 81.48 ± 5.43

FLAME 66.18 ± 4.83 85.55 ± 5.93

SOM 44.13 ± 0.61 52.62 ± 0.30

Gaussian 0.72 ± 0.030 73.55 ± 0.77
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Table 9
Number of genes identified to have previously unknown functions for dataset A using all 3962 genes with annotations
(α = 0.3, r = 0.2)

Cluster Number of genes in cluster Number of genes with new functions

GO:6412 465 9(1.94%)

GO:7049 332 1(0.30%)

GO:30435 160 57 (35.62%)

GO:42254 267 32 (11.99%)

GO:7126 156 29 (18.59%)
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Table 10
Number of genes identified to have previously unknown functions for dataset B using all 3957 genes with annotations
(α = 0.1, r = 0.3)

Cluster Number of genes in cluster Number of genes with new functions

GO:6091 168 13 (7.74%)

GO:6412 535 73 (13.64%)

GO:16070 463 22 (4.75%)

GO:5975 230 39 (16.96%)

GO:6118 45 18 (40.0%)

GO:45333 89 5 (5.62%)

GO: 6950 385 5 (1.30%)

GO:910 100 5 (5.00%)

GO:42254 314 79 (25.16%)
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Table 11
List of genes with correct assignment of gene functions by GO Fuzzy c-means that are confirmed by the latest GO
annotation. The number in the bracket [] (the second column) indicates the level of depth of SGD GO terms under GO
terms assigned by GO Fuzzy c-means.

Systematic /
Standardized name

Assigned by SGD Assigned by GO Fuzzy c-
means

Reference

YER036C/ARB1 ribosome biogenesis
 (GO:0007046) [1]

ribosome biogenesis and
 assembly (GO:0042254)

Dong et al., 2005

YJL122W/ALB1 ribosomal large subunit
 biogenesis (GO:0042273)
[2]

ribosome biogenesis and
 assembly (GO:0042254)

Lebreton et al., 2006

YCR072C/ RSA4 ribosomal large subunit
assembly and maintenance
(GO:0000027) [3]

ribosome biogenesis and
 assembly (GO:0042254)

de la Cruz et al.,
2005

YHR079C-A/SAE3 meiotic DNA recombinase
assembly (GO:0000707) [3]

meiosis (GO:0007126) Hayase et al., 2004;
Tsubouchi and
Roeder, 2004

YKL056C/ TMA19 Translation (GO:0043037) [1] protein biosynthesis
 (GO:0006412)

Fleischer et al., 2006

YMR116C/ASC1 negative regulation of
 translation
(GO: 0016478) [3]

protein biosynthesis
 (GO:0006412)

Gerbasi et al., 2004

YGR285C/ZUO1 regulation of translational
 fidelity (GO:0006450) [3]

protein biosynthesis
 (GO:0006412)

Rakwalska and
Rospert, 2004
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