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Abstract
This article offers an optimal spatial sampling design that captures maximum variance with the
minimum sample size. The proposed sampling design addresses the weaknesses of the sampling
design that Kanaroglou et al. (2005) used for identifying 100 sites for capturing population exposure
to NO2 in Toronto, Canada. Their sampling design suffers from a number of weaknesses and fails
to capture the spatial variability in NO2 effectively. The demand surface they used is spatially
autocorrelated and weighted by the population size, which leads to the selection of redundant sites.
The location-allocation model (LAM) available with the commercial software packages, which they
used to identify their sample sites, is not designed to solve spatial sampling problems using spatially
autocorrelated data. A computer application (written in C++) that utilizes spatial search algorithm
was developed to implement the proposed sampling design. This design was implemented in three
different urban environments - namely Cleveland, OH; Delhi, India; and Iowa City, IA - to identify
optimal sample sites for monitoring airborne particulates.
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1. INTRODUCTION
There is an increasing interest in air pollution data at a high spatial resolution, because a few
centrally located monitoring stations fail to capture spatial variability in air pollution within
an urban area.1 Thus, the data from these stations alone can under- or overestimate exposure,
which in turn could result in error and uncertainty in the quantification of the burden of diseases
of air pollution. A spatial sampling design is required to capture spatial variability. In the article
published in this journal, Kanaroglou et al.2 suggested a location-allocation model (LAM) with
the maximum attendance objective function for establishing a network of air pollution
monitoring stations for capturing intra-urban population exposure to NO2. The two goals of
their paper were: (1) to develop a formal method of optimally locating a dense network of air
pollution monitoring stations, and (2) to derive an exposure assessment model based on data
monitored at these stations and related land use type, population, and biophysical environment.

The goals outlined in Kanaroglou et al. are extremely important for two reasons. First, air
pollution monitoring for capturing spatial variability in exposure is expensive and time
consuming. Therefore, it is critically important to optimize the locations of sample sites, so
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that they capture and represent population exposure. Second, our understanding of the exposure
in microenvironments is far from complete due to the limited spatial coverage of air pollution
monitoring networks. While these goals are important, the methodology they proposed to
identify an optimal network of monitoring stations suffers from a number of weaknesses and
failed to meet the objectives outlined in their paper. The remainder of this article is organized
into three sections. The first section presents an overview of LAM for operational research.
The second section describes the main weaknesses of the sampling design Kanaroglou et al.
used. The final section details the optimal spatial sampling design that captures maximum
variance with the minimum sample size and addresses the weaknesses of Kanaroglou et al.’s
sampling design.

2. LOCATION ALLOCATION MODEL – INTRODUCTION
2.1 Location-Allocation Model for Air Pollution Sampling Network

Operational research utilizes the location-allocation model (LAM) for various purposes,
including service delivery, strategic planning and operational research. The implementation of
LAM requires data on three different things – (a) a list of demand sites (i.e. all areas for which
air pollution estimates are required), (b) potential candidate locations of service centers (i.e. a
list of all logistically feasible locations where samplers can be deployed), and (c) a network
that will connect both demand points and candidate locations. The third, however, is not
essential if demand sites and candidate sites are not connected through a transport network,
and Cartesian distance is used to establish the connectivity between these two. A theoretical
framework and comparison of different LAMs are available elsewhere.3

3. Critique of Kanaroglou et al.’s Sampling Design
3.1 LAM for spatial sampling for air pollution monitoring

Kanaroglou et al. recognize the importance of intra-city variability in air pollution and utilize
it as one of two criteria for determining the weights of candidate locations. The methodology
they used for capturing spatial variability and weighting it by the population is problematic.
First, weighting spatial variability (in the air pollution surface) by the population can result in
the selection of redundant sites and degrade the efficiency of the sample design to capture
population exposure. Weighting demand by population biases the site selection in favor of
densely populated areas and does not necessarily capture spatial heterogeneity in air pollution.
For example, selecting a site in an area of high spatial autocorrelation (in air pollution
distribution) is adequate to capture population exposure in that area. And of course, one would
like to restrict the selection of sample sites to residential areas only, if the goal of sampling is
to assess population exposure.

Second, they used a linear regression model to generate a variability surface of (NO2) based
on the relationship between NO2 observed at the existing 16 monitoring stations and the land-
use characteristics around these sites. The variables they used, such as lengths of expressways
within 0–50m and 50–200m of the monitoring stations, were significantly autocorrelated, and
the value of this variable gradually declines as the distance from the expressway increases. As
evident in Table 1 (in their paper, p.2405) the regression coefficients of expressway lengths
within 0–50m and 50–200m were -592 and 253, respectively. The first was negatively
correlated with the NO2 and the second was positively correlated with NO2. Since both were
highly autocorrelated, both canceled out each-other’s influence and resulted in the biased
estimation of regression results. Given the spatial dependence structure in the variables they
used in the regression, the NO2 surface they predicted (at 5m spatial resolution) had very high
spatial autocorrelation. Without controlling for spatial autocorrelation, the sum of the demand
(and also the total variance) is significantly exaggerated, and results in the selection of
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redundant sites. LAM, available in the commercial software packages such as ArcInfo, do not
account for spatial autocorrelation, as these were not designed for solving the spatial sampling
problems.

Third, while the formalization of sampling design is important, formalization of the sample
size is even more important, because air pollution monitoring is expensive and time-
consuming. Therefore, it is critically important to determine the sample size such that it
adequately captures the representative estimates of population exposure. The classical
sampling theory suggests that the sample size (n) for computing sample mean with 95%
confidence interval can be defined as n =(1.96*σ/e)2, where σ is the standard deviation and e
is the acceptable margin of error. The computation of variance (σ2) based on spatially
autocorrelated data can result in over estimation of variance and hence oversampling.
Kanaroglou et. al. determined n ~ 100 in an ad-hoc fashion and did not provide any justification.
Therefore, it is not clear it is difficult to evaluate the statistical robustness of the exposure
estimation based on the air pollution data monitored the identified 100 sample sites.

3.2 Allocation modeling
Kanaroglou et al. state that ArfInfo software (ESRI3, 4) “offers two options: the P-Median
Problem or P-MP and the Attendance Maximizing Problem” (p. 2404) – to implement LAM.
In fact, this software offers four different location criteria for implementing LAM, namely
mindistance, mindistpower, maxattend and maxcover.4 Among these four the distance
minimization and exponential distance minimization belong to P-Median group. They
described P-Median and Attendance Maximization in their paper and made a case for
employing the latter to identify 100 sites. The locational criterion they chose maximizes the
attendance at the service centers, assuming that attendance declines with distance in a linear
fashion. This criterion, however, does not account for spatial autocorrelation and could chose
spatially clustered locations if population size is relatively large at the adjacent location.

The goal of an optimal network for air pollution monitoring should be to capture the best
representation of air pollution exposure with the available sample size (or the minimum sample
size) rather than optimizing geographic access or attendance at the monitoring stations. Given
the demand surface of spatial-variability was weighted by the population, LAM with the
attendance maximization must have biased sample sites in the favor of areas with relatively
higher population concentration and resulted in clustering the sample sites. As stated earlier,
to optimize the location of sample sites, the spatial autocorrelation must be minimized and
location candidates should be restricted to the residential areas only if the goal of sampling is
to compute population exposure.

3.3 Variance surface
Using the regression coefficients from the linear regression model they estimated initial air
pollution surface at 5m spatial resolution, and then computed spatial variability at the centriod
of each 5m cell. Their equation (1) on page 2400 adopted from Cressie5 is misleading for two
different reasons. First, in the original equation of the average semivariogram (γ ̂h) the
denominator (k, i.e. all pairs of points within a distance range h) is multiplied by 2, because
γ ̂h includes all pairs of points within a distance range h, and each pair of points is included
twice. Second, dividing the numerator by 2 does not make any sense to compute the local
estimate of variance of NO2 (at given pixel) from all its neighbors within the specified h
distance (≤300m in their case). If the goal was to compute average variance, then denominator
must include just the number of neighbors around each ith candidate site within h distance.

Another important thing for generating variance surface is to define h empirically and
determine whether h should vary locally or remain constant throughout the study area.
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Kanaroglou et al., however, do not shed any light on why they chose h ~ 300m, and if h should
have varied from the central parts of the city to suburban areas or for individual candidate site.

4. POTENTIAL SOLUTIONS
4.1 Calculating local estimates of spatial variance

Preliminary estimates of spatial variance are needed to identify sample sites for air pollution
monitoring. By adopting directly from the formula of global average semivariance, the local
semivariance can be calculated as

(1)

Where zi is the value of air pollution at ith candidate/demand location; zj is the air pollution
concentration at jth neighbor within distance range l of h; k is the number of neighbors around
ith candidate within distance range h; and γ ̂i is the average semi-variance at ith, and indicates
how different air pollution concentration is at this location with respect to its neighbors. A low
value of γ ̂i means air pollution concentration at ith site is quite similar to that at its neighboring
locations with distance h, and monitoring air pollution there could capture representative
estimates of air pollution in its neighboring areas.

The value of γ ̂i can largely be influenced by the selection of h. Therefore, it is critically
important to define h empirically. A semivariogram can help us determine h, i.e. the extent
within which spatial autocorrelation is statistically significant. The global semi-variogram,
however, does not provide insight into whether the geographic extent of spatial autocorrelation
is constant or varies regionally or locally. Therefore, another important thing to consider is to
develop regional and local semivariograms and vary hi by sites i = {1,…N} or by regions.
Building on this concept, equation (1) can be rewritten as

(2)

The way γ ̂i is calculated (using a moving window) enhances the intensity of spatial
autocorrelation in the variance surface. Thus, air pollution (zi) observed at the ith location
should suffice as the weight for a potential candidate for the site selection.

4.2 Spatial autocorrelation corrected variance estimation
Once the air pollution surface is calculated the sample size needs to be determined, which
requires the estimates of variance σz

2 and error tolerance. Since most air pollution and
environmental data observe significant spatial autocorrelation, the classical way of computing
variance could overestimate σz

2. An alternative strategy would be to compute variance
controlling for spatial autocorrelation as given below

(3)

where ∀ ij= 0 if dij ≤ h
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4.3 Optimal network
Optimal location identification can be considered as a two step process. In the first, identify
all potential candidates i={1,…,N}. If the sampling goal is to estimate population exposure,
residential areas would be an ideal choice to define candidate locations.6 In the second, define
the objective function to identify the sample sites i={1,…,n} ∈ {1,…,N}. Since the goal of the
proposed sampling design is to capture maximum variance in z by the set of n sample sites,
the objective function can be written as

(4)

Air pollution zi observed at the ith sample site must be significantly different from that observed
at its neighboring sample site (zj). The distance (dij) between a sample site (zi) and its neighbors
(zj) must be > h so that the spatial autocorrelation ρz~0 in z across the set of n sample sites is
zero. Sample size is critically important to define the amount of variance σ2

z captured by the
set of n sample sites, and the n can be conditioned on m, as

(5)

where 0 < m < 1 and determines the extent of variance to be captured by set of n sample sites,
and ∀= 0 if dij ≤ h. The decision m will be governed by the availably of resources and the
required precision in the exposure estimation. A value of 1 will require monitoring air pollution
at all candidate locations avoiding for spatial autocorrelation, meaning dij > h. The proposed
methodology logs the total variance captured by each site selection incrementally and hence
can provide information about the fraction of total variance likely to be captured by air pollution
monitored at the proposed optimal sample sites.

5. SUMMARY
I have read the work of this group and I am impressed by the way they have brought spatial
aspects of air pollution monitoring and its associated health effects to the forefront of
epidemiological studies. While the spatial variability in air pollution and the methods of
capturing spatial variability are critically important, one should not overlook the limitations of
the existing tools that are not particularly suited for developing an optimal network of air
pollution monitoring, such as LAM used by Kanaroglou et al.2 It is important to conceptualize
these models and evaluate them carefully as to whether they meet the identified goals of
capturing spatial variability (in air pollution) and assessing population exposure. They have
introduced LAM to develop an optimal network of air pollution monitoring stations. Their
methodology, however, fails to achieve the goals outlined in their paper, and suffers from a
number of weaknesses, including redundancy in site selection, placing sites in uninhabited
areas, wrong formulation of local spatial variance and misuse of regression. Reading this paper
can provide insight into an optimal spatial sampling design that computes the minimum sample
size, captures the maximum variance (in the air pollutant in question) and addresses the
weakness that Kanaroglou et al.’s sampling design suffers from. The proposed optimal spatial
sampling design was implemented and tested successfully for monitoring air pollution in three
very different urban environments – Cleveland, OH, Delhi, India and Iowa City, IA.
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