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Abstract
Usher syndrome (USH) is a hereditary disorder associated with sensorineural hearing impairment,
progressive loss of vision attributable to retinitis pigmentosa and variable vestibular function. Three
clinical types have been described with type I (USH1) being the most severe. To date six USH1 loci
have been reported. We ascertained two large Pakistani consanguineous families segregating
profound hearing loss, vestibular dysfunction, and retinitis pigmentosa, the defining features of
USH1. In these families we excluded linkage of USH to the 11 known USH loci, and subsequently
performed a genome-wide linkage screen. We found a novel USH1 locus designated USH1H that
mapped to chromosome 15q22-23 in a 4.92 cM interval. This locus overlaps the non-syndromic
deafness locus DFNB48 raising the possibility that the two disorders may be caused by allelic
mutations.
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Usher syndrome (USH) is characterized by inherited deafness associated with night blindness
due to retinitis pigmentosa (RP) and variable vestibular function (1). USH is estimated to be
responsible for more than 50% of deaf-blindness, 8 to 33% of patients thought to have isolated
RP, and 3 to 6% of patients thought to have isolated deafness (2–4). USH is classified into
three clinical subtypes and type I USH (USH1) is the most genetically heterogeneous. To date,
eleven loci have been mapped for Usher syndrome and genes for nine of them, USH1B,
USH1C, USH1D, USH1F, USH1G, USH2A, USH2C, USH2D and USH3, have been
identified (5–16). More than 340 pathogenic alleles have been reported in these nine USH
genes. Although most of the USH mutations are private, a few mutations have a significant
carrier frequency in some ethnic groups (11,15,17,18). For some sporadic and familial cases
of Usher syndrome, mutations in these USH genes cannot be found, suggesting the possibility
of additional novel USH genes (19).
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Consanguineous families are an important resource for the identification of novel genes of
recessive disorders. Here we report two consanguineous Pakistani families in which the USH1
phenotype is linked to a novel USH1 locus, USH1H, on chromosome 15q22-23 (Fig. 1).

Material and methods
Subject enrollment

This study was approved by the Institutional Review Board (IRB) at the National Centre of
Excellence in Molecular Biology, Lahore, Pakistan (FWA00001758) and the IRB of the
NIDCD and NINDS at the National Institutes of Health, USA (OH-93-N-016). Written
informed consent was obtained from all adult subjects and parents of minor subjects under the
age of 18 years. Subjects were from rural areas of the Punjab province of Pakistan.

Clinical evaluation
We performed medical history interviews to find obvious syndromic and environmental causes
of hearing loss. For some of the affected individuals, a physical examination was performed
by an internist (P.L.F) to detect signs, symptoms or stigmata of other disorders such as
Waardenburg or Pendred syndromes. To rule out obvious chromosomal abnormalities, we
performed Giemsa staining and karyotype analyses on chromosomes from peripheral blood
leukocytes from one affected member of each family. Affected subjects underwent a general
otological examination, including otoscopic examination and audiometry. Hearing was
evaluated in some affected and unaffected subjects by pure-tone air- and bone-conduction
audiometry with or without tympanometry. No air-bone gaps were observed in any tested
individuals. Vestibular function was assessed by tandem gait, Romberg testing and
electronystagmography (ENG) with caloric stimulation. Funduscopic and electroretinography
(ERG) examinations were performed by an ophthalmologist to confirm the absence or presence
of RP. The ages of the affected individuals at the time of examination ranged from 8 to 70
years.

DNA isolation, genotyping and linkage analysis
Genomic DNA was extracted from peripheral blood samples using a standard protocol (20).
We first excluded linkage of the USH phenotype to all of the reported USH loci by typing STR
(short tandem repeat) markers (http://www.uia.ac.be/dnalab/hhh/) in genomic DNA from
affected and unaffected members of the two families. We performed a genome-wide scan for
homozygosity among offspring of consanguineous marriages using 388 STR markers (v2.5
ABI Prism Linkage Mapping Set, Applied Biosystems, Foster City, CA) and an ABI Prism
3730 Genetic Analyzer. Alleles were assigned using Genscan and Genotyper software (Applied
Biosystems). Fine mapping was performed using additional reported and novel STR markers
on chromosome 15q22-23.

LOD score calculations
Marker order and map distances are from the Marshfield genetic map
(http://research.marshfieldclinic.org/). Two-point LOD scores were calculated with MLINK
(21). We assumed a recessive mode of inheritance, with full penetrance of USH in homozyotes
and no phenocopies. The disease allele frequency was set at 0.001 with equal meiotic
recombination frequencies for males and females. Short tandem repeat allele frequencies were
defined by genotype analyses of 100 unaffected Pakistani individuals.

Candidate genes
We identified candidate USH1H genes on the UCSC Human Genome Browser
(http://genome.ucsc.edu/) and used Primer3
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(http://frodo.wi.mit.edu/cgi-in/primer3/primer3_www.cgi) to design PCR and sequencing
primers flanking all of the exonic and adjacent intronic sequences of TLE3, ITGA11,
CORO2B and KIF23 genes (bold font, figure 2). Mutation analysis procedures were performed
essentially as described (22).

Results
Clinical description

At the time of examination, the ages of the affected individuals in family PKDF117 ranged
from 10 to 36 years, and all were reported to be deaf from an early age, perhaps at birth. All
affected individuals from families PKDF117 and PKDF125 are segregating bilateral, profound
sensorineural hearing loss. Both in family PKDF125 and PKDF117, deaf individuals had
delayed onset of independent ambulation, consistent with vestibular dysfunction, which was
confirmed by ENG. RP was detected by funduscopy in affected individuals of both families
and was further evaluated in four subjects by ERGs. The severity of RP was directly related
to the age of the patient and ranged from mild to the complete loss of vision (data not shown).

Linkage mapping
Because the USH1 phenotype segregating in family PKDF125 was not linked to markers for
the reported USH loci, we undertook a genome wide linkage analysis. It initially showed
suggestive evidence of linkage only to markers on chromosome 15q22-23. Affected individuals
were homozygous for markers in this interval while unaffected obligate carriers were
heterozygous. Additional markers were genotyped and haplotype analysis revealed a 4.92 cM
interval of homozygosity delimited by markers D15S988 (66.90 cM) and D15S967 (71.82 cM;
Fig. 1) defining a new locus, which the HUGO nomenclature committee designated USH1H.
A maximum two-point lod score (Zmax) of 4.21 at recombination fraction θ=0 was obtained
for the marker ZA840/841 (Fig. 1). USH1H-linked STR markers were then used to screen
additional families segregating USH or isolated recessive deafness. One additional family,
PKDF117, was found to be segregating USH1 linked to markers in this region (Fig. 1).
Individual VI:1 of family PKDF117 provided the proximal meiotic breakpoint at marker
D15S988 (66.90 cM), whereas individual V:13 provided the distal meiotic breakpoint at marker
D15S1005 (75.27 cM) defining a linkage interval of 8.37 cM (Fig. 1). A maximum two-point
lod score (Zmax) of 5.67 at recombination fraction θ=0 was obtained for the marker D15S980
(Fig. 1).

The USH1H critical interval overlaps DFNB48, a locus for non-syndromic recessively
inherited hearing loss that we previously mapped between markers D15S216 and D15S1041
(23). We next considered the possibility that mutations of a single gene might underlie both
USH1H and DFNB48. If so, the mutated gene is located between markers D15S216 and
D15S967, which spans 687.32 kb. On this assumption we examined the overlapping linkage
interval of USH1H and DFNB48 and found only one known gene, TLE3 (Fig. 1). Sequence
analysis of the 21 exons and ~100 nucleotides flanking the exons of TLE3 in affected
individuals of USH1H and DFNB48 families did not reveal any pathogenic alleles.

We next examined the 3.36 Mb region of overlapping homozygosity between the two USH1H
families in which there are 28 genes (UCSC human genome browser, Fig. 2). Inspection of our
massively parallel signature sequencing libraries of mRNA from inner ear tissues (24) show
that 12 of the 28 genes are expressed in these libraries. Based upon their function or sequence
similarity to reported deafness genes, we have so far analyzed four candidates (ITGA11,
CORO2B, TLE3 and KIF23; Fig. 2) and have found no pathogenic variants.
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Discussion
Haplotype analysis of two families revealed a 4.92 cM region of homozygosity for USH1H on
chromosome 15q22-23. Families PKDF125 and PKDF117 each have unique haplotypes across
this region, and therefore probably segregate different mutant USH1 alleles. The USH1H locus
overlaps the DFNB48 locus on chromosome 15 (23) and these two hearing disorders may be
due to allelic mutations. Fourteen of 38 known genes for non-syndromic deafness are also
responsible for a syndromic form of deafness. For example, mutant alleles of four of the known
USH1 genes, MYO7A (13,19), USH1C (7,12), CDH23 (8,9) and PCDH15 (5,6) are responsible
for both non-syndromic hearing loss and USH1 (9,19,25,26).

In the linkage interval common to USH1H and DFNB48 there appears to be only one known
gene, TLE3, and no pathogenic variants were identified, suggesting either that the mutation
might be located in a conserved region of an intron or in a distant regulatory element.
Alternatively, there may be separate linked genes responsible for non-syndromic deafness
DFNB48 and the USH1H phenotype. Among the remaining candidate deafness genes in the
critical USH1H interval are LBXCOR1, PIAS1 and TMEM84 (Fig. 2). LBXCOR1 has an N-
terminal cysteine-rich region, a Corl homology (CH1) domain and a C-terminal coiled-coil
region and may be a transcriptional repressor (27). PIAS1 contains a putative zinc-binding
motif and a highly acidic region (28) and is a suppressor of STAT1 (28). Mutant alleles of
transcriptional factors EYA4, POU3F4, POU4F3, GRHL2 are associated with hearing
impairment (29–32). TMEM84 encodes a protein with a predicted transmembrane domain.
TMIE and LHFPL5 also encode single-pass transmembrane domain proteins and are necessary
for sound transduction, but their precise functions are unknown (33–36). The remaining 24
genes and conserved sequences in the USH1H interval will now need to be screened for mutant
alleles. Additional USH1H families may refine the locus and reduce the number of candidates
to be screened. Mouse models have been helpful in identifying and studying genes for Usher
syndrome in humans (5,6,13,14,37,38). However, there are no reported deaf mice on mouse
chromosome 9 in a region of conserved linkage with human chromosome 15q22-23.

Mapping a new locus for USH1 to chromosome 15 in two Pakistani families emphasizes the
genetic heterogeneity of this disorder and is important for several reasons. USH genes have
provided unexpected insights into necessary developmental and biochemical processes shared
by the eye and ear (26,39). All of the USH1 proteins, including myosin VIIa, cadherin 23,
protocadherin 15, harmonin, SANS, usherin, VLGR1, whirlin and clarin-1, are thought to
interact to form a large macromolecular complex (39,40), which is essential for auditory and
visual functions. Following this precedent, we hypothesize the gene underlying USH1H will
encode another member of this USH protein network. Further insight into the functions of the
USH1 proteins may uncover targets and strategies for therapeutic interventions to prevent or
retard the progressive loss of vision due to the RP component of USH.
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Fig. 1.
Chromosome 15 haplotypes in USH1H families PKDF125 and PKDF117. Filled symbols
represent deaf individuals. The USH1H-linked haplotype is color-coded. The STR markers
and genetic map positions in centiMorgans (cM) are taken from the Marshfield human genetic
map. Haplotype analysis of PKDF125 shows a linkage region of 4.92 cM delimited by markers
D15S988 (66.90 cM) and D15S967 (71.82 cM). Affected individuals III:1 and III:2 provided
both proximal and distal meiotic breakpoints at marker D15S988 (66.90 cM) and D15S967
(71.82 cM), respectively. In family PKDF117 affected individual VI:1 provided the proximal
meiotic breakpoint at marker D15S988 (66.90 cM). The distal breakpoint at marker D15S1005
(75.27 cM) was provided by normal hearing individual V:13. Also given are the maximum
two-point lod scores for each STR linked to USH1H.
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Fig. 2.
USH1H linkage intervals in families PKDF125 and PKDF117 on human chromosome
15q22-23. STR markers are represented by filled circles. The sex averaged recombination
positions in cM and physical map positions in Mb (not drawn to scale) are indicated for STR
markers (Center for Medical Genetics, Marshfield Medical Research Foundation,
(http://research.marshfieldclinic.org/genetics). Candidate genes in the USH1H interval were
identified from the UCSC Human Genome Browser March 2006 assembly
(http://genome.ucsc.edu/).
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