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An image-based re-registration scheme has been developed and evaluated that uses fiducial regis-
tration as a starting point to maximize the normalized mutual information �nMI� between intraop-
erative ultrasound �iUS� and preoperative magnetic resonance images �pMR�. We show that this
scheme significantly �p�0.001� reduces tumor boundary misalignment between iUS pre-durotomy
and pMR from an average of 2.5 mm to 1.0 mm in six resection surgeries. The corrected tumor
alignment before dural opening provides a more accurate reference for assessing subsequent intra-
operative tumor displacement, which is important for brain shift compensation as surgery
progresses. In addition, we report the translational and rotational capture ranges necessary for
successful convergence of the nMI registration technique �5.9 mm and 5.2 deg, respectively�. The
proposed scheme is automatic, sufficiently robust, and computationally efficient ��2 min�, and
holds promise for routine clinical use in the operating room during image-guided neurosurgical
procedures. © 2008 American Association of Physicists in Medicine. �DOI: 10.1118/1.2977728�
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I. INTRODUCTION

Modern neuronavigational systems that rely solely on preop-
erative magnetic resonance images �pMR� are susceptible to
inaccuracies that are compounded by brain shift as a result of
the complex loading conditions associated with surgical in-
tervention. The magnitude of brain shift can reach more than
20 mm at the cortical surface1 and often exceeds 3 mm at the
tumor margin,2 thereby posing a significant challenge to the
accuracy of image guidance in neurosurgery. Intraoperative
ultrasound �iUS� is an attractive noninvasive technique that
images lesions and structures in the deeper brain during neu-
rosurgical procedures. The application of iUS can be traced
back to the early 1950s, during which time ultrasound was
used to linearly estimate the depth of highly echogenic struc-
tures, but without any imaging capabilities.3 With the advent
of real-time ultrasound scanning in the late 1970s, it was
demonstrated that iUS is able to image a variety of patho-
logic lesions as well as normal tissues.3,4 Because it offers
real time image acquisition that integrates seamlessly with
neurosurgical workflow and is low in cost, iUS has emerged

as an important and practical navigational tool to account for
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brain shift during open cranial procedures.4–7 However, its
relatively poor soft tissue contrast resolution and overall im-
age noise make parenchymal structures more difficult to de-
lineate with this modality, especially when used alone.
Coregistration of iUS with pMR substantially improves the
interpretation and understanding of the intracranial features
captured with the technique, making the accuracy with which
pMR can be aligned with the dominant features in iUS of
considerable importance. If iUS is to become a critical com-
ponent of accurate image-guided neurosurgery, for example,
as a method of compensating for intraoperative brain shift,
either by itself or as a complement to the overall process,
maximizing the registration accuracy with the internal fea-
tures of surgical interest between iUS and pMR would seem
to be essential. Most commonly,8 patient head registration is
achieved through MR compatible fiducial markers implanted
in the skull9 or applied externally to the scalp.10 Fiducial-
based schemes establish the required mapping using external
markers identified in the two coordinate systems, which does
not necessarily optimize the alignment of the internal ana-

tomical structures of interest �e.g., tumor�.
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In order to achieve a “last-known correct” �i.e., pre-brain-
shift� registration between iUS and pMR and to optimize the
use of iUS for intraoperative image guidance, an image-
based rigid-body re-registration scheme is developed to im-
prove tumor alignment between pMR and iUS pre-durotomy
for open cranial resection surgeries. This is achieved by
maximizing the mutual information �MI� between the iUS
and pMR. Other feature-based methods of registering these
two image modalities require segmentation of anatomical
structures �e.g., surfaces11 or vessels12�, which can be diffi-
cult to automate and usually requires manual �time consum-
ing� intervention especially in the US images. Application of
MI-based registration of US images is relatively
unexplored,13 and only a limited number of studies have
been reported �e.g., between US and MR for brain,14,15

liver,16 and phantom images;17 between US and MR angiog-
raphy of carotid arteries;18 between US and CT for kidney;19

between cardiac US and SPECT;20 and between US and US
for abdominal and thoracic organs21 and breast22�.

In this study, we have adopted the normalized MI �nMI23�
as our image similarity measure because of its accuracy and
robustness for aligning intermodality images, as well as its
invariance to changes in overlapping regions. Using a
fiducial-based registration, the iUS images were first trans-
formed into the stationary pMR imaging space, and then a
Powell optimization routine was employed to reregister the
two sets of images by maximizing their nMI with respect to
the six degrees-of-freedom �DOF; three translations and
three rotations� transformational parameters. The corrected
tumor alignment �i.e., transformation between the iUS and
pMR imaging spaces� provides a more accurate reference for
subsequent interpretation and compensation of intraoperative
tumor displacement post-durotomy, which is critical for reli-
able image-guided neuronavigation. We estimate the re-
registration performance by analyzing the residual misalign-
ment between tumor boundaries in iUS and pMR using a
“closest point projection distance” analysis �similar to that
used by Maurer et al.24� applied to six representative resec-
tion surgeries where image guidance was deployed. In addi-
tion, we investigate the translational and rotational capture
ranges that determine an upper bound on the initial misalign-
ment, from which a successful nMI optimization can still be
obtained that improves the registration accuracy of internal
tumor boundaries. The results show that quantifiable im-
provements in subsurface feature registration accuracy be-

TABLE I. Summary of patient information and the fid

Patient Age �gender� Type of lesion Location

1 62 �M� Metastasis Right poste
2 49 �F� Ganglioglioma Right
3 53 �M� Meningioma Right p
4 50 �M� Metastasis Left
5 66 �M� Meningioma Right
6 61 �F� Megingioma Right
tween pre-durotomy iUS and pMR can be achieved easily
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and efficiently in the operating room �OR� given an initial
registration accuracy that is readily obtained with standard
fiducial-based methods.

II. MATERIALS AND METHODS

To demonstrate the proposed nMI-based re-registration
scheme, six patients �N=6� undergoing brain tumor resection
at Dartmouth-Hitchcock Medical Center were evaluated ret-
rospectively. The only criterion for patient inclusion was the
presence of tumor features in both iUS and pMR that were
sufficiently distinct to allow boundary segmentation to be
used as a means of assessing registration accuracy �see Sec.
II F�. Patient age, gender, type of lesion, location of tumor,
approximate tumor volume, and fiducial registration error
�FRE8� from the fiducial-based registration �mean�std; see
Sec. II A� are given in Table I.

II.A. Registration in the OR

The fiducial-based registration was achieved with a 3D
optical tracking system �Polaris; The Northern Digital Inc.,
Canada�, which provides a common “world” coordinate sys-
tem. Before surgery, an infrared diode tracker �patient
tracker� was rigidly fixed to the patient head clamp to estab-
lish a reference relative to the world coordinates. A passive
digitizing stylus and an active US tracker were used to define
the 3D locations of the stylus tip and each US pixel with
respect to the world coordinates through calibration proce-
dures using a set of wires arranged in an “N” configuration25

�US�trackerTUS in Fig. 1�. Scalp-affixed fiducial markers �typi-
cally N=10–15� were placed symmetrically on both sides of
the head and were manually identified in pMR through an
interactive software tool. This tool allowed the user to adjust
the position of the localized fiducial in three orthogonal
views until the identified marker was visually symmetrical in
these cross-sectional images. The centers of these fiducial
markers were also subsequently identified in the OR using
the digitizing stylus. Fiducials in skewed locations were dis-
carded if the stylus was not visible to the tracking system.
Typically, 8–10 fiducial markers were successfully identified
in the OR. Because the two sets of homologous fiducial
points were not paired �no special effort was made to record
their acquisition orders with either the digitizing stylus or the
software interface to simplify surgical workflow at the start
of a case�, closed-form solutions �e.g., through singular value

26

-based FRE �in mm�.

umor Tumor volume �cc� Fiducial-based FRE

emporal 10.99 3.9�1.5
tal 0.20 2.6�0.98

gittal 53.12 3.0�0.67
tal 11.82 3.2�1.2
tal 4.97 2.3�0.3
tal 0.62 3.1�0.98
ucial
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decomposition � that compute the rigid-body spatial trans-
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formation directly were not used. Instead, the rigid-body reg-
istration was conveniently and efficiently achieved through
either an iterative closest point procedure25,27 or a genetic
algorithm28 to match the arbitrarily ordered lists of 3D fidu-
cial locations measured in the OR and identified in pMR
�computational cost typically of less than 2 min�. The result-
ing registration between the patient tracker and pMR
�MRTpatient

0 � enabled transformation from iUS to pMR using
the following equation �Fig. 1�:

MRTUS
0 = MRTpatient

0 � patientTworld � inv�US�trackerTworld�

� US�trackerTUS. �1�

However, the resulting transformation is subject to errors
from the fiducial-based registration, US scan-head calibra-
tion, and possibly brain shift. The nMI-based re-registration
scheme was then employed to adjust the transformation ac-
cordingly

MRTUS
adjusted = Tadjust � MRTUS

0

= Tadjust � MRTpatient
0 � patientTworld

0

� inv�US�trackerTworld� � US�trackerTUS. �2�

II.B. Data acquisition

Prior to surgery, each patient had full volume T1-
weighted, gadolinium-enhanced pMR scans of the head from
a 1.5 Tesla GE scanner �256�256�124; voxel size �dx
�dy�dz�: 0.94 mm�0.94 mm�1.5 mm; 16-bit gray

FIG. 1. Coordinate systems used in the image re-registration. Solid arrows
indicate transformations determined from calibration, and are fixed. Dashed
arrows indicate transformations determined from registration, and are sub-
ject to adjustment through the re-registration process. A transformation re-
versing the arrow direction is obtained by matrix inversion. Intraoperative
US images obtained from single and sequence acquisitions before dural
opening for a typical patient case are overlaid on the patient head, demon-
strating the difference in the two types of acquisitions as well as the incom-
plete scanning and/or nonuniform sampling of the tumor volume resulting
from free-hand scanning.
scale�. After craniotomy but before durotomy, a set of 2D
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B-mode iUS scans �typically N=20–200; Siemens Sonoline
Sienna, C8-5 transducer; image size: 640�480; pixel size:
0.15 mm�0.16 mm; eight-bit gray scale; image acquisition
time: 50–60 ms� were digitized through a frame grabber
�DT3155; Data Translations Inc., Marlboro, MA�. The scan
depth was 60 mm during image acquisition for all six surger-
ies evaluated in this study, although in general it can vary
from 30 to 160 mm depending on the optimal imaging win-
dow. Through either a single acquisition �N=1� or a se-
quence of acquisitions �N=20�, all six DOF of the transducer
were exercised within the confinements of the craniotomy. A
single acquisition usually sampled the tumor volume
uniquely, while sequence acquisitions were obtained by
sweeping the US scan-head across a limited range of trans-

28

FIG. 2. A typical iUS image before �a� and after �b� preprocessing. The iUS
image was Gaussian blurred, and only pixels within the dashed lines were
included for nMI evaluation, while those in regions with few anatomical
features or nonimaging regions �exterior to the solid line� were discarded.
The outer boundary �i.e., image mask� was determined by manually identi-
fying the corners of the actual US image and removing areas within a radius
of approximately 2 cm relative to the scan-head probe tip. This was per-
formed before surgery during US calibration, and, therefore, did not com-
promise the automation of the image preprocessing in this study.
lations and/or rotations. A full sampling of the tumor vol-
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ume was not always achievable even with 3D reconstruction
techniques,29 because of the incomplete and/or nonuniform
acquisition sequences resulting from free-hand operation �see
Fig. 1 for a typical patient case�. The use of these images is
described in the next section. The transducer position and
orientation were continuously tracked by the Polaris system
to tag each iUS image with a transformation relative to the
world coordinate system �Fig. 1�.

II.C. Image preprocessing

Image preprocessing was necessary for generating a
smooth MI hypersurface with respect to the transformational
parameters and, hence, a more robust optimization behavior.
In this study, patient pMR intensities were quantized into
eight-bit gray scale or 256 bins to match that of the iUS.
Each pMR image was further median filtered with a 5�5
kernel. By contrast, iUS images were Gaussian blurred by a
5�5 kernel to reduce speckle noise,16 although other low-
pass filters are also available �e.g., median filter,20,21 or
“stick” filter�.19 The resulting iUS images were thresholded30

and dilated with a 5�5 kernel to create a binary mask to
highlight prominent features �mostly, tumor14�. Nonimaging
regions as well as those areas near the transducer probe tip
were removed from the resulting mask to reduce artifacts and
to minimize the effect of possible compression due to tissue
contact during US image acquisitions.16 They were deter-
mined by manually identifying the corners of the actual US
image and removing areas within a radius of approximately
2 cm relative to the scan-head probe tip to generate an image
mask. The automation of the image preprocessing used in
this study was not altered by mask generation because a
single image mask was determined during US calibration
prior to surgery and applied to all US images acquired intra-
operatively. The Gaussian blurred iUS images were then
masked, and the resulting pixels were transformed into the
pMR space using the fiducial-based transformation. Only
pixels residing within the pMR anatomical region �i.e., scalp-
air surface, segmented automatically using isosurface extrac-
tion� were collected for MI evaluation to avoid large mutual
information contributions when iUS pixels matched the pMR
background. These simple data preprocessing procedures
were automatic and necessary to reduce the influence of ar-

TABLE II. Number of available iUS images, as well a
for each patient. Each single acquisition included one
20 iUS images acquired continuously in approximate
acquisitions, while all single acquisitions were select
respective US scan-head was available. Numbers in
type of iUS image acquisition, which added to the to

Patient 1 2

Available iUS images 69 127
Single iUS images 9 �7� 7 �3
Sequence of iUS images 3 �6� 6 �9
Selected iUS images 13 12
eas with low contrast-to-noise ratios and to focus on regions
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with anatomical features to ensure successful registrations.18

An illustration of a typical iUS image after preprocessing is
shown in Fig. 2.

The time complexity for MI calculation is linearly propor-
tional to the number of iUS pixels involved. To reduce the
computational burden, the number of iUS pixels included all
iUS single acquisitions but only the 5th and 15th iUS images
from each acquisition sequence �provided that the corre-
sponding spatial location from the optical tracking system
was available�, because single acquisitions usually sampled
the target tissue uniquely, while sequence acquisitions tended
to cluster with a limited sampling region �e.g., see the col-
lection of iUS images transformed into pMR in Fig. 1�. This
scheme retained a reasonable sampling of the tumor volume
while reducing the total number of iUS pixels used in the
computations. Overall, about 10%–60% of the iUS images
were utilized for nMI registration �Table II�, depending on
the number of iUS sweeps that were acquired during a given
case. Typically, the computational cost for the preprocessing
of pMR images was 5 sec, and it was 20 sec for 10 iUS
images processed collectively. The computational efficiency
of the iUS preprocessing can be significantly improved by
operating on each image as soon as it becomes available
while waiting for the next iUS image to be acquired.

II.D. MI and the maximization scheme

An MI-based image similarity measure has been success-
fully applied to a wide range of intra- and intermodality im-
age registrations since its inception.13 In this study, we have
chosen the normalized version, due to its accuracy and ro-
bustness for aligning intermodality images, and its invari-
ance to changes in overlapping regions.23 Given two image
sets A and B, the nMI �I�A ,B�� is defined as the ratio of the
sum of marginal entropies �H�A� and H�B�� over the joint
entropy �H�A ,B��

I�A,B� =
H�A� + H�B�

H�A,B�
. �3�

The marginal and joint entropies were calculated by the
histogram method using all iUS pixels selected and the pMR
image volume.31 To improve the smoothness of nMI and,
hence, the robustness of the optimization, a trilinear partial

ber of single, sequence of, and selected iUS images
image, while each sequence of acquisitions included
sec. Two images were selected for each sequence of
ovided that the corresponding spatial location of the
ntheses indicate the iUS images selected from each
umber of selected iUS images in the bottom row.

3 4 5 6

68 151 15 85
8 �6� 11 �9� 15 �9� 5 �5�
3 �5� 7 �14� 0 �0� 4 �8�

11 23 9 13
s num
iUS
ly 2
ed, pr
pare
tal n

�
�

volume distribution interpolation scheme was employed to
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accumulate the fractional weight of the histogram count into
existing intensity pairs, instead of creating new ones.13,31

NMI-based rigid-body registration is essentially a maximiza-
tion of nMI with respect to the six DOF transformational
parameters. MI �including nMI� is generally a nonsmooth
function across the transformational parametric space. The
optimal transformation derived from the maximization pro-
cedure may then correspond to a strong local maximum, but
not necessarily the global maximum. Practical issues arise
such as the choice of optimization scheme, the initial starting
point for parametric optimization, and the capture range.
Here, we have adopted the Powell method that minimizes the
objective function with respect to each transformational pa-
rameter in turn following a line minimization,32 because of
its efficient computations, which is critical for application in
the OR. It is understood that the negation of nMI
�i.e.,−I�A ,B�� was used in the Powell minimization routine to
generate the maximized nMI.

The extent of the capture range cannot be determined
a priori13 �see Sec. II G for its determination in this study�.
Thus, the initial starting point is important to achieving suc-
cessful convergence. The fiducial-based registration, al-
though not perfect for tumor alignment between iUS and
pMR, serves this purpose very well. To simplify the process,
a local coordinate system was established with its origin po-
sitioned at the tumor centroid in the pMR space �Olocal; also
served as the rotational origin� and major axes parallel to the
pMR rectilinear grid axes. Convergence was reached when
the absolute change in nMI was less than 10−3. The nMI code
was written in C and compiled in Matlab for computational
efficiency. All computations in this study were executed on a
Linux computer �2.6 GHz, 8 G RAM�, and all data analysis
was performed in Matlab �Matlab 7.3; The Mathworks, Nat-
ick, MA�.

II.E. “Ground truth” registration

Since the actual ground truth registration between iUS
and pMR was unknown in the OR and no definitive artificial
landmarks were introduced into both iUS and pMR to com-
pute the ground truth registration, an estimate was used to
evaluate the accuracy of the re-registration and determine its
capture range �see Sec. II F�. First, the fiducial-based regis-
tration was applied to transform the iUS pixels �Porig; see
Sec. II C� into the pMR space. The resulting set of iUS
points �Pinit; we term “iUS points” as the transformed spatial
locations of iUS pixels throughout this paper� served as a
starting reference for parametric optimization and were fur-
ther transformed using Tref generated from the nMI maximi-
zation process. This transformation �Tref� was an initial at-
tempt to register iUS and pMR, and was refined to account
for possible errors from the use of a finite change in nMI
�10−3� as the stopping criterion in the optimization process.
Based on the transformed points �Pref�, a total of 20 pertur-
bations �Tpert; 10 translational and 10 rotational perturba-
tions� were applied, and 20 sets of new iUS points �Ppert�
were obtained. These perturbations were essentially to trans-

form Pref randomly with the directionality �translational di-
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rection and rotational axis passing through Olocal� following a
uniform distribution.33 The translational and rotational per-
turbation magnitudes were randomly generated from an in-
terval of 0 to 2 mm �i.e., the pMR voxel body diagonal
�dx2+dy2+dz2�1/2� and 0 to 2 deg �0 to 1 deg for patient 5
due to the reduced rotational capture range, see Table V in
Results�, respectively. The average distance between Pref and
Ppert calculated as the mean spatial change in all iUS points
as a result of Tpert for all “ground truth” computations was
1.1�0.62 mm. The upper limits of the perturbation magni-
tudes were kept small enough �less than the expected capture
range; see Sec. II G� to ensure successful registrations �six
unsuccessful registrations for patient 5 were discarded; all
other registrations involved in computing the “ground truth”
transformation were successful in every case�. With Ppert, the
nMI-maximization scheme was once again invoked to gen-
erate 20 sets of optimized iUS points �Psol� through their
respective transformations �Tsol�. The estimated “ground

truth” transformation �T̂true� between the spatially averaged
Psol and Pinit was finally obtained through a least-squares
scheme. All sets of Psol are expected to be in the vicinity of
the actual true location but distributed in a random manner,
due to the small and random perturbations that initiated the

second maximization process. Thus, we expect T̂true to be a
reasonable estimation of the ground truth for evaluating
Tadjust in Eq. �2� �Fig. 3�. To ensure that an adequate amount
of random sampling was used, we doubled the number of
perturbations evaluated, and found that the spatial change in

P̂true was less than 1 mm �i.e., half of the pMR voxel diago-
nal of 2 mm�, indicating that 20 perturbations were sufficient
to estimate the ground truth to be within the pMR image
resolution.

II.F. Quantitative evaluation of the re-registration
accuracy

Quantitative evaluation of the nMI-based registration was
a practical challenge, because no definitive internal markers
were available to assess the registration accuracy. In this
study, we utilized a “closest point projection distance”
�CPPD� analysis to quantify the residual tumor boundary
misalignment in iUS with respect to its pMR counterpart.24,34

FIG. 3. Schematic for approximating the “ground truth” transformation

�T̂true� between the set of iUS points �Pinit� generated from the fiducial-based

registration and that �P̂true� averaged from Psol. Arrows indicate the ordered
steps in the procedure �see text for details�.
Specifically, the segmented tumor boundary from iUS was
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transformed into the pMR space using the transformation
under scrutiny. When a transformed US point was inside/
outside the tumor surface segmented from pMR, a positive/
negative projection distance was obtained between the point
and its closest point projection on the triangulated pMR tu-
mor surface.34 Assuming tumor segmentation errors are neg-
ligible, the iUS tumor boundary points would exactly coin-
cide with the pMR tumor surface only when the two were
perfectly registered. Any residual misalignment, expressed as
the average absolute distance from the iUS tumor boundary
points relative to their closest point projections on the tumor
surface in pMR, is a direct measure of registration accuracy.
To evaluate the nMI-based re-registration performance, a
paired t-test was used to compare the resulting CPPD with
that generated from the fiducial-based registration.

The effectiveness of the CPPD analysis will be influenced
by tumor segmentation errors. To minimize any effects, a
semiautomatic scheme was used to segment tumor in pMR,
in which isosurface extraction �isointensity levels specified
by an expert and ranged 4000–6000� was performed and
manual adjustments were used to remove regions errone-
ously included �typically zones isolated from the tumor vol-
ume�. By contrast, tumor segmentation in iUS was manual.
An in-house software program was devised to trace around
the tumor, and an interpolation scheme was used to generate
equally spaced �0.2 mm, or approximately the iUS pixel
size� points to smoothly represent the tumor boundary in
each iUS image. To further minimize the sensitivity to seg-
mentation errors, these boundary points were discarded from
the CPPD evaluation in regions of poor tumor delineation.
While the US segmentation was observer dependent, it is
important to note that the US pixel resolution was about
one-sixth that of pMR. Although we have not conducted a
controlled study, in our experience, expert US segmentations
typically vary by only a few pixels �certainly less than five,
which is less than the corresponding MR pixel resolution�
when the boundaries of interest are well defined. Thus, we do
not expect segmentation errors to significantly influence the

TABLE III. Summary of nMI re-registration results. NMI-corrected CPPD
�0.001�. Shown also are the registration execution time, the number of iU
boundary points segmented from iUS, and the empirical measure of tumor

Patient 1 2

Initial CPPD �mm� 3.0�1.6 1.4�1
nMI-corrected CPPD �mm� 1.0�0.7 0.90�

Execution time �sec� 73 54
Number iUS pixels useda 453 344
Number pMR voxels intersected 19 928 20 63
Number iUS boundary points segmented 2122 2329
� 0.33 5.7b

aThe number of iUS pixels in thousands.
bExceptionally large due to cyst boundaries used.
re-registration accuracy estimates from the CPPD analysis.
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II.G. Capture range

The optimal registration achieved with the MI-based
method generally corresponds to a strong local maximum
within the transformation parameter space, whereas attempt-
ing to register two grossly misaligned image sets will likely
fail. It is, therefore, of practical importance to evaluate the
“capture range” that establishes an upper bound on the trans-
formational misalignment, within which nMI optimization is
highly likely to succeed. A successful registration was con-
sidered to occur when the mean distance from the iUS points
�transformed into the pMR space� to their estimated “ground
truth” counterparts was less than a specified threshold.
Clearly, too small/large a threshold leads to a too stringent/
lenient criterion.21 As a reasonable compromise, we have
used the pMR voxel diagonal of 2 mm as the threshold ���.

The initial misalignment between iUS and pMR results
from a combination of errors that is unlikely to be con-
strained in a specific way. Therefore, we explored the uncon-
strained capture range individually for both the translational
and rotational �about Olocal� parameters. The rotational/
translational parameters were fixed to their estimated
“ground truth” values while the translational/rotational pa-
rameters were under evaluation.

Similar to the approach used to estimate the “ground
truth” registration, the transformational parameters were ran-
domly perturbed away from the “ground truth” values over a
specified range. For each patient, a total of 200 translational
and 200 rotational perturbations were evaluated from
0 to 20 mm in translation, and from 0 to 20 deg in rotation
about Olocal, respectively. Successful registrations were
counted, and the capture range was defined as the largest
misalignment at or below which the registration success rate
was at least 90%. To determine the translational and rota-
tional capture ranges, scatter plots of the average distance
error relative to the initial misalignment after perturbation
with respect to Ptruth were generated for each patient. A total
of 2400 registrations were performed to determine the cap-

ing Tref� was significantly lower than with fiducial-based registration �p
xels, and pMR voxels used for nMI evaluation, the number of iUS tumor
e prominence �.

3 4 5 6

2.3�1.3 4.9�1.6 1.8�1.2 1.4�0.73
1.3�0.95 1.3�1.2 0.85�0.61 0.70�0.65

45 65 29 91
266 372 165 1133
9632 17 744 7368 32 760
642 650 1535 691

0.041 0.054 0.88 0.73
�us
S pi

featur

.0
0.8

2

ture ranges for all datasets.
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II.H. Statistical analysis

In order to investigate the correlation between FRE and
tumor boundary misalignment in terms of CPPD and be-
tween the nMI-corrected CPPD and number of iUS/pMR
pixels/voxels used as well as tumor size, Pearson’s correla-
tion test was employed. The same statistical test was also
applied to examine relationships with capture ranges.

In addition, we developed a simple measure to quantify
tumor feature prominence ��� to investigate the relationship
between registration accuracy and the extent of the tumor
appearing in iUS. This empirical measure was based on the
notion that strong tumor features correspond to well-defined
tumor boundaries, which lead to more complete tumor seg-
mentation. Therefore, the number of equally spaced bound-
ary points segmented from iUS, according to Sec. II F, is an
indication of tumor feature prominence. Using dimensional
analysis, � is normalized as

� =
N

�n � V2/3�
, �4�

where N is the number of tumor boundary points segmented
from iUS, n is the number of iUS images selected, and V is
the tumor volume �see Table I; converted to mm3 in Eq. �4��.
Similarly, Pearson’s correlation test was used to evaluate the
association between the nMI-corrected CPPD and �. For all
statistical tests in this study, the significance level was de-
fined at 95%.

III. RESULTS

III.A. Registration accuracy

The average FRE for the pooled sample was
3.0�0.55 mm, slightly larger than the average initial mis-
alignment of tumor boundary between iUS and pMR
�2.5�1.3 mm; see Table III�, even though the latter has ad-
ditional sources of error �e.g., from US scan-head calibra-
tion�. This is not necessarily surprising because the FRE is
expected to be larger than the true, target registration error
�TRE8�. In addition, the various error contributions do com-
bine differently and the two evaluation measures are not the
same �i.e., points versus boundaries�. We have found that the
correlation between FRE and tumor boundary misalignment
in terms of CPPD between iUS pre-durotomy and pMR was
only 0.48 in the six patient cases, indicating that accurate
patient registration does not necessarily lead to accurate
alignment of the tumor. Thus, it is important to improve the
registration accuracy of the target tissue �i.e., tumor� at the
start of surgery, which is the focus of this study.

Typical overlays of the iUS images and their correspond-
ing oblique pMR for each patient using the nMI re-
registration procedure �Tref in Fig. 3; see Sec. II F for detail�
are shown in Fig. 4. Shown also are the pMR tumor surface
cross sections generated from the nMI �solid thin lines� and
fiducial registrations �dashed thin lines�. For patient 2, the
cyst boundaries were used for analysis due to their very high
contrast relative to the involved tumor. The segmented iUS

tumor boundaries �thick open lines; cyst boundaries for pa-
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tient 2� were compared with the pMR tumor surface cross
sections. For all patients, visual inspections showed that the
nMI re-registration significantly improved the tumor align-
ment between iUS and pMR �alignment of other internal
landmarks are also shown when available�. This observation
was confirmed with paired t-tests that showed that nMI-
corrected CPPDs were significantly lower than those gener-
ated from the fiducial-based registrations �p�0.001; Table
III�.

We used Tref in Fig. 3 to assess the nMI registration ac-
curacy in terms of tumor boundary alignment because it is
the most readily available transformation in the OR that re-
quires only one nMI re-registration effort. As a comparison,

the T̂true–corrected CPPD for all patients was 1.0�0.32 mm.

Similar magnitudes of CPPDs would be achieved with T̂true

or the transformation between Pinit and any Psol, because
they all meet the nMI convergence criterion of the pMR
voxel body diagonal of 2 mm and were considered success-
ful registrations. With all patients pooled, the average dis-

tance error between Pref and P̂true was 1.2�0.13 mm, and it

was 1.1�0.25 mm between Psol and P̂true.
The strong correlation �correlation coefficient of −0.93;

Table IV� between the nMI-corrected CPPD and �, an em-
pirical measure of tumor feature prominence, suggests that
well-defined tumor boundaries improve tumor alignment be-
tween iUS and pMR. Indeed, the CPPD was reduced to an
average of 1 mm or less �in patients 1, 2, 5, and 6� when
��0.1, whereas it was greater than 1 mm �patients 3 and 4�
when ��0.1. These findings are based on the six patient
cases evaluated, which were purposefully selected because
distinct tumor features were present, so that readily evident
anatomical image features �i.e., tumor boundary� could be
segmented �with nominal errors� to assess the accuracy of
the re-registration procedure. While one of the attractive as-
pects of nMI re-registration is the fact that no image segmen-
tation is required, it is important to recognize that the selec-
tion of patients with well-defined tumor boundaries may
have biased our results. The degree to which this is true
awaits further study of clinical cases with less well-defined
tumor boundaries, which will present new challenges for ac-
curacy evaluation that we have avoided here in that some
other measure �than CPPD� of re-registration performance
will be needed �since simple tumor boundary segmentation
will no longer be possible�.

Interestingly, larger tumors corresponded to poorer regis-
tration performances �Table IV�. This was likely due to the
reduced tumor feature prominence �patients 3 and 4 in Fig.
4� resulting from the fixed iUS imaging depth used in these
cases, as indicated by the correlation between tumor size and
� �correlation coefficient of −0.78, not shown�. The negative
correlation coefficients between CPPD and the number of
iUS pixels and pMR voxels used for nMI evaluation �Table
IV� suggests a desirability for increased iUS sampling across

the tumor volume.
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FIG. 4. Overlay of iUS with corresponding oblique pMR image for each patient using the nMI re-registration procedure �Tref in Fig. 3�. The resulting tumor
surface cross sections from pMR �solid thin lines� and those generated by the fiducial-based registration �dashed thin lines� are shown �cross sections of the
cyst for patient 2 due to its improved contrast�. The alignment between tumor boundary in iUS �thick open lines� and tumor surface in pMR was significantly
improved by the nMI re-registration. Shown also are proper alignment of tentorium �patient 1�, ventricle �patients 1, 3, and 5� and gyrus �patient 6� in iUS with
respect to their pMR counterparts �arrows�. Note that segmented tumor boundaries in regions of poor contrast �all patients� or near the transducer probe tip
�patients 1 and 2� were discarded.
Medical Physics, Vol. 35, No. 10, October 2008
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III.B. Capture range

Scatter plots of the average distance error relative to the
initial translational and rotational misalignment after pertur-
bation with respect to Ptruth are shown in Fig. 5. As expected,
small initial misalignments led to small average distance er-
rors �below the dashed horizontal lines that define successful
registrations�. However, the error growth rate differed for
each patient, particularly for patient 5, where the average
distance errors were above the threshold, even for some rela-
tively small initial misalignments. The quantitative capture
ranges for each patient are reported in Table V.

Strong correlations were found between the translational
capture range and tumor size, and between the rotational
capture range and the number of iUS pixels and pMR voxels
used �Table VI�. For the translational capture range, success-
ful convergence of the nMI optimization tended to occur

TABLE IV. Correlation coefficients between the nMI-corrected CPPD and the
number of iUS pixels, number of pMR voxels, tumor size, and �.

Number
iUS pixels

Number
pMR voxels

Tumor
sizea �

Correlation coefficient with
nMI-corrected CPPD −0.54 −0.51 0.81 −0.93b

aTumor size calculated as V1/3, or the approximate length scale of tumor.
bPatient 2 excluded from all analyses with respect to �.

FIG. 5. Scatter plot showing the average distance error relative to the initial
translational �a� and rotational �b� misalignment for each patient �legend
shows patient markers�. Each subfigure contains 1200 data points, but aver-
age distance errors greater than 20 mm are not shown. NMI-based re-
registration was successful when the average distance error was less than the

pMR voxel body diagonal �2 mm; dashed horizontal lines�.
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when the tumor in iUS was sufficiently close to that in pMR,
such that greater proportions were overlapped. Consequently,
larger tumors led to an improved tolerance in the initial mis-
alignment or a larger translational capture range. Practically,
when the initial registration is unable to bring the tumor in
the two imaging modalities into sufficient proximity, an ad-
ditional translation may be advisable to match the centroids
of tumor segmented from iUS and pMR prior to launching
the nMI-based registration scheme.

When the rotational capture range was considered, tumors
in the two imaging modalities always overlapped because the
rotational origin was set at the tumor centroid. Increased iUS
pixels or pMR voxels indicate a higher degree of tumor vol-
ume sampling for nMI evaluation, resulting in a smoother
nMI function, which allows a larger rotational capture range.
Therefore, increasing the iUS sampling over the tumor vol-
ume is recommended in practice to improve the tolerance to
initial angular misalignment �e.g., patient 5 in this study�. In
addition, a multistart approach �i.e., initiating the Powell op-
timization by first spatially transforming the iUS points
around the major axes incrementally, e.g., every 1 deg, in a
predefined rotational range, e.g., �5 deg�, can be employed
to ensure some displaced starting point will lead to a suc-
cessful registration.

Representative translational and rotational feature spaces
were created for two patients with the largest �patient 1� and
smallest �patient 5� capture ranges for demonstration pur-
poses �Fig. 6�. For both translational and rotational feature
spaces, enhanced iUS sampling across the tumor volume �as
indicated by the larger numbers of intersected pMR voxels as
well as iUS pixels used; Table III� significantly improved the
nMI smoothness, as indicated by the 2D isocontours near the
local minimum in the feature space. The difference was more
dramatic in the rotational feature spaces �Figs. 6�b� and
6�d��, where the decreased sampling across the tumor vol-

TABLE V. Translational and rotational capture ranges for each patient. Cap-
ture ranges were determined as the largest initial misalignment at or below
which the registration success rate was at least 90%. A successful registra-
tion was one that had an average distance error of less than the pMR voxel
body diagonal ��dx2+dy2+dz2�1/2� of 2 mm.

Patient 1 2 3 4 5 6

Translational capture range �mm� 10.5 6.5 12.5 7.6 3.6 4.3
Rotational capture range �deg� 8.7 5.5 5.4 5.4 1.3 8.1

TABLE VI. Correlation coefficients between the translational and rotational
capture ranges with the number of iUS pixels, number of pMR voxels, and
tumor size.

Correlation coefficient
Number

iUS pixels
Number

pMR voxels
Tumor

size

Translational capture range −0.31 −0.28 0.79
Rotational capture range 0.66 0.76 −0.073
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ume �as indicated by the smaller numbers of intersected
pMR voxels as well as iUS pixels used; Table III� led to a
significant deterioration in nMI smoothness �Fig. 6�d��.

With the results from all six patients pooled, the registra-
tion success rate was plotted against the initial translational
and rotational misalignment �Fig. 7�. The intersection of the
success rate curve with the horizontal dashed line at 90%
indicates that the overall translational and rotational capture
range was 5.9 mm and 5.2 deg, respectively. As a compari-
son, success rate curves were also plotted for an average
distance error threshold of 2� or 4 mm �dashed curve�. The
resulting capture ranges �7.9 mm for translation and 6.9 deg
for rotation, respectively� did not vary dramatically.

IV. DISCUSSION

In this study, we have evaluated the effectiveness of an
nMI-based rigid-body re-registration scheme executed prior
to dural opening for this purpose. Results from six surgical
resections show that the method is able to improve tumor

FIG. 6. Feature space of the negation of nMI �−I�A ,B�� relative to the transl
through Olocal� misalignment centered at the “ground truth” values for patie
to enhance the sampling across the tumor volume, nMI smoothness is signi
V�. Shown also are the isocontours at levels near the local minimum to indic
“ground truth” values as indicated by the vertical lines �see Sec. II E�.
alignment between iUS and pMR with residual misalignment
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in the millimeter range. While different sources of error con-
tribute to the initial feature misalignment between iUS and
pMR, including those from fiducial registration, US scan-
head calibration, accuracy in feature identification in iUS and
even possible brain shift at the very beginning of surgery,
nMI re-registration collectively corrects these errors �even
though it does not differentiate between the different causes�
and leads to a “last-known correct” registration between
pMR and iUS pre-durotomy that is expected to improve the
subsequent use of iUS acquisitions to compensate for intra-
operative brain deformation. Importantly, successful nMI-
based re-registration has been achieved for different types of
tumor �two metastases, one low-grade glioma, and three
meningiomas�, suggesting the possibility that the technique
may be broadly applicable in resection surgeries, although
certainly it would have to be evaluated in far more extensive
clinical studies to establish the tumor characteristics for
which the approach is effective. The automatic and compu-
tationally efficient ��2 min� characteristics of the approach

l �ac; in X and Y directions� and rotational �bd; about X and Y axes passing
ab� and 5 �cd�. With increased number of iUS pixels and pMR voxels �ab�
ly improved �compare �ab� to �cd��, leading to larger capture ranges �Table
e nMI function smoothness and the distance from the local minimum to the
ationa
nt 1 �
ficant
ate th
are also critical for routine use in the OR.



4622 Ji et al.: Image-based intraoperative ultrasound registration 4622
Accurate patient registration between physical space and
pMR image space derived from fiducial-based registration
schemes does not necessarily lead to accurate alignment of
the internal anatomical structures of interest in iUS, as sug-
gested by the insignificant correlation �0.48� between the two
measures. Degradation in registration accuracy stems from a
number of sources including fiducial-based registration error
�e.g., marker localization error and movement on skin�, US
feature localization error �e.g., ultrasound image calibration�,
and even brain shift at this very early stage of surgery. When
unaccounted for, these errors may accumulate and compro-
mise the understanding of intraoperative tumor displacement,
thereby decreasing the reliability of intraoperative compen-
sation for image guidance. Therefore, it is important to im-
prove tumor boundary alignment at the beginning of surgery
as the starting point for incorporating iUS during the proce-
dure for subsequent assessment of brain shift during tumor
resection.

The effectiveness of the nMI-based re-registration
scheme, however, is reliant on successful convergence. One
practical challenge is the fact that the intensity-based image
similarity measure does not necessarily correspond to the
global maximum upon successful registration. The complex-
ity of the optimization hypersurface is likely greater when
registering US with MR, since US images typically highlight
tissue boundaries. Incorporating gradient information from
MR �e.g., using a polynomial fitting scheme to combine the

FIG. 7. Registration success rate relative to the initial translational �a� and
rotational �b� misalignment for all six patients. Capture range was deter-
mined as the corresponding initial misalignment when the horizontal dashed
line at 90% intersected with the success rate curve. As a comparison, suc-
cess rate curves with the average distance error threshold of 2� are shown,
where � is the pMR voxel body diagonal of 2 mm.
intensity and gradient information of MR to simulate US
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images11� may, therefore, hold promise in achieving en-
hanced robustness in the convergence behavior. However, an
iterative solution procedure may be required to account for
the angular change that determines the gradient direction,
leading to extended computational effort and complexity.
Here, we have sought a practical trade off between optimi-
zation robustness and computational efficiency so that the
procedure can be implemented in the OR.

Without incorporating any MR gradient information, the
translational capture range found in this study �5.9 mm� is
similar to that reported for registration of cardiac 2D US and
SPECT �6.5 mm20�, and between reconstructed 3D power
Doppler US and MR angiography of carotid arteries �5 mm
in transaxial and 10 mm in axial directions18�, but is signifi-
cantly smaller than that achieved when registering two 3D
US volumes �32.5 mm with rigid body transformation, using
one times the voxel body diagonal and 90% success rate for
capture range determination as in this study21�. The capture
range in Shekhar et al.21 may be much larger because the
same modality has been registered, although as noted in Wal-
imbe et al.,20 volumetric acquisition �i.e., 3D US� alone in-
creased the capture range by more than three-fold �from
6.5 to 25.5 mm�. Results from our study suggest that larger
tumors increase the translational capture range, which is not
surprising because these tumors are more likely to overlap
for a larger translational offset with respect to the true regis-
tration, whereas smaller tumors would not �i.e., the transla-
tional capture range for a smaller tumor is influenced by
other prominent features, e.g., gyrus as in patient 6�.

The rotational capture range in our study �5.2 deg� was
much smaller than that found in Slomka et al.18 �40 deg�.
This may be attributed to the reduced sampling across the
tumor volume used here relative to the full volume carotid
artery.18 As suggested by the correlation analysis �Table VI�,
increasing the number of pMR voxels �i.e., sampling across
the tumor volume� increases the rotational capture range. Be-
cause the spatial change of an iUS point is proportional to
the rotational radius, the tumor centroid in pMR was chosen
as the rotational origin so that the overall spatial change was
minimized for a given magnitude to avoid rapid changes in
nMI that degrade convergence behavior. However, such a
strategy may not be optimal when the tumor is not the largest
prominent feature in iUS �e.g., small tumors�. Assigning a
rotational origin to the mean location of all iUS points after
the initial transformation may be a better choice in these
situations.

Nonetheless, new strategies to enlarge capture ranges, or
the likelihood of successful registration are always wel-
comed. Our results suggest that optimizing the iUS image
acquisition window and maximizing iUS tumor volume sam-
pling may significantly improve capture ranges. The latter
could be dramatically improved by applying 3D US, as indi-
cated from previous studies.18,20,21 To avoid the computa-
tional costs that result from a substantial increase of iUS
pixels that would limit practical use in the OR, it may be
necessary to perform multiresolution registration of the two

35
image sets. Alternatively, downsampling 3D iUS may
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prove necessary, although the capture range may be ad-
versely affected because of reduced homologous feature
overlap. Further study with volumetric true 3D US generated
from a scan-head array that fully samples the region of in-
terest without the need for free-hand sweeps or 3D recon-
struction is warranted in the future in order to identify the
optimal trade off between computational efficiency, registra-
tion robustness, and accuracy.

With enlarged capture ranges that appear possible with
true 3D US, one may be able to register US and MR directly
without fiducials. For example, we have used the digitizing
stylus to draw head contours to match the segmented scalp
surface to establish a starting point for the nMI-based
method. As long as the initial registration is within the cap-
ture range, automatic successful re-registration is expected to
be highly effective. Alternatively, incorporating knowledge-
based localization of the US scan-head relative to pMR may
prove clinically useful. The practical realization of noncon-
tact, image-based �rather than point-based� registration is
very attractive in the OR.

We selected nMI as the image similarity measure, instead
of the standard MI because we found that the execution time
with nMI was lower by a factor of two to five for each
registration using Powell optimization, which is critical for
OR use. Otherwise, we did not find any significant difference
in registration performance between the nMI and MI mea-
sures based on the CPPD analysis.

One limitation of the re-registration procedure is its rigid-
body underpinnings and once the craniotomy has been per-
formed, nonrigid deformation may have already occurred.
However, prior to durotomy �as the case in this study�, the
magnitude of the motion is typically on the order of the pMR
pixel size �e.g., 1.2 mm1�, which is sufficiently small to jus-
tify �and even prefer� a rigid registration. Nonrigid registra-
tion between iUS postdurotomy and pMR is much more
critical because of the larger degree of deformation �3 mm or
more2�. Alternatively, rigid-body registration could be ap-
plied post-durotomy to align tumor boundaries in iUS and
pMR to generate local displacement maps that are assimi-
lated by a biomechanical model to estimate whole-brain de-
formation, which would be nonrigid.

Finally, it is important to recognize that our “ground-
truth” registration is only an estimate and that segmentation
errors, especially from iUS, have the potential to weaken the
CPPD analysis we used for assessing re-registration perfor-
mance. Phantom studies, which eliminate and/or reduce
these errors by providing more robust knowledge of ground-
truth, are certainly possible and may be worth pursuing in the
future but the difficulty in representing the MR and US im-
age characteristics and complexity of the human brain is
likely to diminish their value as quantitative measures of the
re-registration performance that can be achieved in the OR.
Studies have shown that tumor segmentation in iUS is more
reliable for metastases and some high-grade gliomas, but is
poor for low-grade gliomas.36,37 To this end, we included
only segmentation of well-defined boundaries to add confi-
dence in the analysis and minimize bias from segmentation

uncertainty. Further, in the low-grade glioma case �patient 2�,
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we used the high contrast cyst boundary for the analysis. The
degree to which the results presented here suffer from selec-
tion bias of cases with well-defined tumor boundaries awaits
further study of resection surgeries with more diffusively ap-
pearing diseases that will also engender some new challenges
in developing appropriate quantitative measures for assess-
ing the nMI re-registration accuracy.

V. CONCLUSION

We have shown that nMI-based re-registration is feasible
and practical and improves tumor alignment between iUS
pre-durotomy and pMR, provided that an initial registration
within the capture range identified is available. Specifically,
in the six patient cases evaluated involving several different
tumor types, the average tumor boundary misalignment was
reduced from 2.5 to 1.0 mm with the procedure. While the
technique is presently reliant on an initial registration esti-
mate, the average capture range required for convergence
�found to be 5.9 mm in translation and 5.2 deg in rotation�
encompasses the accuracy obtained with point-based fiducial
registration as typically practiced in the OR. The automated
and computationally efficient �average execution time of
1 min� character of the approach makes it attractive for ef-
fective use of coregistered iUS in the OR for brain shift
compensation, either as a stand-alone navigational aid38–40 or
in concert with other techniques �e.g., brain deformation
modeling41–43� for intraoperative image guidance. This
scheme also holds promise for eliminating the reliance on
more laborious fiducial-based registration. With enlarged
capture ranges likely available from true 3D US that is not
dependent on volumetric reconstruction from free-hand
sweeps, a fiducial-less approach to patient registration may
be possible in the OR. In addition, extending the nMI rigid-
body registration to nonrigid registration between iUS post-
durotomy and pMR may be attractive for intraoperative brain
shift compensation.
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