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Respiratory gating and tumor tracking for dynamic multileaf collimator delivery require accurate
and real-time localization of the lung tumor position during treatment. Deriving tumor position
from external surrogates such as abdominal surface motion may have large uncertainties due to the
intra- and interfraction variations of the correlation between the external surrogates and internal
tumor motion. Implanted fiducial markers can be used to track tumors fluoroscopically in real time
with sufficient accuracy. However, it may not be a practical procedure when implanting fiducials
bronchoscopically. In this work, a method is presented to track the lung tumor mass or relevant
anatomic features projected in fluoroscopic images without implanted fiducial markers based on an
optical flow algorithm. The algorithm generates the centroid position of the tracked target and
ignores shape changes of the tumor mass shadow. The tracking starts with a segmented tumor
projection in an initial image frame. Then, the optical flow between this and all incoming frames
acquired during treatment delivery is computed as initial estimations of tumor centroid displace-
ments. The tumor contour in the initial frame is transferred to the incoming frames based on the
average of the motion vectors, and its positions in the incoming frames are determined by fine-
tuning the contour positions using a template matching algorithm with a small search range. The
tracking results were validated by comparing with clinician determined contours on each frame.
The position difference in 95% of the frames was found to be less than 1.4 pixels ��0.7 mm� in the
best case and 2.8 pixels ��1.4 mm� in the worst case for the five patients studied. © 2008 Ameri-
can Association of Physicists in Medicine. �DOI: 10.1118/1.3002323�
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I. INTRODUCTION

Respiratory motion in the thorax and abdomen makes precise
radiation delivery difficult. Tumor motion of up to 3 cm dur-
ing quiet breathing in the lung, liver, and kidney has been
reported.1–9 Before introduction of 4DCT and gated treat-
ment, a large margin is added to account for tumor motion,
creating large planning target volumes �PTV�, and increasing
the volume of normal tissue irradiated.

Respiratory gating has the potential to improve treatment
outcome by irradiating only during a portion of the respira-
tory cycle, thereby permitting reduction of the safety
margin.5,10–22 Another research effort has been made to shape
the radiation beam to synchronously follow the tumor mo-
tion using a dynamic multileaf collimator �DMLC�.12,23–39

Implementation of this method also requires accurate real-

time localization of the tumor position during the treatment.
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Kubo and Hill13 proposed a method to estimate the tumor
position through monitoring an external surface marker. This
method assumes that the correlation between motion of the
external surface marker and the internal tumor is stable
throughout the treatment, which may not be true. Mageras et
al.40 observed a 0.7 s respiratory phase delay between dia-
phragm motion and external markers for patients having im-
paired lung function. Vedam et al.19 found that the abdominal
surface or diaphragm motion may or may not fully correlate
to the lung tumor motion, and Ahn et al.41 reported that the
correlation may depend on the location and the direction of
the lung tumor movement. Thus, deriving the internal tumor
motion from external markers for respiratory gating may not
be reliable. Shirato et al.17 developed a method to fluoro-
scopically monitor internal implanted markers that are in-
serted near the lung tumor. This provides accurate tumor

location during treatment delivery. However, it requires an

5351„12…/5351/9/$23.00 © 2008 Am. Assoc. Phys. Med.

http://dx.doi.org/10.1118/1.3002323
http://dx.doi.org/10.1118/1.3002323


5352 Xu et al.: Lung tumor tracking in fluoroscopic video 5352
invasive procedure to implant the markers bronchoscopi-
cally.

Previously, Berbeco et al.42 derived a respiratory signal
from the averaged intensity variation of a rectangular region
of interest �ROI� containing the lung tumor in fluoroscopic
video. Motion enhancement was applied to all the video
frames and a template was generated by averaging all the
ROIs of the frames at the end of exhale �EOE�. The correla-
tion coefficient �CC� of the same ROI of an incoming frame
and the template was calculated to determine if the beam
should be enabled or not. Cui et al.43 further developed two
methods to generate templates as the references and com-
pared to the template chosen by Berbeco et al.42 The respi-
ratory signals generated by all three methods were evaluated
against the reference gating signal as manually determined
by a radiation oncologist. The clustering method demon-
strated the best performance in terms of accuracy and com-
putational efficiency. These reports focus more on determin-
ing the phase of a moving tumor and generating the
respiratory gating signal for beam on or off, instead of track-
ing the physical position of the lung tumor.

In this article, we present an algorithm that can track the
geometric location of a lung tumor or relevant anatomic fea-
tures in fluoroscopic video. The algorithm combines optical
flow and template matching to track a tumor �or a feature�
frame by frame and affords the determination of its position
in each frame. We demonstrate the accuracy of this algorithm
by comparing its results with those manually determined by
a clinician.

II. MATERIALS AND METHODS

II.A. Optical flow analysis

Optical flow is a technique that uses a two-dimensional
velocity vector field to quantify the apparent motion of inde-
pendent objects moving in sequential video frames.44 A par-
ticular frame, the reference frame, is selected and a clearly
identifiable object of interest, which in our case is the tumor
or a feature near the tumor in the lung, is delineated. The
optical flow is computed from changes in the pixel values
�intensity� between the frames. Calculating the optical flow
between the reference and any other frame provides the “op-
tical velocity” of the object so that its position in the new
frame can be derived.

We assume that the intensity of the object in the image
does not change between frames, so that

I�x,y,t� = I�x + dx,y + dy,t + dt� , �1�

where I�x ,y , t� is the intensity of the object at pixel �x ,y� at
time t and I�x+dx ,y+dy , t+dt� is the intensity of the same
object now at pixel �x+dx, y+dy� in the new frame at time
t+dt. If the intensity varies slightly and slowly, histogram
matching of two images is recommended as a preprocessing
step. Equation �1� can be expanded as a Taylor series when
dx, dy, and dt are small,

I�x + dx,y + dy,t + dt� = I�x,y,t� + Ixdx + Iydy + Itdt

2
+ O�� � , �2�

Medical Physics, Vol. 35, No. 12, December 2008
where Ix, Iy, It denote the partial derivatives of I with respect
to x, y, and t; O��2� are the high-order terms of the Taylor
series. By ignoring the high-order terms in Eq. �2�, and com-
bining Eqs. �1� and �2�, we obtain

Ix
dx

dt
+ Iy

dy

dt
+ It = Ixu + Iyv + It = 0, �3�

where u and v are the velocities in the x and y directions,
respectively. Equation �3� is known as the gradient constraint
equation with two unknown variables, u�x ,y , t� and v�x ,y , t�.
For a rigid object, u and v are spatially constant for all pixels
within the object, but may vary with time.

A variety of algorithms has been developed to derive the
motion velocities, u and v.44–56 A complete review and com-
parisons of these algorithms are available in the
literature.57,58 Overall, the algorithm developed by Lucas and
Kanade was claimed by both groups to have the best perfor-
mance, and was therefore chosen for our rigid motion track-
ing process. The algorithm divides the tracked image into
small blocks, and the motion vectors for these blocks are
calculated individually. For a small block containing only
two pixels, we assume that the motion vectors for these
2 pixels are the same. Thus, Eq. �4� is obtained according to
Eq. �3�,

�Ix�x1,y1,t� Iy�x1,y1,t�
Ix�x2,y2,t� Iy�x2,y2,t� ��u

v
� + �It�x1,y1,t�

It�x2,y2,t� � = �0

0
� , �4�

where u�x1 ,y1 , t�=u�x2 ,y2 , t�=u, and similarly for v. The
motion vectors, u and v, can be found by solving Eq. �4�.

In general, because of noise in the fluoroscopic imaging
system, these equations will not be strictly satisfied.
Normally, a larger block R is considered for motion vec-
tor calculation and a 5�5 pixel block is selected in
our application. From Eq. �3�, now we have 25 equa-
tions involving u�x1 ,y1 , t� ,u�x2 ,y2 , t� , . . .u�x25,y25, t� and
v�x1 ,y1 , t� ,v�x2 ,y2 , t� , . . .v�x25,y25, t�. If we denote the cen-
tral pixel by �xc ,yc� and set all velocities equal to u�xc ,yc , t�
and v�xc ,yc , t�, then we obtain a set of 25 equations similar
to those in Eq. �4�. Clearly, these are a set of overdetermined
linear equations and are not satisfied for any particular values
of u�xc ,yc , t� and v�xc ,yc , t�. The assumption that motion
vectors for the pixels in R vary smoothly is made and veri-
fied by visually checking the tumor movement in the fluoro-
scopic video. Thus, a least-square technique is applied to
minimize the squared error and obtain the optical flow for
this block. A Gaussian filter, g�x ,y�, is applied that is peaked
at the central pixel and so gives more weight to pixels nearer
to the center to reduce the temporal aliasing caused by the
video camera system. The squared error can be expressed as
an error function,

E�uc,vc� = �
R

g�xc,yc� � �Ix�x,y,t�u + Iy�x,y,t�v

+ It�x,y,t��2, �5�

where � is the 2D convolution operator. After differentiating
the error function with respect to �u ,v� and setting it to zero,

we obtain the optical flow,
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U� = − M−1b� ,

where U� = �u

v
� , �6�

M = 	�R

g � Ix
2 �

R

g � �IxIy�

�
R

g � �IxIy� �
R

g � Iy
2 
 ,

and b� = 	�R

g � �IxIt�

�
R

g � �IyIt� 
 .

Figure 1 is the vector interpretation of optical flow be-
tween two frames for a small region in the fluoroscopic
video. The arrows indicate the pixel motion direction be-
tween two frames and the arrow lengths correspond to the
pixel “velocities.” The boundaries of the objects from these
frames are overlaid, indicating the motions tracked by the
algorithm.

II.B. Tumor motion tracking

The flowchart of the tumor tracking algorithm is shown in
Fig. 2. The tumor contour in the initial reference frame is
either manually drawn by a clinician or automatically trans-
ferred from a digitally reconstructed radiograph �DRR�.59

Approximately 20 pixels evenly distributed around the tumor
contour are chosen and the boundary is determined by a
cubic-spline interpolation of their geometric positions. The

FIG. 1. Vector interpretation of optical flow between two frames. The posi-
tion of the object in the new frame �lower left� is obtained by displacing the
original object position �upper right� by the average optical velocity within
it.
contour in the initial image frame for patient A is shown in
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Fig. 3. Once the tumor contour is determined, the pixels
within the contour are labeled to identify the object to be
tracked.

Suppose now we are trying to track the tumor position in
frame n. To expedite the search process, a small rectangular
area that fully includes the tumor and its range of motion is
defined as the ROI. The optical flow for all pixels in the ROI
of frame n is calculated with respect to the same ROI in the
reference frame. The maximum tumor movements typically
ranged from 20–40 pixels in the fluoroscopic videos for the
patients studied. However, the optical flow calculation algo-
rithm we selected, the Lucas and Kanade algorithm, achieves
high accuracy only for objects with small displacements
�1–2 pixels/frame� and fails for larger displacements.51 Ob-

FIG. 2. Flowchart of the motion tracking algorithm.
FIG. 3. Tumor contour in the initial reference frame for patient A.
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viously, most tumor shifts in the fluoroscopic video are much
larger than 1–2 pixels Thus, a multiresolution scheme was
selected for the optical flow calculation.46,60

The multiresolution scheme first generates a set of images
with different levels of resolution. We refer L0 to L4 to dif-
ferent resolution levels where L0 is the lowest level of reso-
lution and L4 is the original image. One pixel in the images
at L0 is obtained by averaging a 16�16 pixel block in the
original image at L4. Similarly, L1 is obtained by averaging
each 8�8 pixel block in the image at L4 and so forth for L2

and L3. Suppose the pixel having the largest motion in the
tumor moves 32 pixels in both x and y directions between
the two images at L0. It is not appropriate to calculate optical
flow directly since the shift is too large. However, in the
images at L0, the shift becomes 2 pixels. The optical flow
between these two images at L0 is first calculated and, for
instance, this pixel in frame n at L0 should move 1.6 pixels
�u and v� in x and y directions as calculated. We then start to
process the images at L1, where 2�2 pixels in this level is
equivalent to 1 pixel at L0. We first use the optical flow cal-

FIG. 4. Cranial-caudal �y� and lateral �x� displacements for patient A. Ver-
tical scale is pixel and the pixel resolution is 0.5�0.5 mm.
culated from L0 as guidance to shift the pixels in the frame n
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at L1. For the pixel having the largest motion at L0, the cor-
responding 2�2 pixel block in frame n at L1 is shifted by
3.2 pixels �2u and 2v� in both x and y direction due to the
resolution difference between L0 and L1. After all the pixels
in frame n at L1 are shifted, the optical flow between the
shifted frame n at L1 and the reference image at L1 is calcu-
lated. The calculation of optical flow continues for these two
images at different levels until the level L0 is reached.

As we observed, the intensities of the pixels inside the
labeled tumor area are not exactly the same for different
frames. Thus, small differential motions may exist within the
tumor even if it were to move entirely as a rigid body. Since
the motion vectors vary in both magnitude and direction for
pixels in the tumor, to improve the robustness of tracking, in
this work we assume rigid tumor motion and thus obtain the
tumor displacement by averaging over the pixels inside the
tumor. This approach reduces the effect of uncertainties
caused by the random noise during the tracking process.
Once the averaged global motion vectors are calculated, we
obtain the tumor position shift between two frames and esti-
mate the tumor position based on its reference position ac-
cording to Eq. �7� and Eq. �8�,

Xn = Xref + �uN� , �7�

Yn = Yref + �vN� , �8�

where Xn and Yn are the estimated centroid coordinates of the
tumor in frame n, Xref and Yref are the centroid coordinates of
the tumor in the reference frame, �uN� and �vN� are the aver-
age pixel displacements in the x and y directions between the
reference frame and frame N.

There are uncertainties in the calculation of the global
motion vectors due to noise and underestimation of optical
flow in the uniform area. Uncertainties can also be caused by
ignoring higher order terms in Eq. �2� when calculating op-
tical flow. The object position estimated with optical flow
can be fine-tuned by using a template matching process. With
template matching, an exhaustive search within a small re-
gion around the tumor position is performed. The correlation
coefficient �CC� between the pixel values of the object in the
reference frame and the pixel values of the object in the new
frame �n� is computed. The object position is moved in the
new frame over the entire search range. The final position is
determined by the location where the CC reaches a maxi-
mum value. A search range of �5 pixels was used to fine-
tune the tumor position.61 This procedure was repeated for
all frames.

II.C. Validation

Fluoroscopic videos from five patients were validated.
Three of these fluoroscopic videos were from the anterior-
posterior �AP� perspective and two from the lateral �LAT�.
The outlines of tracked objects �tumors or nearby anatomical
features) were superimposed on the fluoroscopic videos. The
centroid position of the tracked object was calculated. To
validate the tracking results, the contour of the object from

the reference frame was first superimposed on all of the other
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video frames. A radiation oncologist then manually moved
the contour in each frame to the correct position in his judg-
ment. The centroid of the contour as placed by the clinician
was then compared to that computed by the tracking algo-
rithm.

II.D. Respiratory signal

The CC between the object pixels in the reference frame
and those in the tracked frame were computed to investigate
if CC would provide a respiratory signal. After the object is
tracked in all the frames, its geometry position is known. The
tracked object in all other frames is then aligned with the
reference object position and CC between the reference and
tracked object is calculated. The values of the CC were com-
pared with the cranial-caudal shift of the object as a function
of frame �time�.

III. RESULTS

Fluoroscopic videos from five patients were analyzed.
Three of these fluoroscopic videos were from the anterior-
posterior �AP� perspective and two from the lateral �LAT�.
The outlines of tracked objects �tumors or nearby anatomical
features) were superimposed on the fluoroscopic videos. The
centroid position of the tracked object was calculated. For
the AP videos, this yields the displacements in the lateral �x�
and cranial-caudal �y� directions with respect to the reference
position and for the LAT videos the displacements in the
anterior-posterior �x� and cranial-caudal �y� directions. Some
of the contoured objects are the features near the tumor sites.
Tracking of these features may still be useful since tumors
may not be visible in fluoroscopic images for some patients,
yet their motion may be inferred by the nearby structures that
they are in contact with. Over all the patients, the maximum
displacements in the cranial-caudal direction vary from
17 to 36 pixels, whereas in the lateral or anterior-posterior

TABLE I. Error analysis for the tracking results using

Patient A Patien

Mean difference
�pixel�

1.17 1.0

Max difference
�pixel�

4.48 5.0

Max difference for
95% frames �pixel�

2.74 2.8

Moving range
�pixel�

35.16 16.7

TABLE II. Error analysis for different breathing phases. All units are pixel.

Patient A Patient B

Mean Std Mean Std

EOI �peak� 1.30 0.87 1.19 1.07
EOE �valley� 1.05 0.88 0.81 0.68

Intermediate phase 1.14 0.73 1.26 0.95
Medical Physics, Vol. 35, No. 12, December 2008
directions they are much smaller and most of them are less
than 10 pixels. The pixel size corresponds to approximately
0.5 mm at the isocenter. The object displacements for patient
A are shown in Fig. 4. The predominant object motion was in
the cranial-caudal direction and motion in the anterior-
posterior or lateral direction was much noisier due to the
high-frequency cardiac motion depending on fluoroscopic
projection for all patients.

For all patients, the contours followed the general motion
of the objects without drifting away for the approximately
20–40 s �200–400 frames� and 10 respiratory cycles of a
typical video. Objects that did not significantly deform were
well tracked, consistent with our assumption of a rigid ob-
ject. The boundaries of objects that deform were not well
described by the tracked outlines. However, the predominant
motions of the objects were well tracked and the contour of
the object moves following the centroid movement of the
object in the fluoroscopic video through visual inspection.

The centroid positions in the cranial-caudal direction cal-
culated by the tracking algorithm and those determined by
the clinician are overlaid in Fig. 5 for all five patients. The
difference between centroid positions in 95% of the frames
was found to be less than 1.4 pixels for the best case and
2.8 pixels for the worst case of the five patients studied as
listed in Table I, depending on the object sites and shapes.
The maximum differences for all the frames vary from
2.0 to 6.6 pixels for all the patients. Also, the mean and stan-
dard deviation of the differences for different phases �EOI,
EOE, and intermediate phases� are listed in Table II.

Berbeco et al.42 observed that the mean intensity of a
region containing moving objects in fluoroscopic video var-
ies during breathing. They also computed the CC between
the reference template and the ROIs of all other frames to
generate a gating signal. We used the intensity variation by
calculating CC to improve the confidence of the object track-

ated displacements.

Patient C Patient D Patient E

0.57 1.33 0.83

2.04 6.64 2.56

1.36 2.68 1.90

16.70 22.52 16.69

Patient C Patient D Patient E

Mean Std Mean Std Mean Std

0.53 0.46 0.87 0.50 0.91 0.62
0.58 0.37 1.60 0.99 0.73 0.49
0.59 0.38 1.40 0.77 0.86 0.56
valid

t B

4

1

3

7
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ing results. For patient B, the plots of CC and displacements
in the cranial-caudal are shown in the top and middle of Fig.
6, where the reference frame was chosen to be a few frames

FIG. 5. Displacement validation of the tracked objects in y d
after the end of expiration. When inspiration starts, the object
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expands and the image intensity increases �becomes less
dark�. The CC between the object in the reference and other
frames also decreases when the displacement increases until

ion �positions in pixels with 0.5�0.5 mm pixel resolution�.
irect
reaching the EOI, where the intensity of the object becomes
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the highest. When expiration starts, similarly the intensity of
the object decreases �becomes darker� and CC increases
since the object moves back to the reference position. When
the object moves until a few frames before the end of expi-
ration where the reference position is defined, CC reaches the
maximum value �the first peak�. The object looks the same a
few frames before or after the end of expiration. The object
continues moving and becomes darker than at the reference
position so that the CC starts to decrease until it reaches the
EOE �the valley between two peaks� and the object intensity
reaches a minimum value. Similarly, after the starting of in-
spiration, the object moves towards the reference position
�intensity increases� and CC increases until it reaches the
reference position �the second peak�. The CC decreases af-
terwards since the object moves away from the reference
position and the intensity continues to increase. When we
choose the reference right at the EOI, the double-peak effect
disappears �bottom of Fig. 6�. Thus, by choosing the refer-
ence frame at either the EOI or EOE, a respiratory signal
with sinusoidal shape can be obtained. For patient B, the
displacement and the respiratory signal have reversed phases
since the reference is chosen at the EOI. Another example
from patient C where the reference is chosen at the EOE is
shown in Fig. 7, and both signals have the same phases.

IV. DISCUSSION

Errors in tracking arise from several factors, including
optical flow calculation, irregular patient breathing, cardiac
motion, and fluoroscopic video noise. The error caused by
the optical flow calculation is partially compensated by the
final template matching with a small search range. The Lucas
and Kanade algorithm has the advantage of comparative ro-
bustness to noise and was used here since noise is quite

FIG. 6. Comparison between displacement and CC with different reference
frames from patient B �shift in pixels�. The respiratory signal in the middle
is generated using the reference frame selected a few frames after the EOI.
The arrow shows the position of the new reference frame at the EOI and the
bottom is the respiratory signal generated using the new reference frame in
which the double peaks disappear.
common for fluoroscopic imaging. It also has a relatively
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low computation requirement. As mentioned in Sec. II B, the
Lucas and Kanade algorithm only considers the first-order
derivatives of image intensity and ignores higher order terms
in the Taylor series expansion �Eq. �2��. This method is suit-
able for an object with small displacement and has larger
uncertainties when the displacement is large. This weakness
was addressed by calculating optical flow using a multireso-
lution scheme.

For regular breathing, the tracking algorithm generates
smooth object displacements. For the error analysis we listed
in Table I, we find larger tumor movement leads to relative
larger maximum tracking errors calculated from all the
frames for all the patients except for patient B. For 95% of
the frames, the maximum tracking errors for all the patients
are similar. But the mean errors for larger tumor movement
�patient A and D� are all larger than those from patient B, C,
and E with smaller tumor movement. As we observed, larger
tumor movement normally leads to more tumor shape varia-
tion or elastic deformation, which increases tracking uncer-
tainties and causes relatively larger tracking errors. For the
tracking errors corresponding to different breathing phases,
we do not observe significant differences between phases,
and the errors may be more dependent on patient breathing
patterns and tracking sites. If irregular breathing occurs, the
generated displacements have more uncertainty, especially
near the end of inhale or exhale. Tumor or object motion
may also be influenced by cardiac motion, the rib cage, lung
function, and patient thickness too. In our case, cardiac mo-
tion caused uncertainties in lateral or anterior-posterior dis-
placements for objects located near the heart. Our tracking
results are also compared to those published from the same
group62 since the same patient and golden standard data are
used as shown in Fig. 8. Only the results from method 2
�eigenspace tracking� of Cui et al.62 are compared to ours
since it has relatively smaller tracking errors. The overall

FIG. 7. Comparison between displacement and CC from patient B. The ref-
erence frame is chosen at the EOE so that both displacement and CC have
the same phase.
performances for both eigenspace and optical flow-based
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methods are comparable. For mean tracking errors, our track-
ing errors for patient A, C, and E are smaller and the eigens-
pace tracking works better for patient B and D. As for the
maximum error for 95% of the frames, our results are better
than those from the eigenspace-based method except for pa-
tient B.

Our algorithm is efficient compared to exhaustive tem-
plate searching. An object that has a range of N+1 pixels
requires a minimum search range of �N /2 pixels if the ref-
erence image is in the center of the motion. Thus, a mini-
mum of �N+1�2 template positions must be compared for
each frame. For the set of patients examined in this study, a
range of 36 pixels was found, and tracking with this method
would therefore require 1369 different template positions.
For our method, only 121 matched templates are needed af-
ter the optical flow calculation. Of course, the search range
may be reduced significantly in the exhaustive template
searching method if the reference template is updated frame
by frame. However, in this scenario, the search error is cu-
mulative so that the tracked object may drift away from the
search range and fail to be tracked.

Reference frame selection does not affect the tracking re-
sults if the object shape remains the same for all frames. To
generate a respiratory signal, the reference frame needs to be
chosen carefully. The reference frame needs to be chosen
very close to the EOI or EOE so that the double-peak effect
will disappear. The selection of EOI or EOE can generate a
respiratory signal with reversed phases. When using the rigid
tracking algorithm on objects that deform, the reference
frame should be a frame that is most representative of the
object shape over the breathing cycle. We observed large
elastic object deformation in only one of the five patients in
our study, patient A. The centroid was tracked well, but the
boundary was not. Special care needs to be taken for patients
with a tumor in the lower lobe of the lung near the dia-
phragm and with large tumor movement. In both cases, elas-

FIG. 8. Comparison of tracking errors between our method and Cui et al.
�Ref. 62�.
tic tumor deformation can occur and our rigid tracking algo-
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rithm may not work well. Our future efforts will focus on the
tracking of deformable tumor contours.

V. CONCLUSION

For accurate dose delivery to a moving lung tumor, it is
critical to track its internal motion in a noninvasive way. The
tumor tracking method described here using fluoroscopic
video could provide such tracking of the tumor centroid. This
method has potential for gated delivery techniques where the
beam is turned on and off based on the tumor location while
maintaining the same radiation fluence.
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