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Osteoporotic bone loss is accompanied by impaired structural integrity of the trabecular network,
leading to a decrease in the overall mechanical properties of the bone. The development of the
“virtual bone biopsy” �VBB�, a method combining magnetic resonance microimaging ��MRI� and
digital image processing techniques, has previously been shown to quantify topology and scale of
human trabecular bone noninvasively. The aim of this work was to determine the extent to which
structural parameters derived from images acquired in the limited spatial resolution regime of in
vivo imaging are sensitive to resolution and noise and further, whether under these conditions, a
small amount of bone loss and its associated structural manifestations can be detected. Toward these
goals 3D models of trabecular bone representing multiple anatomic locations were generated on the
basis of �CT images of human cadaveric bone cores. These images were binarized and the resulting
data arrays representing pure bone �proton density=0� and pure marrow �proton density=255�
subjected to simulated MR imaging by Cartesian sampling of k space, yielding, after 3D Fourier
reconstruction, voxel sizes currently achievable in vivo. Subsequently, realistic levels of Gaussian
noise were superimposed on the complex data and magnitude images were computed. The resulting
images were subsequently VBB processed for a range of signal-to-noise ratio �SNR� values and
image voxel sizes. For comparison of the predicted behavior to in vivo data, images from a recent
patient study were evaluated as well. Systematic changes of the derived structural parameters
changing progressively with decreasing SNR were noted, and it is shown that the errors are cor-
rectable using simple linear transformations, thereby allowing the data to be normalized. The
predicted dependence of the structural parameters on SNR also closely parallel those observed in
vivo. Finally, in order to assess the sensitivity of the VBB processing algorithms to detect bone loss
during disease progression or regression in response to treatment, the high-resolution specimen data
were subjected to 5% bone loss either by homogeneous or heterogeneous erosion and �MR images
simulated at in vivo resolution and SNR. At typical in vivo SNR �SNR=12� and effective image
resolution �160 �m isotropic and 137�137�410 �m3�, VBB algorithms were able to detect the
structural implications of a 5% loss in bone volume fraction with high statistical
significance. © 2008 American Association of Physicists in Medicine. �DOI: 10.1118/1.3005598�
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I. INTRODUCTION

There is increasing recognition of the importance of trabecu-
lar bone architecture as a contributor to bone strength.1 Until
recently, however, structural information was available only
through bone biopsy in conjunction with histomorphometry,2

and more recently, microcomputed tomography ��CT�.3 Fur-
ther, virtually the sole anatomic site for bone biopsy has been
the ilium. Recent advances in imaging technology, notably
micromagnetic resonance imaging4–6 ��MRI� and high-
resolution quantitative CT �HR-pQCT�,7,8 now permit acqui-

sition of images at peripheral locations such as the distal
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radius,9,10 distal tibia,11 or calcaneus12,13 at resolutions ad-
equate to partially resolve the trabecular network. Some
structural aspects have also recently been shown to be re-
trievable from an analysis of whole-body CT images of the
vertebrae.14,15

The linear resolution achievable in vivo has been on the
order of trabecular thickness. In �MRI, voxel sizes reported
in recent work at the distal extremities range from 137
�137�350 �m3 to 156�156�500 �m3 and as large as
172�172�700 �m3 �see Refs. 10, 16, and 13�. In HR-
pQCT voxel sizes are smaller,7 typically on the order of 80

3
�80�80 �m . In MRI the width of the point-spread func-
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tion �which determines resolution� for images obtained with
the Cartesian imaging techniques, as they are typically used
for microimaging of trabecular bone, is about 20% greater
than the linear dimensions of the imaging voxel.5 In CT,
however, the point-spread function is usually considerably
larger than the voxel dimension, being determined by such
parameters as the finite resolution of the detector system, the
geometric magnification, the band limiting filter used during
reconstruction, and the focal spot of the x-ray tube.17 So, the
actual resolution of the two modalities is probably compa-
rable. In MRI the practically attainable resolution is limited
by the achievable signal-to-noise ratio �SNR�, whereas in CT
resolution is radiation dose limited.

In recognition of the errors incurred by the relatively low
resolution and SNR characteristics of in vivo images, the
conventional histomorphometric parameters such as TB/TV,
Tb.N, or Tb.Th have been termed “apparent.”9 The linear
relationship between parameters extracted from images ac-
quired in different resolution regimes is well documented
�see, for example, Ref. 18�. Although it has been shown that
it is possible to obtain values of trabecular thickness or vol-
ume fraction in the limited spatial resolution and SNR re-
gime of in vivo imaging close to those measured at micro-CT
resolution,19,20 some parameters relating to topology of the
trabecular network, such as those derived via digital topo-
logical analysis �DTA�,21 are inherently resolution
dependent.22,23 This is readily seen when we consider, for
example, a plate-like structure. Depending on voxel size
relative to the structural element’s width, skeletonization will
either convert it to a surface or a curve. It is likely that many
of the trabecular network analysis techniques and
indices3,24–28 are sensitive to voxel size and specific imaging
technique used. A related question is whether subtle
treatment-induced changes or degradation of the trabecular
network during disease progression can be detected under
conditions typical of in vivo imaging.

The objectives of the present work were twofold. The first
was to evaluate the errors in digital topological parameters
incurred from limiting sampling resolution and the presence
of noise, and to explore possible means to correct for such
errors using noise-free high-resolution datasets. The second
objective was to determine the extent to which different
forms of bone loss, and their implications on parameters of
network topology and scale, can be detected in this regime. It
is expected that homogeneous and, more so, heterogeneous
erosion, cause fenestration of trabecular plates and discon-
nection of rod-like trabeculae.29,30 Saha et al.31 devised an
algorithm called DTA that classifies each voxel of a digitized
structure after its skeletonization. The method, in which tra-
becular plates are converted to surfaces and rods to curves,
has recently been applied to the classification of trabecular
networks.23 Although a plethora of different structural pa-
rameters have been used in studies of trabecular bone archi-
tecture, digital topological parameters such as the “surface-
to-curve ratio” and “erosion index” have been found to be
particularly useful for fracture discrimination22,32 and as a
means to quantify the response to treatment,33 hence, our

focus on this class of structural parameters in this study. A
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typical in vivo image along with a virtual core derived from
a skeletonized 3D dataset of a cylindrical subregion is shown
in Fig. 1.

The present study was conducted by first generating an
accurate 3D voxel model of the bone on the basis of bina-
rized high-resolution �CT images of human trabecular bone
specimens. The images were subsequently subjected to simu-
lated MR scanning by assuming the marrow spaces to con-
tain signal-producing material mimicking bone marrow, and
then Cartesian sampling k space up to maximal spatial fre-
quencies corresponding to resolutions as they are commonly
achieved in vivo. Random noise was subsequently superim-
posed in the real and quadrature channel to yield SNR values
typically achievable in patient scans. The predicted func-
tional dependence of the derived structural parameters was
also evaluated in actual patient scans for comparison with
simulations. In addition, the simulated MR images were also
downsampled via low-pass filtering in k space to examine the
effects of resolution on the derived parameters. After analyz-
ing the functional dependence of the derived topological and
scale parameters, correction schemes were developed to ac-
count for the effect of noise and limited resolution.

Last, to determine the sensitivity of the algorithms to de-
tect changes from bone loss, the �CT-derived 3D binary
voxel models were subjected to erosion and again subjected
to simulated MR scanning mimicking in vivo conditions. The
structural measures of scale and topology derived from these
images were subsequently evaluated with respect to their
ability to detect and quantify the anticipated changes.

II. MATERIALS AND METHODS

II.A. Simulated MR imaging

To create a set of images with controlled SNR and reso-
lution, 3D voxel models of human trabecular bone specimens
were generated and subjected to simulated MR scanning. To-
ward this goal nine bone biopsy samples extracted from five
human cadavers �four male, one female; ages
44–69 years/mean 55 years� were scanned by �CT �vivaCT
40, SCANCO Medical AG, Switzerland� at a voxel size of
21�21�22 �m3 �Fig. 2�. These images were binarized at

FIG. 1. �a� Micro-MR image �one of 32 contiguous images� obtained with
the 3D FLASE pulse sequence at the tibial metaphysis at 137
�137 �m2 pixel size and 410 �m slice thickness. �b� 3D rendered skeleton
image obtained by VBB processing of virtual core indicated by circle in �a�.
the midpoint of the modes representing bone and marrow,
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and the resulting 3D voxel arrays assigned intensities of I
=0 for bone and I=255 for marrow voxels. 3D k-space sam-
pling was simulated by computing 3D Fourier transforms of
the binary high-resolution images. The resulting k-space data
were low-pass filtered by downsampling by factors of 6�6
�18 to remove the data’s high-frequency content. In this
manner “�MR images” at a voxel size of 126�126
�396 �m3, close to the voxel size used in prior clinical
studies in the authors’ laboratory,11,22,33 were obtained.

II.B. Evaluation of the effects of noise and resolution

Noise was added to each of the nine data sets, producing
a range of different average SNRs. This was achieved by
reading the simulated �MR images into MATLAB �The Math-
works Inc., Natick, MA�, and adding Gaussian-distributed
real and imaginary random numbers in image space. Subse-
quently, the absolute values of the noisy images were com-
puted �thereby converting Gaussian to Rician noise34�. To

FIG. 2. 3D renderings of �CT images from cores of the nine human cadaver
specimens used in the analyses.
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control image SNR, the standard deviation � of the
Gaussian-distributed random numbers added were set as
SNR=S /�, with S being the mean signal intensity in the
images. SNR values analyzed ranged from 6 to 16, a range
typical of in vivo �MR of trabecular bone.5 The images were
then processed analogous to in vivo images as described pre-
viously to yield a bone volume fraction map35 in which the
pixel intensity is given by the fractional occupancy of the
voxel by bone. Subsequently, the resulting bone volume frac-
tion images were 3D sinc interpolated, thresholded and
skeletonized.36 Skeletonization converts trabecular struts to
curves and trabecular plates to surfaces. The skeleton maps
were then subjected to digital topological analysis, in which
each voxel in the bone network is classified as belonging to
a surface, curve, or their mutual junctions.31 Composite pa-
rameters surface-to-curve ratio �ratio of the sum of surface-
type voxels divided by the sum of curve-type voxels� and
erosion index �ratio of the sum of parameters expected to
increase with osteoclastic resorption divided by the sum of
those expected to decrease� were computed as well,23 since
these had previously been shown to be sensitive indicators of
osteoporotic bone loss22 and bone accrual in response to an-
tiresorptive treatment.33 Finally, the derived structural pa-
rameters results were plotted as a function of SNR.

The same 126�126�396 �m3 simulated �MR images
were downsampled in k space to various resolutions in only
the xy plane to study the effects of varying transverse reso-
lution on the derived structural parameters. Downsampling
was performed by applying 2D fast Fourier transforms to the
images, thereby converting them into the k-space domain,
followed by zeroing the high-frequency kxky data. Zero-
filling high-frequency data �instead of cropping� maintains
image voxel sizes while reducing resolution �see Fig. 3,
which illustrates downsampling via cropping�. In this man-
ner, a more objective comparison of topological parameter
densities is possible. Conversely, increasing voxel size in the
xy plane would affect the parameter counts differently for the
different topological types. For example, a “curve” �a 1D
element� would be expected to scale by a factor of approxi-
mately 1 / �21�=1 /2 when doubling voxel size, while the
number of voxels composing a “surface” �a 2D element�
would scale by a factor of approximately 1 / �22�=1 /4. The
downsampling factors �DSF� of the resulting images ranged

FIG. 3. Illustration of processing sequence: �a� speci-
men �CT image; �b� segmented to yield binarized im-
age; �c� inverted to mimic MRI grayscale; �d� k-space
map after 3D FFT of �c�; �e� low-pass filtering by re-
moving high-frequency data, marked in red; �f� low-
pass filtered k-space data; �g� 3D inverse FFT to pro-
duce image with in vivo �MRI resolution
characteristics; and �h� superimposed with noise.
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from 1 to 3 in intervals of 0.1, corresponding to 21 different
resolutions simulated, ranging from 126�126
�396 �m3 to 378�378�396 �m3. There are various no-
tions of image “resolution.” In the context of this study, we
use the term “effective resolution” to mean what would have
been the resulting voxel size if only the array of nonzeroed
data had been used in the discrete Fourier transform. As de-
scribed above, the actual voxel size is the same for all simu-
lated images, while the effective resolution varies. Param-
eterization algorithms were run on all downsampled images
and the results were plotted as a function of DSF.

Processing errors for parameter values at a given SNR
�between 6 and 16� were corrected based on the empirically
observed linear relationship between the corresponding val-
ues of the nine specimen datasets at different SNR. This
relationship assumes that at a given SNR, structural param-
eters vary linearly with the same parameters derived at infi-
nite SNR, while the R2 values of the fits give an approxima-
tion of the accuracy of the correction.

To create correction slopes and intercepts for a continuous
range of SNR, curves were fit to the slopes and intercepts
versus SNR data. The fits were generated using MATLAB’s
Curve Fitting Toolbox functions. Curve fitting was per-
formed using a sum of decaying exponentials and other func-
tions on several parameters and piece-wise smoothing
splines on the remaining parameters. The “smoothing param-
eter” of the spline fitting, which ranged from 0.08 to 0.999,
was manually adjusted to achieve accurate fits while avoid-
ing “overfitting” and including random error in the data.

These correction curves were then used to linearly trans-
form the derived parameter values calculated at a given SNR
to predict those derived from noiseless images. The relative
errors in the predictions were calculated as the fractional
difference between the predicted parameter values at given
SNR and those calculated at SNR=�.

Corrections were applied to the parameters derived from
the systematically downsampled images using the previously
described techniques for correcting the effects of noise.
Whereas corrections for noise required choosing structural
parameters derived from noiseless images as the “true” val-
ues, resolution-affected results were corrected toward pro-
cessing results from images that received no additional
downsampling, i.e., images with DSF=1 �126�126
�396 �m3 resolution�.

II.C. In vivo MR images

The purpose of these experiments was to compare the
functional behavior of some of the parameters examined by
simulation with in vivo �MRI data. Toward this goal, �MRI
data from a recently completed transverse study examining
the association between vertebral deformity and structural
measures at two surrogate sites—the distal radius and distal
tibia—were evaluated32 for a range of SNR values. The SNR
of these images was determined by dividing the mean of the
signal over the trabecular bone region in the central slice by
the standard deviation of the noise in a nonsignal producing

region, i.e., outside the anatomy. The SNR of the initial im-
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age determined the range of accessible SNR values �since
noise can, of course, only be increased�. Ten high-SNR
datasets were selected �eight tibia, SNR�9 and 2 wrist,
SNR�15� and a series of lower SNR images were produced.
Toward this goal the Fourier transform of the image was
calculated and complex Gaussian noise added with the stan-
dard deviation of the Gaussian determining the reduced im-
age SNR. The noise-enhanced image was then computed as
the absolute value of the inverse Fourier transform of the
noise-enhanced k-space data. The images used had a voxel
size of 137�137�410 �m3 and are therefore close to those
obtained by simulation. Finally, structural parameters were
computed as a function of SNR in each of the ten image
datasets. The process chosen is therefore analogous to the
simulations described above except that, of course, no im-
ages at SNR=� were available, which, as we shall see, is not
essential.

II.D. Structural implications of bone loss in the
limited SNR and resolution regime of in vivo imaging

To simulate the structural effects of trabecular bone loss,
heterogeneous and homogeneous erosion algorithms were
written in MATLAB and applied to the 3D voxel models de-
rived from the �CT images of the nine human specimens as
described previously. Heterogeneous erosion was simulated
by creating pits of 60 �m radius centered on trabecular bone
surface voxels, defined as voxels with at least one or more
nonbone neighbors. The coordinates of pit centers were cho-
sen from a uniform random distribution. Pit creation was
iterated until total bone volume was reduced to the desired

FIG. 4. Three-dimensional surface rendering of binarized trabecular bone
�CT images from one of the specimens before �a� and after applying het-
erogeneous erosion by generating pits of 60 �m radius �indicated with ar-
rows� until bone volume was reduced by 5%.
amount. Figure 4 shows surface-rendered images before and
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after simulated pitting. Homogeneous erosion was achieved
by iteratively removing bone surface voxels. Once the de-
sired volume of remaining bone was approached, random
surface voxels were removed, one at a time, until the desired
volume of bone was attained.

For both erosion models, bone volume was reduced by
5%. Heterogeneous erosion was achieved by creating a suf-
ficient number of pits with radii of approximately 60 �m so
as to reduce total bone volume by the desired fraction. For
homogeneous erosion, voxels were homogeneously removed
from trabecular surfaces. These erosion techniques closely
mimic clinically observed bone loss.37–39

Analogous to the previously described simulations, noise
was added to the eroded and original simulated �MR images
to produce image sets with SNR=12 and resolutions of
137�137�410 �m3 and 160�160�160 �m3. The result-
ing images were then subjected to processing as illustrated in
Fig. 5. Finally, the results were read into MATLAB and ana-
lyzed using two-tailed single-sample t tests. The null hypoth-
esis tested was that there was no difference between struc-
tural parameters derived from eroded and noneroded images.

III. RESULTS

III.A. Effect of noise and resolution

From the data in Fig. 6, in which BV/TV is plotted versus
SNR, we note that the algorithm used for bone volume frac-
tion mapping is very stable down to SNR values on the order
of 10, and the apparent BV/TV values asymptotically con-
verge toward a limiting value at SNR�13–14. For SNR
�10 the apparent BV/TV values begin to rise in a systematic
but predictable manner. As shown by the data in Fig. 7�a�,
the parameters extracted at a given SNR are linearly related
to those at SNR=� �and thus because of the rapid conver-
gence generally to those at SNR�13�. The R2 values of
these fits followed a decreasing trend with decreasing SNR,
as expected, showing the linear relationship to be weakened
for noisier images. In the SNR range of 6–16, the R2 values
of the fits did not fall below 0.95 for BV/TV and 0.90 for

surface density �Figs. 7�b� and 8�. For the composite topo-
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logical parameter surface-to-curve ratio,23 however, R2 of the
fits dropped as low as 0.78 at SNR=8 and 0.08 at SNR=6.

Curve fits performed on the slope and intercept values of
the linear fits �Figs. 7�b� and 8� produced varying R2 values.
Ten of 16 parameters yielded highly accurate fits �defined as
R2�0.95� with respect to slope data and 9 of 16 were within
this category for the intercept data. While providing some
idea of the accuracy of the corrections, the R2 values of some
parameters were found to be somewhat sensitive to the se-
lection of the smoothness of the spline used for fitting. High
R2 values for noisy slope and intercept data are likely to be
caused by overfitting the data, erroneously including the
noise in the data into the spline fit.

To evaluate the effectiveness of linear corrections, the er-
rors of the corrected parameters were compared to the errors
of the parameters prior to correction. We defined error as the
mean of the magnitude of each image dataset’s calculated
parameters subtracted from reference values, i.e., parameters

FIG. 5. Illustration of heterogeneous erosion, downsam-
pling to mimic in vivo �MRI and subsequent image
processing, resulting in topological classifications of
trabeculae into surfaces �blue�, surface edges �green�,
curves �light blue�, curve-curve junctions �red�, etc.

FIG. 6. BV/TV as a function of SNR showing systematic trend. Each curve
represents a different specimen. Except for two specimens with nearly the
same BV/TV �third and fourth from top� the parameter values remain rela-
tively constant down to SNR�10 while rank is preserved down to SNR

�8.
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calculated from images with infinite SNR or at 126�126
�396 �m3 resolution. This residual error after correction
was consistently much smaller than the error induced by just
noise, showing that the correction algorithms improved the
accuracy of the structural parameters. An example of the
error analysis is shown for the topological parameter repre-
senting surface density in Fig. 9. While the error after cor-
rection in the SNR=8–10 range reached 2%–3% of the pa-
rameters derived from the noiseless images, it was
considerably smaller than the error caused by image noise,
which was on the order of 8%–15%. The error reduction
before and after correction of several structural parameters
are listed in Table I. At all SNR levels and resolutions, cor-
rection substantially decreased the mean error in every pa-
rameter. As expected, the errors induced by noise and reso-

FIG. 7. �a� Linear relationship between BV/TV at SNR=N and correspondin
intercepts and R2 of each linear fit applied at different SNR values, with ex

FIG. 8. �a� Slopes of the linear fits of surface density at SNR=N vs surface
density at SNR=Inf; �b� intercepts of the linear fits of surface density at
SNR=N vs surface density at SNR=Inf; �c� R2 values of the linear fits. This
parameter was fitted with a piece-wise smoothing spline since no math-

ematical expressions could accurately fit the data.
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lution were greatest at low resolution and low SNR, but they
were significantly reduced after application of the correction
algorithm in all situations examined. The extent of error re-
duction from corrections also varied by parameter. It is noted
from the data in Table I that curves are particularly sensitive
to noise, leading to a dramatic overestimation at low SNR.
Nevertheless, curve count was substantially improved. Even
at the highest SNR level reported, the correction algorithm
reduced curve count from 47% to 4%, while the relative
error in BV/TV was lowered from 2.6% to 0.6%.

Figure 10 illustrates the dependence of topological sur-
face density on SNR plotted for ten subjects. The parameter
values were normalized such that at SNR=5 the trabecular
bone in each of the ten datasets had a relative surface density
of 1. After normalization, the curves for all samples collapse
onto approximately the same dependence �Fig. 10�a��. The
data clearly show decreasing dependence of the apparent sur-
face density with increasing SNR in that the derivative
��parameter� /��SNR� rapidly converges to zero for SNR
�10. Similar functional behavior was also found for other
topological and scale parameters �data not shown�.

The effectiveness of correction for effective resolution
degradation was comparable to that predicted for the noise
simulations. A systematic error, with magnitude increasing
with decreasing resolution, is apparent for most parameters.
The accuracy of the linear fits decreased with the resolution
of the images processed, similar to the behavior previously
found for increasing noise level. Curve fitting the slope and
intercept data of the linear fits yielded results slightly inferior
to those of the noise simulations, as evidenced by both slope
and intercept fit qualities �R2�0.95 for 8 of 16 parameters,
as compared to the 9 of 16 with R2�0.95 found previously�.
However, overall accuracy was increased after correction, as
seen in Table II. Like the corrections for SNR effects, the
corrections for parameters derived at low resolution reduced

ue at SNR=Inf �shown for SNR=6, the lowest SNR simulated�. �b� Slopes,
tial decay curve fits overlaid on slope and intercept data.
g val
ponen
errors for all parameters. The corrections were most dramatic
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for the lowest resolution images and varied in extent by pa-
rameter. At only a slightly reduced resolution of 151�151
�396 �m3 �DSF=1.2�, BV/TV error was reduced from
about 2% to 1%, relative to parameters values calculated at
126�126�396 �m3 �DSF=1�, while the error in surface
density was lowered from 12% to 1%. Even at low resolution
�252�252�396 �m3, DSF=2�, errors in postcorrection pa-
rameters did not exceed 10%.

III.B. Detection sensitivity of bone loss

Figure 11 shows resampled images before and after het-
erogeneous erosion corresponding to a 5% reduction in bone
volume fraction. These images appear visually indistinguish-
able due to the minute quantity of bone removed and subse-
quent downsampling and noise addition to simulate in vivo
imaging conditions. Most of the derived topological param-
eters significantly changed in response to bone loss for both
homogeneous and heterogeneous loss models �Fig. 12�.
Highly significant changes, commensurate with expectation,
were detected for both voxel sizes simulated at SNR=12 for
BV/TV, surface density and surface-to-curve ratio, which
were all decreased �p�0.0005�. Most notably, the bone loss
recovered by the virtual bone biopsy �VBB� was in excellent

FIG. 9. Correction for varying SNR of surface density and correction accur
�solid line�; �b� error in surface density calculation induced by noise �dotted
than the errors in the original values, and in the SNR range of 8–10 it is lo

TABLE I. Error in derived structural parameters indu
�396 �m3. Mean magnitude of error in parameters a
relative to parameters calculated from noiseless imag

SNR
6

Before Af

BV/TV �%� 25.1 2
Skeleton density �%� 102.2 10
Surface density �%� 36.8 6
Curve count �%� 463.0 21
Surface-to-curve ratio �%� 73.6 24
Medical Physics, Vol. 35, No. 12, December 2008
agreement with the applied value. Finally, both etiologies of
bone loss caused the erosion index to increase �p�0.0005�.
Curve density showed no significant changes after homoge-
neous erosion and the change in junction density was not
significant after heterogeneous erosion.

IV. DISCUSSION

In MRI, scan time and intrinsic detection sensitivity limit
the achievable SNR and thus spatial resolution. In CT, the
parameter imposing practical limits on voxel size, and thus
resolution, is radiation dose. In the regime of SNR and res-
olution achievable in vivo with the two modalities, partial
volume and point-spread function blurring, as well as noise,
are shown to affect the derived structural parameters. Even
though this study was performed largely from the perspective
of �MRI, it may have implications on CT as well.

The ability to retrospectively correct for variations in pa-
rameter values caused by subject and equipment-dependent
effects on noise and resolution should be of significant prac-
tical interest in clinical imaging of trabecular bone micro-
structure. Patient-dependent variations in SNR can occur as a
result of anatomic variations in the size of the limb being
scanned, in particular in conjunction with surface coils,

a� surface density before correction �dotted line�, corrected surface density
and after correction �solid line�. The error in the corrected values is lower
y approximately 10% of the noncorrected surface density values.

by reduced SNR with resolution fixed at 126�126
wn before and after corrections were applied and are
NR=��.

9 12

Before After Before After

5.6 1.0 2.6 0.6
23.7 2.9 11.8 2.1
10.0 1.9 5.6 1.1

108.6 7.4 47.4 3.6
45.9 9.1 27.2 5.5
acy: �
line�

wer b
ced
re sho
es �S

ter

.9

.3

.0

.9

.2
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which have a spatially variant reception profile. The resulting
errors can thus easily mask the effects under study for dif-
ferentiating between patient groups. Longitudinal studies de-
signed to evaluate the effect of intervention, such as treat-
ment with antiresorptive or anabolic drugs, require a
particularly high degree of stability of the imaging condi-
tions between base line and repeat examination.

There is currently no standard for image resolution in
�MRI of trabecular bone. Recent work in the distal extremi-
ties have used image voxel sizes ranging from 7.7
�10−3 mm3 to 1.2�10−2 mm3 or even as large as 2.1
�10−2 mm3 �see Refs. 33, 40, and 13� Resolution and SNR
in MRI are trade-off parameters, but it is not known whether
enhancing resolution at the expense of SNR increases or de-
creases detection sensitivity. It is also unknown what errors
are incurred by imaging at anisotropic resolution �typically
voxel size is chosen larger along the anatomic axis with an
anisotropy ratio of about 3:1�.41 Application of corrections to
resolution-induced errors in VBB processing would prove
useful in comparing images of subjects scanned at different
resolutions.

FIG. 10. �a� Topological surface voxel density, normalized to SNR=5, der
decreasing SNR. The images were processed and analyzed as described in
including those in panel �b� obtained by superimposing noise to achieve a ra
curve� in panel �a� with SNR indicated. Panel corresponding to SNR 10.1 p

TABLE II. Error in derived structural parameters in
DSF=1.2, 1.5, and 2.0. Mean magnitude of error in
applied and are relative to parameters calculated at 1

Resolution
151�151�396 �m

Before After

BV/TV �%� 1.8 0.9
Skeleton density �%� 10.3 0.9
Surface density �%� 12.4 1.0
Curve count �%� 7.8 3.6
Surface-to-curve ratio �%� 16.0 3.2
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The practically achievable resolution for a particular ana-
tomic location is largely governed by the SNR achievable at
that voxel size and determined by the hardware �field
strength, RF receive coils� as well as the tolerable scan time.
However, SNR can vary substantially between subjects, in
particular in conjunction with surface coils where the signal
is a function of the depth from the surface. Even when the
same patient is studied repeatedly, as in treatment effect
monitoring, patient-related effects such as weight gain be-
tween imaging sessions or inconsistent coil placement can
give rise to variations in SNR. The results of the noise varia-
tion simulations show that variations in SNR produce sys-
tematic changes in the computed structural parameters.
BV/TV derived with the bone volume fraction algorithm
used35 is shown to be nearly invariant down to SNR levels of
about 10, thereafter increasing progressively toward lower
SNR. Generally, parameters obtained at a given SNR or res-
olution were linearly related to those obtained under refer-
ence conditions, independent of the structural characteristics
of the bone examined �which in this work covered a range of
anatomic locations and bone volume fractions�. Such a be-

from ten patient �MRI scans showing progressive increase in error with
5. Bold curve in gray corresponds to parameters derived from the images
f SNR values; �b� SNR-degraded images of the distal tibia scan �bold gray
s to images acquired.

by reduced resolution. Resolutions correspond to
meters are shown before and after corrections were
126�396 �m3 resolution �DSF=1�.

189�189�396 �m3 252�252�396 �m3

Before After Before After

9.2 2.6 30.7 6.1
22.9 1.1 37.9 1.6
27.8 1.6 45.6 2.6
16.6 7.0 24.3 8.7
32.7 4.5 49.6 8.3
ived
Ref.
nge o
duced
para
26�
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havior is shown to lend itself for retrospective correction.
The empirically derived functions allowing correction for ef-
fects of noise and reduced effective resolution have been
found to be well behaved and can be defined explicitly or as
piecewise splines. Some parameters, such as BV/TV and sur-
face voxel classification parameters, changed in a particu-
larly regular and predictable manner with SNR, while others,
typically curve-type voxel classes, exhibited a more erratic
behavior. The data show that the more predictable param-
eters are amenable to retrospective correction, i.e., there was
a more significant reduction of noise and resolution induced
errors after applying linear transformation corrections. The
results from a subset of a previously performed fracture
study in postmenopausal women using the authors’ VBB
technology show that the behavior of the surface density
�Fig. 10� closely parallels that predicted by the simulations,
thus lending further credence to the practicality of the pro-
posed correction scheme.

At clinically practiced resolution �currently 137�137
�410 �m3 at 1.5 T field strength in the authors’ laboratory�
and 160�160�160 �m3 �more recently achieved at 3 T
with new RF coil technology�, SNR=12 chosen for the simu-
lations is realistic. Under these conditions, BV/TV and the
most common topological quantities were significantly dif-
ferent post erosion for both models of bone loss �Fig. 12�
even though the cross-sectional images are visually indistin-
guishable �Fig. 11�. Heterogeneous erosion caused a consis-

FIG. 11. Sample slices of pre- �a� and posterosion �b� simulated �MR im-
ages obtained by resampling 21 �m isotropic resolution �CT images to
clinical resolution �137�137�410 �m3�. Changes caused by erosion are
not visually apparent but are readily quantifiable by the VBB algorithm.

FIG. 12. Relative changes in structural parameters detected by VBB process
removal of 5% bone volume through heterogeneous �a� and homogeneous

deviation of the changes.
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tently significant decrease in the surface-to-curve ratio, and
an increase in the erosion index �Fig. 12�a��. These param-
eters had previously been shown in studies performed by in
vivo structure analysis to exhibit disproportionately large dif-
ferences between postmenopausal women with and without
vertebral fractures.22,42 Such an etiology, indicative of
gradual conversion of plate-like to rod-like bone,3 is well
known to occur in postmenopausal osteoporosis.43 A recent
longitudinal �MRI study conducted in early postmenopausal
women based on images of resolution and SNR comparable
to those used in the present work was able to detect topo-
logical changes of magnitude similar to those in our
simulations.44 The present work therefore provides further
evidence that subtle changes in response to intervention or
hormone loss are quantifiable in the limited spatial resolution
regime of in vivo �MRI and, further, that the simulated loss
in bone volume fraction of 5% is accurately recovered at in
vivo resolution.

In the second model examined �homogeneous bone loss,
Fig. 12�b�� a similar, albeit less pronounced, pattern emerges,
again with a decrease in surface-to-curve ratio and an in-
crease in erosion index. Clearly, even when bone is lost ho-
mogeneously �a pattern more consistent with corticosteroid-
induced osteoporosis45,46�, perforations will occur since
trabecular thickness is spatially variant. However, the above
effects are generally smaller in this case. The consistently
observed reduction in the junction density parameter for ho-
mogeneous erosion �but not for heterogeneous erosion� could
be interpreted as resulting from disconnection of trabecular
elements due to thinning, thereby reducing the number of
junctions between struts and plates.

One limitation of the present study is the relatively small
number of samples studied, even though these covered a
wide range of structure types and the form of the transfor-
mation function for a given parameter was found to be an
excellent match for all nine specimens. It would therefore be
desirable to test the linear transformation hypothesis on a
larger cohort of specimens and in patient data. Future studies
of the effects of noise and resolution on VBB processing
may therefore involve application of noise and resolution
corrections to images acquired in vivo, to determine whether

fter downsampling the data to clinical voxel size and SNR levels following
erosion of the 21 �m resolution images. Error bars indicate the standard
ing a
�b�



5593 Li et al.: Implications of resolution and noise for in vivo 5593
such corrections improve the sensitivity for group differen-
tiation �e.g., treatment versus placebo� by accounting for in-
consistencies in image SNR of time-series data. Additionally,
the sensitivity of digital processing algorithms can be further
tested through additional simulations by incrementally vary-
ing the fractional change in bone volume for different image
resolution and SNR regimes, thereby determining the limit at
which digital image analysis can detect bone loss �or accrual
in response to treatment�. Finally, the ideal balance between
SNR and resolution needs to be determined by trading be-
tween resolution and SNR.

A more fundamental limitation relates to the assessment
of the accuracy for retrospective corrections for resolution-
induced errors. While structural parameters can be derived
from images simulated with infinitely high SNR as a gold
standard for noise-induced error correction, it is, of course,
not feasible to simulate images with infinitely high resolution
to generate a reference standard for resolution-induced error
correction. It also needs to be noted that topological param-
eters inherently depend on resolution and voxel size. It is
evident, for example, that depending on voxel size, a narrow
plate will either be classified as a curve or surface after
skeletonization.23

So far, we have confined ourselves to the topological pa-
rameters, but the more traditional measures adapted from
histomorphometry, used for analysis of in vivo �MRI �Ref.
4� and high-resolution pQCT,7 need to be examined in
greater detail as well. A few studies have compared �CT
derived structural measures with those obtained with in vivo
imaging modalities and correlations were noted �see, for ex-
ample, Ref. 47�. However, no studies exist which systemati-
cally examine the effects of resolution and noise on the de-
rived structural measures or the implications of these
fundamental imaging parameters on detection sensitivity.

V. CONCLUSIONS

Variations in SNR and resolution of simulated trabecular
bone �MR images cause systematic errors in the derived
parameters representative of topology and scale of the trabe-
cular network. The data suggest that the resulting errors can
be retrospectively corrected using empirical methods. These
corrections would be a crucial step in comparing structural
parameters calculated from images with varying voxel size
and SNR, or in normalizing parameters calculated from
single images with spatially varying noise. Last, we have
provided evidence that our analysis algorithms may be able
to detect topological changes in trabecular structure caused
by small decrements of bone loss, such as those expected
clinically over the period of 1 year following menopause,
under conditions currently achievable in vivo.
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