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The physical factors that govern 2D and 3D imaging performance may be understood from quan-
titative analysis of the spatial-frequency-dependent signal and noise transfer characteristics �e.g.,
modulation transfer function �MTF�, noise-power spectrum �NPS�, detective quantum efficiency
�DQE�, and noise-equivalent quanta �NEQ�� along with a task-based assessment of performance
�e.g., detectability index�. This paper advances a theoretical framework based on cascaded systems
analysis for calculation of such metrics in cone-beam CT �CBCT�. The model considers the 2D
projection NPS propagated through a series of reconstruction stages to yield the 3D NPS and allows
quantitative investigation of tradeoffs in image quality associated with acquisition and reconstruc-
tion techniques. While the mathematical process of 3D image reconstruction is deterministic, it is
shown that the process is irreversible, the associated reconstruction parameters significantly affect
the 3D DQE and NEQ, and system optimization should consider the full 3D imaging chain. Factors
considered in the cascade include: system geometry; number of projection views; logarithmic
scaling; ramp, apodization, and interpolation filters; 3D back-projection; and 3D sampling �noise
aliasing�. The model is validated in comparison to experiment across a broad range of dose,
reconstruction filters, and voxel sizes, and the effects of 3D noise correlation on detectability are
explored. The work presents a model for the 3D NPS, DQE, and NEQ of CBCT that reduces to
conventional descriptions of axial CT as a special case and provides a fairly general framework that
can be applied to the design and optimization of CBCT systems for various applications. © 2008
American Association of Physicists in Medicine. �DOI: 10.1118/1.3002414�
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I. INTRODUCTION

Cone-beam computed tomography �CBCT� with flat-panel
detectors �FPDs� is finding use in a broad range of applica-
tions, including preclinical imaging �e.g., small animal imag-
ing�, screening and diagnosis �e.g., breast imaging�, and
image-guided procedures �e.g., surgery and radiotherapy�.
The technology exhibits submillimeter spatial resolution and
soft-tissue visibility across a large volume of reconstruction
obtained from a single rotation of the source and detector
about the subject. While artifacts �e.g., x-ray scatter artifacts,
ring artifacts, etc.� remain a significant challenge to image
quality, the fundamental limits to CBCT imaging perfor-
mance lie in the image noise and the correlations therein.

A prevalent approach to describing imaging performance
involves Fourier metrics, such as the modulation transfer
function �MTF�, noise-power spectrum �NPS�, noise-
equivalent quanta �NEQ�, and detective quantum efficiency

�DQE�. These metrics offer widespread, practical means of
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system characterization, and the methods of experimental
measurement of each are becoming standardized. Moreover,
they provide a basis for evaluating performance with respect
to an intended task, an essential aspect of image quality as
discussed in ICRU Report No. 54.1 Theoretical analysis of
these metrics has proven important in understanding and op-
timizing imaging performance in many areas of 2D digital
x-ray imaging,2–12 particularly in the early stages of technol-
ogy development. Such an understanding of the factors gov-
erning fundamental imaging performance should prove simi-
larly valuable in the development of CBCT.

One of the earliest treatments of CT noise was given by
Barrett et al.,13 yielding now familiar relationships between
voxel noise and dose, slice thickness, etc. The spatial fre-
quency characteristics of the noise were addressed by Ried-
erer, Pelc, and Chesler,14 who described the axial CT NPS in
terms of the reconstruction filter and a weighting factor �1 / f�

associated with back-projection, noting that the NPS for each
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projection corresponds to a delta function �“spoke”� through
the frequency domain at a corresponding angle. Hanson15

further described the effect on detectability and defined a
scalar NEQ in terms of the number of photons contributing
to the 3D image per unit length along the detector, which
could be determined from the low-frequency slope of the
axial NPS. In the same year, Wagner16 related these proper-
ties to the observer signal-to-noise ratio �SNR� in terms of an
optimal matched filter in the presence of colored noise.
Faulkner and Moores17 described the effect of discrete detec-
tor elements and the reconstruction matrix. Kijewski and
Judy18 described the effect of a discrete number of projec-
tions and showed that the zero-frequency noise in axial CT is
entirely attributable to noise aliasing in the reconstruction
domain, demonstrating that the noise characteristics of a CT
reconstruction are not trivially related to the projection noise
alone. Rather, the entire imaging chain must be considered to
understand the noise in CT reconstructions.

With the development of CBCT using FPDs, many of
these early findings hold, but some require reexamination in
the context of fully 3D imaging. In the sections below, a
theoretical model for the 3D NPS of FPD-based filtered
back-projection CBCT is presented and validated in com-
parison to measurements. The results are related to classical
results for axial CT where possible �e.g., the voxel noise as
described by Barrett et al.13 and aliasing as described by
Kijewski and Judy18�. The 3D NEQ and DQE are defined in
terms that make explicit the effect of various nonideal char-
acteristics of FPDs—e.g., quantum detection efficiency,
Swank factor, blur, and electronics noise. A number of non-
trivial factors affecting the 3D NPS are exposed—e.g., the
effects of 3D noise aliasing, 2D pixel binning, and 3D voxel
averaging. Finally, the 3D metrics are applied in evaluation
of the detectability index to describe the influence of acqui-
sition and reconstruction parameters on task performance.
This work builds on a series of related papers reported in
developmental stages and for specific applications in confer-
ence proceedings.19–23 This paper details the mathematical
rigor of the model, presents the approach as a general frame-
work, and includes aspects of CBCT imaging not previously
considered �such as 2D and 3D binning�.

II. THEORETICAL ANALYSIS

II.A. Background: Cascaded linear systems analysis

The basic aspects of cascaded linear systems analysis
24–26

TABLE I. Signal and noise transfer relations for the various types of stages

Stage Signal

Gain q̄i�u ,v�= ḡiq̄i−1�u ,v�

Stochastic spreading q̄i�u ,v�= q̄i−1�u ,v�**spi�u ,

Deterministic spreading q̄i�u ,v�= q̄i−1�u ,v�**pi�u ,v

Sampling q̄i�u ,v�= q̄i−1�u ,v�III�u /au
have been discussed in detail in previous work as has its
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application in a variety of 2D imaging applications.2–12 The
basic concepts and derivation of the 2D projection NPS are
briefly summarized below.

Cascaded systems analysis models the imaging chain as a
series of discrete stages �gain, stochastic spreading, deter-
ministic spreading, or sampling� as summarized in Table I.
The mean signal �q̄i� and NPS �Si�u ,v�� at stage i are deter-
mined from that at stage i−1 by the mean gain �ḡi�, gain
variance ��gi

2 �, and/or MTF �Ti�u ,v�2�.
Assumptions include linearity, shift invariance, and sta-

tionarity of the first-and second-order statistics. The degree
to which these assumptions hold have been discussed else-
where and are subjects of ongoing research.27–30 For ex-
ample, Cunningham28 showed that if a system exhibits dis-
crete periodic invariance �cyclostationarity�, as with a
sampled detector, familiar image quality metrics are appli-
cable. Albert and Maidment29 showed that shift-variant prop-
erties at the subpixel scale are small, particularly for systems
employing “alias-free” detectors for which presampling blur
shares signal between multiple pixels �e.g., as in indirect-
detection FPDs�. Other issues potentially relevant in
CBCT—but neglected in the current analysis—include non-
uniformities in detector response, heel effect, oblique x-ray
incidence,31 as well as x-ray scatter,32 geometric
misalignment,30 and variation in projection ray density
across the detector.

Image formation in indirect-detection FPDs has been de-
scribed as a seven-stage process2,3 including: �0� incident
x-ray photons; �1� interaction of x-rays with the converter;
�2� production of secondary quanta; �3� spread of optical
quanta within the detector; �4� coupling of optical photons to
the photodiode and conversion to electron-hole pairs; �5� in-
tegration of optical photons by the pixel aperture; �6� sam-
pling of the image at discrete pixel locations; and �7� readout
with additive electronics noise. The resulting 2D projection
image NPS is:

S7 = q̄0apd
4 ḡ1ḡ2�1 + ḡ4PKT3

2�T5
2 � � III6 + Sadd, �1�

where notation is consistent with that of previous work,2,3

and each term is defined in Table II. Factors related to
K-fluorescence and conversion noise in stage 2 are as de-
scribed by Yao,26 with PK �equal to �ḡ2+�ḡ2

� in the case of
no K-fluorescence� as in Richard et al.33 The term III6 �equal
to auIII�aufu�avIII�avfv�, in terms of the sampling function

dered in cascaded systems analysis.

Noise

Si�fu , fv�= ḡi
2Si−1�fu , fv�+�gi

2 q̄i−1+Saddi
�fu , fv�

Si�fu , fv�= �Si−1�fu , fv�− q̄i−1�Ti
2�fu , fv�+ q̄i−1

Si�fu , fv�=Si−1�fu , fv�Ti
2�fu , fv�

� Si�fu , fv�=Si−1�fu , fv�**auavIII�fuau , fvav�
consi

v�

�

,v /av
III�x�� is a Fourier domain comb function �a sum of equally



¯

¯

¯

¯
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spaced, unit area delta functions� associated with pixel
sampling.

II.B. Cascaded systems model for flat-panel cone-
beam CT

The cascaded systems model is extended to 3D recon-
struction through eight additional stages �stages 8-15� illus-
trated in Fig. 1. Notation for geometry is summarized in
Table III.

II.B.1. Stage 8: Postreadout „2D… binning and
sampling

Detector elements may be arbitrarily binned and/or down-
sampled according to the desired resolution, noise, and re-
construction time for the 3D image. Binning is described by
a 2D rectangular aperture �a sinc function in the Fourier do-
main� of size Au and Av along rows and columns, respec-

TABLE II. Summary of terms used in theoretical description of NPS. Nomi-
nal values correspond to a typical CBCT image acquisition �120 kVp;
2.5 mm Al inherent filtration +5.1 mm Cu added filtration; 2 mAs per pro-
jection �14.8 mGy air kerma per projection at the detector�; 320 projections;
360° circular orbit with uniform projection weighting; SAD=93.5 cm;
SDD=144.4 cm�.

Term Definition Nominal value

Tj Transfer function for stage j —
Si Noise-power spectrum at stage j —
qo Mean fluence incident on the detector for a given

projection
3.24�104 mm−2

g1 Mean fraction of incident photons interacting
with the detector

0.48

g2 Mean number of optical photons produced
per incident photon, including k-shell interactions

2850

Pk Transfer function associated with k-fluorescence —
T3 Transfer function due to spread of optical

photons
—

g4 Coupling efficiency of photodiode 0.6
apd Width of �square� photodiode 0.32 mm
T5 Transfer function due to photodiode aperture —
ai Detector sampling interval in direction i 0.4 mm
III Sampling function �comb, or Shaw function� —
�add Additive electronics noise 3975 e /pixel
Ai Width of binning aperture �in pixels�

in direction i
1

Bi Downsampling factor in direction i 1
T8 Transfer function due to 2D binning aperture —
T10 Ramp filter —
T11 Apodization filter —
hwin Smoothing parameter 0.5
T12 Interpolation filter —
m Number of projections acquired across

circular orbit
320

M Magnification factor, SDD/SAD 1.54
T13 Transfer function associated with back-projection —
�13 Transfer function associated with back-projection

of noise
—

bi 3D sampling interval in direction i 0.259 mm
tively �for example Au=Av=2 for 2�2 binning�. The image
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is subsequently sampled at interval Bu and Bv, giving discrete
data at the output of stage 8. The process is described as
follows:

T8�fu, fv� = sinc��fuauAu�sinc��fvavAv� , �2a�

III8�fu, fv� = auBuIII�avBvfu�avBvIII�avBvfv� , �2b�

S8�fu, fv� = S7�fu, fv�T8
2�u,v� � � III8�fu, fv� . �2c�

Note that if Au=Av=Bu=Bv=1, then S8=S7 �no detector bin-
ning�. The process of binning and up or downsampling can
be included between any two stages in the reconstruction,
with nontrivial effect on NPS.

II.B.2. Stage 9: Log normalization

Detector signal is converted to attenuation by dividing the
image by the mean flood-field signal, followed by the nega-
tive logarithm �Beer-Lambert law�. Potential nonlinearities
associated with dark-flood correction were not considered in
this model. Assuming small image fluctuations �i.e., low-
contrast or noise-only data� the logarithm imparts a factor of
1/mean upon the noise. This assumption is valid when the
signal �and noise� fall within a linear and symmetric range of
the logarithm function and when the mean signal is constant
over the field of view �such that 1/mean is constant�. As
discussed in an appendix by Barrett et al.,13 this assumption
is valid for typical radiological applications. The NPS is,
therefore,

S9�fu, fv� =
1

mean2S8�fu, fv� , �3a�

where the mean signal �in air� is:

mean = q̄0apd
2 ḡ1ḡ2ḡ4. �3b�

The result is simply the normalized NPS that is typically
reported for 2D projection applications �inversely propor-
tional to exposure�. The application of a logarithm demands
that signal and noise be dimensionless at this stage, giving an
NPS with units of mm2.

II.B.3. Stage 10: Ramp filter

The ramp filter:

T10�fu, fv� = �fu� , �4a�

is the ideal reconstruction filter for a scan with an infinite
number of projections. The transfer function associated with
this stage carries units of �mm−1� and gives the signal the
appropriate units of linear attenuation while making the NPS
dimensionless. Typical numerical implementation includes a
small nonzero value at zero frequency, which avoids nulling
the DC value. The NPS is transferred deterministically:

S10�fu, fv� = S9�fu, fv�T2 �fu, fv� . �4b�
10



and n
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II.B.4. Stage 11: Apodization filter

To reduce high-frequency noise amplified by the ramp
filter, an apodization �smoothing� filter is often applied. For
example, a Hamming window:

T11�fu, fv� = hwin + �1 − hwin�cos�2�fuauBu� , �5a�

provides adjustable smoothing through variation of the pa-
rameter hwin �with 0.5�hwin�1�. Such a digital filter de-

FIG. 1. Illustration of the cascaded systems model for CBCT reconstruction.
to processes of 3D reconstruction. Transfer functions are illustrated at left,
pends on the sampling distance �auBu� but not the binning
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aperture Au. The NPS is transferred as a deterministic con-
volution:

S11�fu, fv� = S10�fu, fv�T11
2 �fu, fv� . �5b�

II.B.5. Stage 12: Interpolation of the filtered
projection

In voxel-driven reconstruction, the projection signal

7 is the output of the basic 2D projection cascade. Stages 8–15 correspond
oise-power spectra at right. Adapted from Ref. 23.
Stage
should be known at arbitrary locations on the detector that
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may not correspond to the pixel centers. Typically, interpo-
lation is used to approximate a continuous image. Bilinear
interpolation is common, with the associated transfer func-
tion given by the Fourier transform of a unit area triangle
function with width equal to twice the sampling distance:

T12�fu, fv� = sinc2��fuauBu�sinc2��fvavBv� . �6a�

Nearest-neighbor interpolation �generally a poorer choice23�
is described by the Fourier transform of a rect function with
width equal to the sampling distance:

T12�fu, fv� = sinc��fuauBu�sinc��fvavBv� . �6b�

The NPS at this stage is no longer periodic, attenuated at
frequencies beyond the Nyquist region by T12 squared:

S12�fu, fv� = S11�fu, fv�T12
2 �fu, fv� . �6c�

II.B.6. Stage 13: 3D back-projection

Three factors need to be accounted for in modeling 3D
back-projection. The first is geometric magnification. Even
under the parallel beam approximation �invoked below�,
magnification must be incorporated to account for the change
in scale between detector pixel size and 3D image voxel size.
The scaling property of the Fourier transform implies:

S12M�fyi, fz� =
S12�fu/M, fv/M�

M2 . �7�

The Nyquist frequency, thus, increases by the magnification
factor.

The second is the back-projection process itself, which is
a linear operation under the assumption of a parallel beam.
Fan-to-parallel rebinning and spatially varying weights asso-
ciated with a divergent beam will be considered in future
work. Back-projection, thus, amounts to a smearing of the
2D image along a given angle �and along a given length,
denoted d� through the 3D field of view. The length d corre-
sponds to the extent of the 3D reconstruction field of view,
which can range from some arbitrarily small length up to the

TABLE III. Summary of notation for 2D and 3D geometric coordinates.

Coordinates Description

�u ,v� Column and row coordinates of 2D projection image
�fu , fv� Spatial frequency coordinates corresponding to �u ,v�
�x ,y ,z� Spatial coordinates of 3D image reconstruction. �Note: u

and v axes are parallel to x and z
axes, respectively�

�fx , fy , fz� Spatial frequency coordinates �Cartesian� corresponding
to �x ,y ,z�

f Cylindrical spatial frequency coordinate �sqrt�fx
2+ fy

2��
�i Projection view angle of the ith projection with respect

to the x axis
�xi ,yi ,z� 3D image reconstruction coordinates rotated by �i such

that yi is parallel to the ith
projection view

�fxi , fyi , fz� Spatial frequency coordinates rotated by �i as above
SDD �as shown below, d cancels out of the NPS, and its
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exact value is unimportant.�. The signal and noise transfer
can be modeled as a convolution with a rect function of
width d. Writing in terms of the 3D reconstruction coordi-
nates, for the ith projection we have:

T13i�fxi, fyi, fz� = d sinc�dfxi� . �8a�

The NPS is transferred deterministically and scaled by 1 /d,
since it is associated with the Fourier transform of the aver-
age autocorrelation function �i.e., the volume averaged over
in stage 13 is related to the area in stage 12 by a factor of d�:

S13i�fxi, fyi, fz� = S12M�fyi, fz�
1

d
�T13i�fxi, fyi, fz��2. �8b�

While this process does not change the units of the signal or
noise, the signal is spread across another dimension and its
Fourier descriptions, therefore, gain units of mm �due to the
units of the differential in the Fourier integral�. Note that for
large d,

T13i�fxi, fyi, fz� → ��fxi� , �8c�

and

1

d
�T13i�fxi, fyi, fz��2 → ��fxi� , �8d�

such that the projection NPS is simply superimposed along a
given angle through the 3D Fourier domain, as implied by
the Fourier slice theorem. This behavior has been described
as “spokes”14,18 or “vanes,”21 and has been interpreted to
mean that the presampling 3D NPS is continuous in the ra-
dial and longitudinal directions, but discrete in the angular
coordinate. While this is a useful description, for a finite
value of d, the 3D presampling NPS �S13� is continuous and
technically not discrete.

The last factor is superposition of the back-projected sig-
nal for each projection view, where signal and noise behavior
fundamentally diverge. The signal transfer can be written
simply as a superposition:

T13�fx, fy, fz� =
�M

m
�
i=1

m

T13i�fxi, fyi, fz� , �9a�

where m is the number of projections, and M is the magni-
fication factor. As shown in Appendix A, the transfer func-
tion is equal to:

T13�fx, fy, fz� = T13�f , fz� = M
1

f
, �9b�

which exactly cancels out �up to the 2D Nyquist frequency�
with the ramp filter �T10= �fu�= f /M�. This gives a properly
behaved MTF that is 1 at zero frequency and smoothly vary-
ing at higher frequencies.

Assuming that each projection is statistically independent
�see the Discussion section for possible incorporation of im-
age lag effects�, the 3D NPS is given by superposition of the

individual back-projected NPS:
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S13�fx, fy, fz� = ��M

m
�2

�
i=1

m

S13i�fxi, fyi, fz� . �9c�

As shown in Appendix A, this may be simplified to:

S13�fx, fy, fz� = S13�f , fz� =
�M2

m

1

f
S12M�f , fz� . �9d�

At this stage, the usual intuitive process of noise simply
being blurred by the transfer function �i.e., the NPS attenu-
ated by T2� does not apply. However, it is possible to asso-
ciate a “transfer function” for noise only at this stage:

�13
2 �f , fz� =

�M2

m

1

f
. �9e�

The NPS is cylindrically symmetric, continuous, and not pe-
riodic �i.e., extends to infinite spatial frequencies, attenuated
primarily by T12�. Because digital filters are periodic about
the sampling frequency, whereas �13

2 is not, the 1 / f term
resulting from superposition cancels out at frequencies up to
the 2D Nyquist frequency, an affect that can be observed
experimentally in the “corners” of the NPS �see, for ex-
ample, Fig. 7�.

II.B.7. Stage 14: Sampling of the 3D voxel matrix

Sampling at discrete locations defined by the 3D voxel
matrix corresponds to convolution of the NPS with a 3D
comb function. Such alters the spatial frequency content of
the 3D NPS through aliasing:

III14�fx, fy, fz� = bxIII�bxfx�byIII�byfy�bzIII�bzfz� , �10a�

S14�fx, fy, fz� = S13�fx, fy, fz� � � � III14�fx, fy, fz� . �10b�

In particular, noise power from above the Nyquist region is

aliased �added� at lower frequencies. As noted by Kijewski

Because the terms f and T10 depend only on the frequencies
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and Judy,18 the zero-frequency noise is attributable entirely
to aliasing.

II.B.8. Stage 15: Postreconstruction „3D… binning
and sampling

Postreconstruction binning and sampling of the 3D image
�e.g., slice averaging� can be described in a manner similar to
that described for stage 8:

T15�fx, fy, fz� = sinc��fxbxAx�sinc��fybyAy�sinc��fzbzAz� ,

�11a�

III15�fx, fy, fz�

= bxBxIII�bxBxfx�byByIII�byByfy�bzBzIII�bzBzfz� ,

�11b�

S15�fx, fy, fz�

= S14�fx, fy, fz�T15
2 �fx, fy, fz� � � � III15�fx, fy, fz� , �11c�

where �Ax ,Ay ,Az� is the aperture size �in voxels� in the
�x ,y ,z� directions, and �Bx ,By ,Bz� is the associated resam-
pling. For example, averaging of adjacent slices corresponds
to �Ax ,Ay ,Az�= �Bx ,By ,Bz�= �1,1 ,2�. Again, if Ax=Ay=Az

=Bx=By=Bz=1, then S15=S14, which corresponds to recon-
struction at the “natural” voxel size �the detector pixel size
divided by the geometric magnification�.

II.B.9. Analytic form of the 3D NPS

The resulting 3D image NPS can be written as �dropping

the arguments of functions for conciseness�:
S15 = 	 �S7T8
2� � � III8

�q̄0apd
2 ḡ1ḡ2ḡ4�2T10

2 T11
2 T12

2 1

M2�13
2 � � � III14
T15

2 � � � III15

= 	 �S7T8
2� � � III8

�q̄0apd
2 ḡ1ḡ2ḡ4�2

� f̃

M
�2

T11
2 T12

2 1

M2

�M2

m

1

f
� � � III14
T15

2 � � � III15, �12a�
where the � over the f indicates periodicity about the 2D
Nyquist frequency—i.e., T10 is implemented as a digital filter
and is, therefore, periodic, whereas �13

2 corresponds to a re-
distribution �smearing� of quanta and is not. Therefore,

S15 =
�

mM2�q̄0apd
2 ḡ1ḡ2ḡ4�2

�	�S7T8
2� � � III8T11

2 T12
2 f̃2

f
� � � III15
T15

2 � � � III15.

�12b�
in the x−y direction, and not the z direction, the 3D NPS is
asymmetric. These features impart a bandpass noise charac-
teristic in the axial direction, whereas noise in the longitudi-
nal direction is low pass as governed by the interpolation
kernel and detector MTF. This asymmetry is fundamental to
filtered back-projection and is unrelated to the cone-beam
artifact. The cylindrical symmetry of the presampling NPS
�S13� is broken by aliased noise arising from 3D sampling.
Furthermore, the process is irreversible, with sampling oc-
curring at up to four points in the imaging chain �sampling
on the detector �optional� 2D binning and resampling of de-

tector data, sampling in the reconstruction matrix, and �op-
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tional� 3D binning and resampling of the reconstruction�.
Each imparts irreversible noise aliasing effects.

The result can be written in a simplified form under some
assumptions. For example, without 2D or 3D binning and
resampling �S7=S8, S14=S15�, and taking noise above the de-
tector Nyquist frequency �noise in the “corners” of the NPS�
to be negligible �i.e., f̃2 / f � f�, the 3D NPS reduces to:

S15 =
�f

mM2S7�T11
2 T12

2 � � � III15, �12c�

which is simply the normalized projection NPS �S7�� modu-
lated by the reconstruction filters �T11 and T12� and con-
volved with the 3D sampling function �III15�. The scale fac-
tor relates to the radial projection density �m projections over
� radians, where density decreases as 1 / f� and transforma-
tion to the reconstruction coordinates �1 /M2�. While many of
the qualitative features of the 3D NPS are evident in this
simple product of transfer functions with the projection NPS,
the irreversible sampling step �with associated 3D noise
aliasing� is intrinsic to the process.

The units of the 3D NPS are signal squared times length
cubed, where signal may be measured in terms of linear at-
tenuation coefficient �mm−1 or cm−1� or Hounsfield units
�HU�. Taking the former, the units are, therefore
��mm−1�2�mm3��, or simply �mm�, which we denote as
�	2 mm3� to avoid possible confusion associated with the
cancellation of terms.

II.C. Variance

The variance in voxel values is given by the integral over
the 3D NPS within the Nyquist region. As shown in Appen-
dix B, a result consistent with the well known result of
Barrett13 is obtained:

�2 = �
−nq

nq �
−nq

nq �
−nq

nq

S15�fx, fy, fz�dfxdfydfz

=
M4

mq̄0DQE7

Kxyz

au
3av

=
1

mq̄0DQE7

Kxyz

axy
3 az

, �13a�

where the last equation is cast in a familiar form in terms of
the natural voxel size. The bandwidth integral, Kxyz is de-
fined �analogous to the “IBWI” of Wagner et al.16� as:

Kxyz =
4�2au

3av

M2 �
0


 �
0




T3
2�fu, fv�T5

2�fu, fv�T10
2 �fu�T11

2 �fu�

�T12
2 �fu, fv�dfudfv. �13b�

The key assumptions in obtaining the simple, closed form
include no binning or downsampling and a constant detector
DQE �an assumption that must be applied carefully, particu-
larly in low-dose applications where electronic noise is not
negligible�. One can see that variance is inversely propor-
tional to x-ray fluence, number of projections, and detector
DQE. In addition, it is proportional to the 3D bandwidth
integral �i.e., integrals over the MTF, reconstruction filters,
etc.�. The inverse dependence of voxel variance on maxyaz is

due to the total fluence through a given voxel, and the addi-
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tional two powers of axy are due to the noise amplifying
ramp filter. Finally, while not evident in the form of Eq.
�13b� shown above, the variance depends on the square of
the magnification, an important point for considering system
geometry. The familiar rule of thumb �i.e., variance inversely
proportional to x−y voxel size cubed and slice thickness�
must be interpreted carefully. In fact, the volume can be re-
constructed at any voxel size and slice thickness �keeping
Ax=Ay=Az=1, but choosing Bi�1� without changing the
variance. Postreadout �2D� binning and downsampling how-
ever �i.e., Au=Bu�1, Av=Bv�1�, follows closely with the
rule of thumb, as shown in Sec. III E.

II.D. The 3D DQE and NEQ

In projection radiography, the DQE and NEQ can be in-
terpreted in several equivalent ways �i.e., the conceptual, de-
scriptive, stochastic, and predictive definitions, as posed by
Cunningham34�. In CBCT, they cannot be interpreted both as
a signal to noise ratio, and as a description of the departure
from an ideal detector. This is in part due to the logarithm
stage, which complicates the definition of SNR, and in part
to the back-projection stage where signal and noise propaga-
tion are decoupled. An appropriate definition is given by
Cunningham’s “stochastic” form, where the NEQ describes
the number of photons at each spatial frequency for which an
ideal detector would produce the same NPS, and the DQE
describes this value as a fraction of incident photons. As
such, the NEQ is given by:

NEQ�fx, fy, fz� =
NPSideal�fx, fy, fz�

S15�fx, fy, fz�
mq̄0, �14a�

where the denominator is the 3D NPS �either calculated as
S15 or measured from 3D images, below�. The NEQ is, there-
fore, proportional to m and q̄0 �i.e., the total incident flu-
ence�. From the ratio of NPS, we see that the NEQ is also
proportional to ḡ1 and the Swank factor �i.e., the zero-
frequency detector DQE�

NEQ�fx, fy, fz� = �f
T3

2�f , fz�T5
2�f , fz�T11

2 �f�T12
2 �f�

S15�fx, fy, fz�
. �14b�

This provides a basic form for the 3D NEQ, with units of
�photons /mm2�, which should be contrasted to
�photons /mm�, as discussed for a linear detector and 2D
axial tomography.15 Note that Eq. �14b� implies that the NPS
can be written �dropping functional dependence for the mo-
ment�:

S15 = �f
T3

2T5
2T11

2 T12
2

NEQ
, �15a�

which has the same form as proposed by Hanson.15 Follow-
ing Hanson’s reasoning regarding the low-frequency behav-
ior �i.e., in the limits Ti→1 and NEQ→const=NEQ�0��, we
obtain the familiar rule that the slope of low-frequency NPS

is inversely proportional to the zero-frequency NEQ:
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 �

�f
S15

f→0
=

�

NEQ�0�
. �15b�

The DQE can be similarly written as:

DQE�fx, fy, fz� =
NPSideal�fx, fy, fz�

S15�fx, fy, fz�
=

NEQ�fx, fy, fz�
mq̄0

=
�f

mq̄

T3
2�f , fz�T5

2�f , fz�T11
2 �f�T12

2 �f�
S15�fx, fy, fz�

, �16�

which provides a basic form for the 3D DQE. As familiar,
DQE is dimensionless, has a maximum of 1, varies with ḡ1

and Swank factor, and depends on exposure only to the �typi-
cally small� extent that additive electronics noise contributes
in proportion to the total detected fluence.

II.E. Task and detectability index

The performance of any imaging system should be con-
sidered with respect to the imaging task. The detectability
index can be defined based on the 3D MTF and NPS in
direct analogue to the familiar form1 by considering d� as the
SNR2 for a matched filter receiver:

d�2 =� � � MTF2

NPS
��H�2dfxdfydfz, �17a�

where �H is the task function �i.e., the Fourier transform of
the difference between binary hypotheses�. The task function
represents a low-contrast stimulus �i.e., a small signal differ-
ence such that the image statistics are unaffected�. This can
be related to the system NEQ as:

d�2 =� � � 1

�f
NEQ��H�2dfxdfydfz. �17b�

This definition is consistent with the optimum SNR for a
receiver using the matched filter technique, as described by
Hanson for 2D images,15 except that the assumptions of ra-
dial symmetry of the task and NPS, constant NEQ, and lack
of magnification were not required here. The factor of
�1 /�f� provides appropriate scaling for radial density of pro-
jections that slightly alters the interpretation of the NEQ as a
function describing the spatial-frequency-dependent SNR
that can be integrated with the task function to yield the
detectability index; rather, that function is given by NEQ
scaled by �1 /�f�.

To demonstrate some important features of the 3D NPS,
the detectability index was computed for two tasks: �i.� a
simple delta function detection task that weighs each spatial
frequency equally; and �ii.� a discrimination task between
two 3D Gaussians of different widths, which weighs high
frequencies very strongly. Slices through the corresponding
task functions are shown in Fig. 2. The delta-function detec-
tion task is not shown due to its simplicity �a constant�, and
the discrimination task is shown in both the axial and sagittal
domains. The two tasks were normalized to have equal signal
power, and the detectability index was computed according
to Eq. �17a� across the range of exposures and filters dis-

cussed above.
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II.F. Numerical calculations

The NPS, NEQ, and DQE were calculated numerically
based on Eqs. �12a�, �14b�, and �16�, respectively. Calcula-
tions were implemented in Matlab �The Mathworks, Natick
MA� using a 127�127 grid �in 2D� or 127�127�127 grid
�in 3D� to sample Fourier space up to the Nyquist frequency.
Convolutions with comb functions at stages 8, 14, and 15
were implemented by first calculating a presampling NPS to
beyond the Nyquist region �as far as memory limitations
would allow—up to seven times the sampling frequency in
2D, and two times the sampling frequency in 3D�. The con-
tribution from each aliased replicant to the NPS within the
Nyquist region was computed by repeatedly shifting the pre-
sampling NPS by the sampling frequency and adding the
result within the Nyquist region.

III. EXPERIMENTAL METHODS

Measurements of the 3D NPS, NEQ, and DQE were per-
formed across a broad range of image acquisition and recon-
struction techniques as described below, and compared to
theoretical predictions.

III.A. Experimental platform

Measurements were performed on the CBCT bench
shown in Fig. 3 incorporating the following components: an
80 kW constant potential generator and �CPX-380, EMD
Inc., Montreal, QC�; an x-ray tube �14° W anode, 0.4 mm
focal spot, Varian Medical Systems, Salt Lake City, UT�;
filtration �2.5 mm Al inherent and 5.1 mm Cu added�; and a
flat-panel detector �250 mg /cm2 CsI:Tl converter, 1024
�1024 sampling grid, 0.4 mm pixel pitch, 80% fill factor,
RID-1640A, PerkinElmer Optoelectronics, Santa Clara, CA�.
The system geometry provided a source-to-axis distance of
93.5 cm and source to detector distance of 144.4 cm �mag-
nification of 1.54�, chosen similar to that of systems for
CBCT-guided radiation therapy.

All projections were acquired at the nominal techniques
mentioned in Table II. Each 3D image was reconstructed
from 320 projections across a 360° circular orbit acquired at

FIG. 2. Task functions for calculation of detectability index: �a� axial and �b�
sagittal slices of the task function for high-frequency discrimination between
two small 3D Gaussians. The Gaussians had the same width in the z direc-
tion such that the task function is small near fz=0 where the integrand of
Eq. �17a� diverges.
an angular increment of 1.125° with uniform projection
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weighting. The exposure at the detector was measured using
a Barracuda R100 diode �RTI Electronics, Molndal, Swe-
den�, showing agreement with the exposure predicted by the
x-ray spectral model35 used to estimate q̄0. Dark-flood pro-
cessing was based on the mean of 50 dark and flood images
obtained immediately prior to the projections, and defect pix-
els were corrected using a median filter. Neither a bowtie
filter nor an antiscatter grid were used.

Images were reconstructed using the Feldkamp
algorithm36 for 3D filtered back-projection. Nominal recon-
struction parameters �unless otherwise noted� included a von
Hann window �hwin=0.5�, 1 :1 pixel binning �Au=Av=Bu

=Bv=1�, and isotropic voxel size given by the detector pixel
size divided by the magnification �0.259�0.259
�0.259 mm3�. Reconstructions were obtained of air as well
as a 20 cm diameter water phantom. The results shown be-
low pertain to the air scan reconstructions, with potential
complications associated with NPS nonstationarity in water
reconstructions27 to be investigated in other work.

III.B. Measurement of the 3D image NPS

III.B.1. NPS measurement

The NPS were measured from the ensemble average of
the FFT �squared� of noise-only images. For the 2D projec-
tion NPS:

NPS�fu, fv� =
bu

Lu

bv

Lv
��DFT��I�u,v���2� , �18a�

where bu=bv=0.4 mm, and Lu=Lv=127 �the width in pixels
of each ROI�. The term �I�u ,v� denotes a noise-only real-
ization, obtained from first-order detrending �subtraction of a
2D planar fit� of each ROI. The symbol � � denotes the en-
semble average over all �n=1600� ROIs. Similarly, the 3D
NPS was measured from the FFT of noise-only 3D image
reconstructions:

NPS�fx, fy, fz� =
ax

Lx

ay

Ly

az

Lz
��DFT��I�x,y,z���2� , �18b�

where, for example in a 1:1 reconstruction, ax=ay=az

=0.259 mm and Lx=Ly=Lz=127. The term �I�x ,y ,z� was
obtained from first-order detrending �subtraction of 3D hy-
perplane fit� of each volume of interest �VOI�, with a total of

36 VOIs used for the ensemble average. The VOIs were
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placed along concentric circles at radii of �36 mm �12
VOIs� and 73 mm �24 VOIs� about the origin, avoiding both
the center �stronger influence of ring artifacts� and edge
�circle of reconstruction� of the 3D image. Such provided
good sampling of the well-behaved �i.e., uniform, artifact-
free� regions of the image. Uncertainty in the NPS estimate
behaved as expected:37

�NPS =
NPS
�n

. �18c�

As in the theoretical analysis above, the 3D NPS �Eq. �18b��
has units of signal �attenuation coefficient, mm−1� squared
times length cubed—e.g., ��mm−1�2�mm3��, which is equiva-
lent to �mm� but is written �	2 mm3� to avoid possible con-
fusion with cancellation of terms. The units of the 2D NPS
�Eq. �18a�� vary from stage to stage depending on the units
of the signal—in each case, the 2D NPS having units
��signal�2�mm2��.

While methodology for measuring the multidimensional
NPS has not yet been standardized �currently the topic of an
AAPM task group, TG169�, the procedure outlined above is
consistent with current literature �for example, Dobbins
et al.38 for the 2D NPS and Siewerdsen et al.39 for the 3D
spatiotemporal or volumetric NPS�. However, it is important
to recognize the assumptions associated with this method.
Ideally, many volumes would be reconstructed and averaged
to obtain a “noise-free image” that accurately describes the
mean signal as well as any deterministic trends �e.g., cupping
artifacts�. The term �I in Eqs. �18a� and �18b� would then be
obtained from the raw image minus the noise-free image. For
3D images, this approach requires a large amount of data to
estimate the noise-free image. Subtraction of a polynomial fit
is a common alternative to yield uniform �I. Assuming small
ROIs �or VOIs�, the noise-free image can be approximated
by a first- or second-order fit. Similarly, subtraction of two
�independent� volume images could be used to yield uniform
�I �correcting the resulting NPS by a factor of 2�. Through-
out this work, �I was obtained by subtraction of a planar
�hyperplanar� fit from each ROI �VOI� of the raw image,
allowing measurement of the NPS due to quantum noise
�with minimal influence from deterministic trends, cupping

FIG. 3. Illustration of experimental setup.
artifacts, etc.� from a limited amount of data.
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III.B.2. Experimental parameters
III.B.2.a. Stage-by-stage analysis of NPS. The NPS of im-

ages at each stage in the reconstruction process were ana-
lyzed. This helped identify differences between the analytic
forms of transfer functions described above and their actual
numerical implementation in the reconstruction algorithm.
Moreover, it demonstrated that each stage was modeled cor-
rectly �i.e., ruled out possible errors that simply cancel out�.

III.B.2.b. Imaging dose. The NPS was investigated as a
function of dose. The tube current was modified to 0.4, 1, 2,
and 4 mAs per projection, and the measured exposure was
converted to air kerma by a factor of 0.00876 mGy /mR,
giving 3.4, 8.0, 14.8, and 30.8 mGy air kerma per projection
at the detector. This range extended from the lowest available
tube output to a fairly high dose still within the linear re-
sponse range of the detector ��20% pixel saturation�.

III.B.2.c. Reconstruction filter. The effect of reconstruc-
tion filter was analyzed by reconstructing data across a range
of apodization filters described by Eq. �5a�, with hwin set to
0.5, 0.65, 0.85, and 1.0. A value of hwin=0.5 corresponds to a
smooth von Hann filter, whereas hwin=1.0 corresponds to a
sharp Ram-Lak �ramp� filter.

III.B.2.d. Voxel size. Reconstructions were performed for
cases of: �a.� 2D post readout binning, for which 2D projec-
tion data were binned on the detector; and �b.� 3D postrecon-
struction binning, for which 3D image data were binned in
the 3D reconstruction. For the 2D binning case, aperture and
sampling intervals considered combinations of �Au ,Av� and
�Bu ,Bv� equal to 1, 2, and 4. Similarly for the 3D binning
case, combinations of �Ax ,Ay ,Az� and �Bx ,By ,Bz� equal to 1,
2, and 4 were considered. In each case, Ai=Bi �no over- or
undersampling�. A total of 13 cases were examined to eluci-
date differences in noise associated with the two techniques.

III.C. Measurement of voxel noise

For each VOI used in the NPS analysis, the standard de-
viation in voxel values therein was recorded as an estimate of
the voxel noise. The mean and standard deviation across the
ensemble was compared to the voxel noise calculated from
Eq. �13a� and examined across the range of dose, reconstruc-
tion filter, and voxel size described above.

III.D. Analysis of the 3D NEQ and DQE

The 3D NEQ was measured according to Eq. �14b�, tak-
ing the denominator as the measured 3D NPS �Eq. �18b��.
The 3D MTF was not directly measured in this work and was
taken equal to the product of transfer functions, T3, T5, T11,
and T12. The DQE was calculated by dividing NEQ by the
total fluence according to Eq. �16�. While comparison of
measured and theoretical 3D NEQ and DQE does not con-
stitute a separate validation of the model beyond the NPS
results, it does place the comparison on a more interpretable
scale. Moreover, it describes the results in terms of more

prevalent, portable metrics of image quality.
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III.E. Experimental error and display of data

To visualize the resulting 3D NPS, NEQ, and DQE on
paper, profiles were extracted from the volumes in a manner
that illustrated the frequency dependence therein. Typically,
extracting data along the x-y-z axes is a poor choice, as such
often exhibits characteristics more associated with artifacts
of the analysis �e.g., imperfect detrending� than the more
interesting underlying features of the NPS. Additionally, due
to the limited amount of data, extraction of a 1D profile from
3D data can yield a fairly noisy plot. To overcome both of
these difficulties, after calculating each of the NPS, NEQ,
and DQE, the radial average about the fz axis was computed
using 64 frequency bins. As such, the 127�127�127
dataset was reduced to a 64�64 dataset �considering the
redundant data present in the Fourier transform�. The experi-
mental error was thereby reduced as one over the square root
of the number of nonredundant samples per bin �nbin�, which
varied from bin to bin:

�X−avg = �X
1

�nbin

=
X

�nbinn
, �19a�

where “X” is understood to be the NPS, NEQ, or DQE, as the
error has an equivalent form in each case.

Due to aliasing, the NPS �and to a larger extent, the NEQ�
is not actually radially symmetric, so presenting the data in
the manner described above somewhat distorts the underly-
ing frequency dependence, although it still provides a fair
comparison of theory with measurement �similarly dis-
torted�. To convey the magnitude of distortions caused by
radially averaging, two sets of error bars were calculated:
one presented experimental error as described above, and the
second included the additional variability in data over each
angular bin �added in quadrature to the basic experimental
error�:

�X−avg =
1

nbin
��

k=1

nbin

�X,k
2 =

1
�nbinn

��X
2 + �X�2. �19b�

If the sample from each bin has the same variance �or
equivalently, the same mean value�, then the data are radially
symmetric, and the two definitions of uncertainty are equal.
In all cases, the difference between the two definitions of
uncertainty was negligible, indicating that distortions caused
by radial averaging were small compared to the basic experi-
mental error. As illustrated in Fig. 4, the results presented are
the radial average one voxel above the axial plane �avoiding
on-axis peaks� for X�fx , fy� and a radial average over a cy-
lindrical shell parallel to the fz axis located at the peak in the
axial NPS for X�fz�. The 2D projection NPS were simply
displayed along a diagonal in the frequency plane to avoid
on-axis peaks.

IV. RESULTS

IV.A. Stage-by-stage analysis of NPS

The NPS for stages 7 �projection�, 9 �log normalization�,

10 �ramp filter�, 11 �apodization�, and 12 �interpolation� are
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shown on a common plot in Fig. 5�a�. Theoretical calcula-
tions are shown as solid curves and measurements are shown
as circles with error bars. The results show good agreement
between theory and measurement at each stage and demon-
strate the significant change in the NPS prior to back-
projection. For example, one observes from this plot that the
projection NPS �stage 7� does not fall off at high frequencies
nearly as strongly as the apodized NPS �stage 11�. Moreover,
the dramatic effect of the ramp and apodization filters, as
well as the nontrivial effect of the interpolation process in
limiting aliasing of high-frequency noise, can be appreciated.

The NPS for stages 13 �back-projection� and 14 �postsam-
pling NPS� are shown on a common axis together with the

FIG. 5. Experimental and theoretical NPS evaluated at individual stages in t
a common plot. The NPS as stages 7 and 9 are plotted on the left-vertical axi
axis �dimensionless�. �b� and �c� Plots of the 3D NPS at stages 13 and 14 fo

Axial and �e� sagittal slices of the 3D NPS, with the measured NPS shown on th
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difference �S14−S13, which is the aliased noise component of
the total NPS� for the sharpest filter in Figs. 5�b� and 5�c�.
Aliased noise, although small, is important to the interpreta-
tion of the 3D NPS: it freezes in the effect of the determin-
istic filters such that they do not cancel out in the NEQ and
imparts nontrivial effects on image quality. Aliasing has its
most deleterious effect on image quality when it is large
relative to the presampling NPS at that frequency. It, there-
fore, has its largest impact at very low frequencies and near
the Nyqust frequency. Overall agreement between measured
and theoretical 3D NPS is illustrated in the axial and sagittal
slices shown in Figs. 5�d� and 5�e�.

FIG. 4. Schematic illustration of the
radial averaging performed for display
of results.

ocess of 3D reconstruction: �a� the 2D NPS at stages 7 and 9–12 shown on
th units mm-1�, and the NPS for stages 10–12 are plotted on the left-vertical
arp reconstruction filter �hwin=1�, highlight the effects of noise aliasing. �d�
he pr
s �wi
r a sh
e left, and the theoretical NPS shown on the right.
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IV.B. Radiation dose

Plots of theoretical and measured 3D NPS for four levels
of dose are shown in Fig. 6 in the axial and sagittal domains.
These results demonstrate good agreement between experi-
mental and theoretical results and elucidate some important
features of the 3D NPS. First is the gross asymmetry be-
tween the axial and sagittal domain �bandpass versus low-
pass, respectively�, which has implications on performance
when viewing slice images in one of these domains.22,40 Sec-
ond is that the low-pass character of the sagittal domain is
more gradual than that in the axial domain. This has impli-
cations for the extent of noise aliasing in the longitudinal �z�
direction and suggests that additional apodization in the lon-
gitudinal direction should be examined in terms of its effect
on detectability.

IV.C. Reconstruction filter

Plots of theoretical and measured 3D NPS for four recon-
struction filters are shown in Fig. 7. Since the sagittal NPS is
plotted at a location corresponding to the peak in the axial
domain �which in turn depends on the filter�, the longitudinal
�fz� profiles must be interpreted carefully. While they cannot
be directly compared in terms of amplitude, it can be seen
that their structure is largely unaffected by apodization in the
orthogonal direction. The effect of sharper filters on high
frequency noise and overall variance is seen to be quite
Medical Physics, Vol. 35, No. 12, December 2008
large. As a final note, a kink at the 2D Nyquist frequency
�i.e., at fx

2+ fy
2= fNq

2 � can be seen for sharper filters. This is
caused by the fact that the ramp filter only cancels out with
the back-projection transfer function up to the detector Ny-
quist frequency, as mentioned in Sec. II B 6. One can see that
the theory slightly underestimates the NPS at high frequen-
cies, caused primarily by an incomplete calculation of
aliased noise �i.e., due to memory limitations, only 3�3
�3 nearest-neighbor replicants of the NPS were counted in
the convolution of Eq. �10b��.

IV.D. Voxel size

The NPS is shown in Fig. 8 for a variety of 2D and 3D
binning methods. In each case, “2D binning” refers to 2D
postreadout binning and downsampling of pixels on the de-
tector, and “3D binning” refers to postreconstruction binning
and dowsampling of voxels in the 3D reconstruction. Note
that the 2D u and v directions correspond, respectively, to the
3D x-y and z directions. For example, 2D binning of detector
rows �1�2 in �u ,v�� is compared to 3D “slice averaging”
�1�1�2 in �x ,y ,z��. In each case, the theoretical result for
nominal reconstruction �no binning� is shown as a baseline
of comparison. Again, the longitudinal profiles must be in-
terpreted carefully as the peak of the NPS depends on the
binning method and interval.

FIG. 6. Experimental and theoretical 3D NPS evaluated
at various levels of radiation dose �air kerma per pro-
jection�: �a� axial, �b� longitudinal profiles of the 3D
NPS. Adapted from Ref. 23.

FIG. 7. Experimental and theoretical 3D NPS evaluated
for various reconstruction filters: �a� axial, �b� longitu-
dinal profiles of the 3D NPS.
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One immediately notes a dramatic difference in the 3D
NPS for the two binning methods. 2D binning reduces noise
to a much larger extent than 3D binning in all cases, particu-
larly with respect to pixel binning in u versus voxel binning
in x-y. The reason is that 2D binning/downsampling reduces
the cutoff frequency of the apodization filter and, therefore,
reduces the noise to a greater extent. The case of 3D binning
�1�1�2� �i.e., “slice averaging”� is seen to have the small-
est effect on the NPS. While slice averaging is common �as it
is computationally simple�, the analysis demonstrates more
effective means of reducing noise for a given voxel size.
Note also from Fig. 8�c� that neither 2D nor 3D binning in
the longitudinal direction affect the axial NPS, since such
does not affect correlations in the central axial plane �fz

=0�, although such does reduce the NPS off the axial plane
as shown in Fig. 8�d�. This further motivates description of
the fully 3D NPS, as these out-of-plane correlations �not evi-
dent in an axial slice of the NPS� do have an impact on noise
and image quality. Reasonable agreement between theory

FIG. 8. Experimental and theoretical results for the 3D NPS evaluated for
Longitudinal binning in the v or z direction. �e, f� Isotropic binning in the
sagittal NPS profiles are across the bottom �b,d,f�. The nominal �1�1� reco
and measurement is observed in all cases.
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IV.E. Variance

Experimental measurements and theoretical calculations
of voxel noise are shown in Fig. 9. Points show the measured
standard derivation of voxel values, and curves show the
theoretical predictions computed as the square root of vol-
ume under the 3D NPS �Eq. �13a��. As shown in Fig. 9�a�,
noise exhibits the expected 1/sqrt behavior as a function of
dose and exhibits a monotonic increase for sharper recon-
struction filters. Figure 9�b� shows the behavior of noise with
respect to binning and downsampling methods. Voxel noise
is shown for binning in 2D and 3D in the transverse, longi-
tudinal, and isotropic directions. Figure 9�c� shows noise for
the isotropic binning methods and conditions described in
Figs. 8�e� and 8�f�. Each case is compared to the conven-
tional rule of thumb for voxel noise depending on the inverse
cube root of �axy

−3/2� and inverse square root �az
−1/2� of voxel

size in Eq. �13a�, which is seen to agree reasonably well with
the 2D binning method, but not 3D binning �e.g., slice aver-
aging�.

The results suggest a slight, systematic underestimation of

us binning methods. �a, b� Axial binning in the u or x-y direction. �c, d�
� or �x ,y ,z� directions. Axial NPS profiles are across the top �a, c, e�, and
ction is shown as a solid line.
vario
�u ,v
nstru
the noise by theory, which worsens as the binning factor
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approaches 1. This is likely caused by an incomplete sum
over replicants in the 3D aliasing calculations �due to com-
puter memory limitations�. As the voxel size gets smaller,
replicants become further apart and demand more memory
for calculations. The underestimation can be seen most dra-
matically at low values of A for 3D binning, where aliasing
calculations demand the most memory.

IV.F. NEQ and DQE

The 3D NEQ and DQE for CBCT reconstructions are
shown in Fig. 10 for various levels of dose ��a�–�d�� and
reconstruction filters ��e� and �f��. The linear dependence of
NEQ on dose is evident in �a� and �b�. The DQE is seen to be
fairly independent of dose in �b� and �c�, with a very slight
dependence owing to additive electronics noise �stage 7�.
One can see that even across this broad range of exposures
considered �down to the lowest deliverable technique of the
x-ray generator�, the system is effectively input quantum
limited.

The NEQ and DQE are shown for a variety of reconstruc-
tion filters �T11� in Figs. 10�e� and 10�f�. The smoothing filter
alters both the MTF and NPS, but aliased noise at stage 14
prevents it from canceling completely from the NEQ. With
the exception of hwin=0.5, for which a zeroing of the filter at
the Nyquist frequency reduces NEQ, there is only a weak
dependence on the smoothing filter. The slight reduction in
NEQ and DQE for smoother �sharper� filters is attributed to a
larger relative contribution of aliased noise at the highest
�lowest� frequencies. As discussed in Sec. G, the differences
in high-frequency NEQ contribute little to the overall detect-
ability index as compared to those at low frequency, where
the smoothest filter exhibits the highest NEQ. For consis-

FIG. 9. Experimental and theoretical evaluation of voxel noise. Symbols are
as the symbol�. Solid curves are theoretical expectations based on the integ
detector �bottom axis� and reconstruction filter �top axis�. �b� Voxel noise
curves�. Results are shown for binning in each of the transverse, longitudin
contrasting the case of 2D binning and 3D binning to the basic rule of thum
tency with the results shown above, longitudinal profiles �fz�
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are again shown at different frequencies corresponding to the
peak NPS �which is different for different filters� and should,
therefore, be cross-compared carefully.

IV.G. Detectability index

The theoretically calculated detectability index for the
tasks described above are plotted in Fig. 11 as a function of
�a� radiation dose and �b� reconstruction filter. For both the
detection task �which weighs all frequencies equally� and the
discrimination task �which weighs high frequencies�, detect-
ability is proportional to �dose. Figure 11�b� illustrates a
more complicated, task-dependent behavior with reconstruc-
tion filter. For the detection task, detectability index de-
creases for sharper filters, demonstrating the extent to which
the 1 / f term in Eq. �17b� emphasizes low frequencies in the
detectability index. In this case, the high-frequency NEQ
contributes little to the detectability index, whereas noise
aliasing, which significantly affects the low-frequency NEQ,
contributes more significantly. On the other hand, for the
high-frequency discrimination task, sharper filters improve
the detectability index, with the improvements in high-
frequency NEQ outweighing the impact of noise aliasing.

V. DISCUSSION AND CONCLUSIONS

The cascaded systems model of the 3D NPS is seen to
agree well with measurements across a fairly broad range of
acquisition and reconstruction parameters. The approach pro-
vides a quantitative understanding of the 3D NPS, giving a
starting point for the evaluation of other image quality met-
rics �e.g., NEQ, DQE, and detectability index� in a manner
that is consistent with prevalent 2D descriptions. The model
successfully describes the frequency-dependent signal and
noise characteristics of CBCT despite a number of limita-

erimental measurements �with error bars included, but nearly the same size
the 3D NPS. �a� Voxel noise versus dose �air kerma per projection� to the

s the binning factor for 3D binning �solid curves� and 2D binning �dotted
r isotropic directions. �c� Voxel noise versus the �isotropic� binning factor,
oise proportional to axy

−3/2 and az
−1/2� shown as a dotted line
exp
ral of
versu
al, o
tions, assumptions, and approximations.
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An important indication of the fully 3D model is that 3D
aliasing prevents deterministic filters from canceling in the
NEQ. Thus, 3D imaging performance is not trivially related
to 2D detector performance. This demands an accurate cal-
culation of aliased 3D noise �approximated in the calcula-
tions above as addition below the Nyquist frequency from
3�3�3 nearest-neighbor “replicants” of the 3D NPS at
multiples of the sampling frequency�. Figure 12 illustrates
the contribution of 3D aliased noise in axial and sagittal
planes computed as the difference of S15�fx , fy , fz� and
S14�fx , fy , fz�. Note that in the axial plane, the aliased NPS
has its largest magnitude near the detector Nyquist frequency
where signal power is already low and, thus, significantly
degrades the NEQ and detectability. While there is little
aliased noise power near zero frequency, its contribution to
degrading detectability is amplified by the 1 / f term in Eq.
�17b�. For these reasons, it can be seen that bilinear interpo-
lation gives superior NEQ compared to nearest neighbor in-
terpolation, due to a reduced contribution of aliased noise.
Finally, it is apparent that aliased noise is highest at higher
longitudinal frequencies, as there is no apodization filter to
remove high frequency noise in this direction. Longitudinal
filters analogous to the axial apodization filter should be con-

FIG. 10. Experimental and theoretical 3D NEQ and DQE shown in the axial
and dependence on reconstruction filter is shown in �e–f�. Adapted from Re
sidered as a means of managing such aliasing effects.
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The approach provides definition of the NEQ, DQE, and
detectability index for CBCT, which, while fairly straightfor-
ward and intuitive, deserves careful consideration. The NEQ
is properly interpreted as the effective number of photons per
square mm on the detector, over all projections, that contrib-
ute to the image at a given spatial frequency. The DQE simi-
larly describes the efficiency with which photons contribute
in this manner. The detectability index was defined in rela-
tion to a matched filter receiver and task function, but its
relation to human observer performance deserves further in-
vestigation. For example, the model corresponds to an ideal
observer that is able to consider the entire 3D image at once.
While this may be a reasonable abstraction for a 2D image
�displayed at once on a monitor�, 3D data are typically dis-
played as slices from which it is difficult to obtain a com-
plete sense of a fully 3D stimulus and out-of plane correla-
tions. Forms of the fully 3D NPS, NEQ, etc. that describe
single 2D slices may be written according to “extraction” of
slices from the 3D data �with an associated convolution with
the Fourier transform of the extracted slice aperture required
to account for out-of-plane correlation39� but were not shown
for the sake of brevity. These considerations suggest that the
fully 3D results should be interpreted as an upper bound to

e� and sagittal �b, d, f� domains. Dependence on dose is illustrated in �a–d�,
.

�a, c,
human observer performance �2D slice viewing�.
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Furthermore, it should be reiterated that the model pre-
sented describes detectability in quantum noise. Images of
real anatomy, of course, present a mixture of quantum noise
and background anatomical structure. The frequency content
of the latter has been described in terms of a 1 / f�

characteristic—an approach common in 2D mammography
41–43 and recently extended to 3D imaging. 22,44–46 Such ana-
tomical NPS may be added to the quantum NPS in “gener-
alized” forms 47,48 of the NEQ and detectability index, typi-
cally diminishing the importance of the low-frequency NEQ
and causing a greater contribution to task performance from
the high-frequency image characteristics.

The model was shown to accurately describe the 3D NPS
for CBCT images of uniform �air� volumes for which the
exposure to the detector is uniform and the resulting 3D
reconstructions exhibit fairly stationary statistics �i.e., uni-
form mean and standard deviation�. Extension to other cir-
cumstances �e.g., CBCT images of a water cylinder� can be
similarly described, although the stationarity assumption can
begin to fail and warrant a location-dependent analysis. Con-
sidering Eq. �9c�, the 2D NPS for each projection can be
combined in the 3D NPS if the exposure at each point in the
2D projection is known. The 1 / f term that emerges from the
sum is modulated in a 1 /q��i� fashion. For simple objects
�e.g., a circular or elliptical water cylinder�, the 2D NPS can
be calculated analytically at each point and combined ac-
cordingly. Regions for which there is a high degree of expo-
sure modulation from view to view exhibit a corresponding
asymmetry in the NPS. For example, Fig. 13�a� illustrates an

FIG. 12. The 3D aliased NPS in �a� the axial domain and �b� the sagittal

domain. Adapted from Ref. 23.
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axial image of a water cylinder with a region of interest
chosen near the edge of the cylinder �where view-to-view
modulation in exposure is high�. The axial NPS associated
with this region exhibits an asymmetric “dumbbell” shape
�Fig. 13�b��, distinct from the symmetric axial “donut” NPS
described above—in agreement with theory �Fig. 13�c��.

Two factors known to degrade CBCT image quality—x-
ray scatter and image lag—should be considered in future
work. The model neglects x-ray scatter effects, and the mea-
surements were performed under conditions for which x-ray
scatter was small. As described above, to the extent that the
exposure to the detector can be determined from view to
view �even nonuniform fluence patterns as presented by
x-ray scatter�, such could potentially be included in a refined
model. Similarly, the effects of lag could potentially be in-
corporated by modifying Eq. �9c� to reflect that each projec-
tion is not statistically independent. Initial studies �computer
simulations� suggest azimuthal correlation of the noise and a
change in the strict ramp-like nature of the low-frequency
NPS—viz., increased low-frequency noise as lag increases.

This work describes several factors that are unique to
fully 3D FPD-based CBCT, but axial, helical, and multide-
tector �MD� CT could be similarly described in terms of a
3D NPS, NEQ, and DQE. For all three, the axial NPS exhib-
its the bandpass “donut” characteristic of filtered back-
projection. In the longitudinal �fz� direction, however, differ-
ences in the NPS are to be expected: for axial CT, the model
suggests independence between slices and a correspondingly
“white” NPS in the fz direction; for helical CT, on the other
hand, the longitudinal NPS�fz� would be modulated by
z-interpolation; for MDCT, the modeling would be very
similar to that described above for FPDs �adapted, of course,
to the particular detector characteristics contributing to S7�.
The differences in longitudinal NPS among these modalities
may be of importance considering the ever-increasing extent
to which sagittal, coronal, and oblique slices are used in di-
agnostic CT. For example, Tward et al. 40 demonstrated a
dependence in human observer performance owing to NPS
asymmetry and longitudinal correlation.

This work extends theoretical analysis of 2D imaging per-
formance to 3D CBCT and demonstrates agreement with
measurement. The model accounts for a number of nonideal

FIG. 11. Detectability index for a delta-function detec-
tion task and a high-frequency discrimination task �Fig.
2� computed as a function of �a� exposure per projec-
tion and �b� reconstruction filter parameter �hwin�.
characteristics of FPDs �e.g., a correlated 2D NPS, Swank
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factor, and electronics noise� and highlights a number of
characteristics of 3D reconstruction that can significantly af-
fect the 3D NPS—e.g., choice of reconstruction filter, inter-
polation method, and 2D versus 3D binning. Assumptions of
shift invariance and stationarity deserve further investigation,
although the results above suggest that such factors do not
prohibit a basic Fourier-based approach to the first- and
second-order image statistics. Quantifying the degree of
noise stationarity in CBCT—e.g., as described by Pineda et
al.27—will help define conditions for which the assumption
is reasonable. Refinement and standardization of experimen-
tal methods for 3D NPS measurement will similarly help
ground such work for the many applications being consid-
ered for CBCT. The theoretical methods presented above
provide a fairly general framework that can be applied to the
design and optimization of CBCT systems for various
applications.
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APPENDIX A: BACK-PROJECTION

The signal transfer associated with Stage 13 �back-
projection� can be written as:

T13�fx, fy, fz� = k�
i=1

m

T13i�fxi, fyi, fz� , �A1�

where m is the number of projections and k is a normaliza-
tion constant to be determined. This can be rewritten as:

T13�fx, fy, fz� = k�
i=1

m

d sinc�dfxi�

= k�
i=1

m

d sinc�d�fx cos��i� + fy sin��i��� . �A2�

Multiplying and dividing by ��=� /m �for a 180° scan;
the derivation for a 360° scan differs by a factor of 2 in the
numerator, but gives the same form for the result�, we have:

T13�fx, fy, fz� = k
m

�
�
i=1

m

d sinc�d�fx cos��i� + fy sin��i����� .

�A3�

For large m, the sum approaches an integral:

T13�fx, fy, fz�

� k
m

�
�

�=0

�

d sinc�d�fx cos��i� + fy sin��i���d� , �A4�

where �=0 is chosen as the angle of the first projection with
respect to the x axis. Introducing a change of variables:

fx = f cos��

fy = f sin�� , �A5�

. An axial slice of the 3D NPS for the location shown in �a� is shown in
ial NPS is due to variation in the detector fluence from view to view, and
rom the inset image in �a��.
linder
e ax
gives:
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T13�f ,� = k
m

�
�

�=0

�

d sinc�d�f cos��cos���

+ f sin��sin�����d�

= k
m

�
�

�=0

�

d sinc�fd cos�� − ��d� . �A6�

Since the sinc function is even, we can write:

T13�f ,� = k
m

�
�

�=0

�

d sinc�fd�cos�� − ���d� . �A7�

Since the integral is over one full period of the �cos� function,
the phase is irrelevant, such that:

T13�f� = k
m

�
�

�=0

�

d sinc�fd cos����d� . �A8�

Here the radial symmetry of the function is evident �i.e., the
transfer function depends only on f , not on �, or ��. Now let:

� = fd cos���
�A9�

d� = − fd sin���d� ,

giving:

T13�f� = k
m

�
�

�=fd

−fd

d sinc���
d�

− fd sin���

= k
m

�

1

f
�

�=−fd

fd sinc���

sin	arccos� �

fd
�
d�

= k
m

�

1

f
�

�=−fd

fd fd
��fd�2 + �2

sinc���d� . �A10�

Note that as d �or f� approaches infinity, the ratio in the
integrand reduces to 1 for any finite �, and the integral is
equal to unity. The dependence of the integral on d is weak,
except for at very low frequencies. Therefore,

T13�f� � k
m

�

1

f
. �A11�

The factor k is chosen such that the transfer function is 1 at
zero frequency. Since we have already multiplied by the
ramp function at stage 10 ��fu�= f /M�, the correct normaliza-
tion is k=�M /m. The transfer function is, therefore,

T13�fx, fy, fz� = T13�f , fz� = M
1

f
. �A12�

Since the projections are independent, the noise from each
combines in quadrature. We can now write for the noise
propagation:

S13�fx, fy, fz� = k2�
i=1

m

S13i�fxi, fyi, fz� . �A13�

For large m and d �since the integral over a sinc2 is equal to

that over a sinc function�, this reduces to:
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S13�fx, fy, fz� = k2S12M�f , fz�
m

�

1

f
=

�M2

m

1

f
S12M�f , fz� . �A14�

APPENDIX B: CLOSED FORM EXPRESSION FOR
VOXEL NOISE IN CBCT

The voxel variance is given by the integral of the 3D NPS
over the Nyquist region:

�2 = �
−nq

nq �
−nq

nq �
−nq

nq

S15�fx, fy, fz�dfxdfydfz. �B1�

For simplicity, we assume a natural voxel size �i.e., equal to
the detector pixel size divided by the magnification, with
Ai=Bi=1�. The integral of the �sampled� NPS S15 over the
Nyquist region is equivalent to the integral of the �presam-
pling� NPS S13 over the entire frequency domain. Therefore,

�2 = �
−



 �
−



 �
−





S13�fx, fy, fz�dfxdfydfz. �B2�

Since the presampling 3D NPS is cylindrically symmetric
and longitudinally symmetric:

�2 = 4��
0


 �
0




S13�f , fz�fdfdfz, �B3�

=4��
0


 �
0


 �M2

m

1

f
S12M�f , fz�fdfdfz, �B4�

where S12M is defined in Eq. �7�. The 1 / f term cancels out
with the Jacobian �fdf�, giving:

�2 =
4�2M2

m
�

0


 �
0




S12M�f , fz�dfdfz. �B5�

Because the magnification scale factor in S12M�f , fz� does not
change the pixel values �nor, therefore, the variance�, the
integral can be replaced by the �unscaled� form in the 2D
projection domain:

�2 =
4�2M2

m
�

0


 �
0




S12�fu, fv�dfudfv

=
4�2M2

m
�

0


 �
0




S9�fu, fv�T10
2 �fu�T11

2 �fu�T12
2 �fu, fv�dfudf

=
4�2M2

m
�

0


 �
0


 	 S7�fu, fv�
�q̄0apd

2 ḡ1ḡ2ḡ4�2

�T10

2 �fu�T11
2 �fu�T12

2 �fu, fv�dfu. �B6�

Note that the only term that is bandlimited �i.e., not periodic
about multiples of the sampling frequency� is T12. Hence, T12

is the only term that limits very high frequency noise. We
can rewrite the bracketed part in terms of the detector MTF

and DQE, giving:



5528 D. J. Tward and J. H. Siewerdsen: 3D noise transfer characteristics of cone-beam CT 5528
�2 =
4�2M2

m
�

0


 �
0


 T3
2�fu, fv�T5

2�fu, fv�
q̄0DQE7�fu, fv�

�T10
2 �fu�T11

2 �fu�T12
2 �fu, fv�dfudfv. �B7�

Without further assumptions on the nature of the MTF and
DQE, this is as far as we can simplify the 3D voxel noise. In
order to relate this to the familiar form as derived for tran-
saxial CT,13 we may assume a constant detector DQE, giv-
ing:

�2 =
4�2M2

m̄q0DQE7
�

0


 �
0




T3
2�fu, fv�T5

2�fu, fv�T10
2 �fu�

�T11
2 �fu�T12

2 �fu, fv�dfudfv, �B8�

which can be written:

�2 =
M4

mq̄0DQE7

Kxyz

au
3av

, �B9�

where Kxyz is dimensionless bandwidth integral analogous to
the “IBWI” of Wagner et al.:16

Kxyz =
4�2au

3av

M2 �
0


 �
0




T3
2�fu, fv�T5

2�fu, fv�T10
2 �fu�

�T11
2 �fu�T12

2 �fu, fv�dfudfv.

This can be written in a form analogous to the familiar rela-
tionship derived by Barrett et al.13

�2 =
1

mq̄0DQE7

Kxyz

axy
3 az

. �B10�

Specifically, the voxel noise is seen to be inversely propor-
tional to dose �q̄0�, detector efficiency �DQE�, axial voxel
size cubed �axy

3 �, and slice thickness �az�. The noise reduces
with detector blur �T3 and T5�, smoother filters �T11�, and
interpolation methods �T12� as contained in the bandwidth
integral. In the case of nearest neighbor interpolation �T12

given by a sinc�, the bandwidth integral can be reduced to an
integral over just the Nyquist region, since the other transfer
functions are periodic about multiples of the sampling fre-
quency.
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