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Three-dimensional intra- and intersubject registration of image volumes is important for tasks that
include quantification of temporal/longitudinal changes, atlas-based segmentation, computing popu-
lation averages, or voxel and tensor-based morphometry. While a number of methods have been
proposed to address this problem, few have focused on the problem of registering whole body
image volumes acquired either from humans or small animals. These image volumes typically
contain a large number of articulated structures, which makes registration more difficult than the
registration of head images, to which the majority of registration algorithms have been applied. This
article presents a new method for the automatic registration of whole body computed tomography
�CT� volumes, which consists of two main steps. Skeletons are first brought into approximate
correspondence with a robust point-based method. Transformations so obtained are refined with an
intensity-based nonrigid registration algorithm that includes spatial adaptation of the transforma-
tion’s stiffness. The approach has been applied to whole body CT images of mice, to CT images of
the human upper torso, and to human head and neck CT images. To validate the authors method on
soft tissue structures, which are difficult to see in CT images, the authors use coregistered magnetic
resonance images. They demonstrate that the approach they propose can successfully register image
volumes even when these volumes are very different in size and shape or if they have been acquired
with the subjects in different positions. © 2008 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2889758�
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I. INTRODUCTION

Image registration is essential to quantitatively follow dis-
ease progression, to assess response to therapy, to compare
populations, or to develop atlas-based segmentation meth-
ods. The first two applications typically involve several im-
age volumes acquired serially from the same subject and
require intrasubject registration methods. The last two, which
involve images acquired from different subjects, require in-
tersubject registration techniques. In both cases, nonrigid
registration methods are required as soon as the structures of
interest are more complex than a single rigid body object. A
number of methods and techniques have been developed to
achieve this; chief among them are intensity-based tech-
niques and, in particular, methods that rely on mutual infor-
mation �MI�.1,2 However, most automatic methods that have

been proposed have been applied to head images only. This
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is no doubt due to the fact that whole body image data sets
present a set of difficulties not found in head data sets. Head
images contain one single major identifiable structure �the
brain� as opposed to whole body images that contain many
articulated structures �the skeleton and organs�. Despite the
fact that a number of methods have been proposed for extra-
cranial applications such as breast, lung, or prostate
images,3–5 very few have been proposed to attack issues as-
sociated with images that contain many articulated structures
the relative position of which changes between acquisitions.

This type of images remains challenging because, in prac-
tice, nonrigid registration algorithms need to be initialized
with a rigid or affine transformation. If the image volumes do
not contain articulated structures, as is the case, for example,
for head images, one global rigid or affine transformation is

sufficient to initialize the nonrigid registration algorithms. If,
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on the other hand, these image volumes contain a number of
skeletal structures, which are rigid but whose relative posi-
tion changes from acquisition to acquisition, one global rigid
or affine transformation is insufficient and more local ap-
proaches have to be used. We now briefly review the meth-
ods designed to address this problem.

A typical approach that is used is to rely on a number of
local transformations, each one computed for one element in
the articulated structure. These transformations are then com-
bined. This is the approach followed by Little et al.6 These
authors present a technique designed for the intrasubject reg-
istration of head and neck images. Vertebrae are registered to
each other using rigid body transformations �one for each
pair of vertebrae�. Transformations obtained for the vertebrae
are then interpolated to produce a transformation for the en-
tire volume. One limitation of this approach is that it requires
segmenting and identifying corresponding vertebrae in the
image volumes. Because corresponding vertebrae are regis-
tered with rigid-body transformations, the approach is also
applicable only to intrasubject registration problems.

Martin-Fernandez et al.7 proposed a method, which they
term “articulated registration.” This approach requires the
labeling of landmarks to define wire models that represent
the bones. A series of affine transformations are computed to
register the rods, which are the elements of the wires. The
final transformation for any pixel in the image is obtained as
a linear combination of these elementary transformations
with a weighting scheme that is inversely proportional to the
distance to a specific rod.

Arsigny et al.8 also present an approach in which local
rigid or affine transformations are combined. They note that
simple averaging of these transformations leads to lack of
invertibility, and they propose a scheme that permits the
combination of these local transformations, while producing
an overall invertible one. Their method, which is applied to
the registration of histological images, has not been tested on
whole body images.

Recently, Papademetris et al.9 put forth an articulated
rigid registration method that is applied to the serial registra-
tion of lower-limb mouse images. In this approach, each in-
dividual joint is labeled and the plane in which the axis of
rotation for each joint lies is identified. A transformation that
blends piecewise rotations is then computed. Their approach
produces a transformation that is continuous at these inter-
faces but requires manual identification of joint segments.
The authors have applied their method to the registration of
lower limbs in serial mouse images. The same authors have
also presented an integrated intensity and point-feature non-
rigid registration method that has been used for the registra-
tion of sulcal patterns and for the creation of mice population
averages.10 While similar to our own approach, it has not
been used for the registration of skeletons.

du Bois d’Aische et al.11 deal with the articulated rigid
body registration problem using a three-step strategy: �1� ar-
ticulated registration which combines a set of rigid body ma-
trices, �2� mesh generation for the image, and �3� propagat-
ing the displacement to the whole volume. This work has

only been applied to intrasubject registration problems.
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Johnson et al.12 presented two algorithms called consis-
tent landmark thin-plate spline registration and consistent
intensity-based thin-plate spline registration. Then they ex-
tend these to the consistent landmark and intensity registra-
tion algorithm, in order to match both landmarks and the
areas away from the landmarks. In this algorithm, the land-
marks need to be selected and their correspondences need to
be identified manually.

Baiker et al.13 introduced a hierarchical anatomical model
of the mouse skeleton system for the articulated registration
of three-dimensional whole body data of mice. But their
model does not include the ribs, which we have found im-
portant to guarantee the accurate registration of structures
such as the heart or the lungs.

In summary, a survey of the literature shows that only a
few methods have been proposed to register images includ-
ing articulated structures. Most approaches compute piece-
wise rigid or affine transformations and somehow blend and
combine these transformations. Unfortunately, these ap-
proaches are often not practical because they require identi-
fying various structures in the images such as joints or indi-
vidual bones and are therefore not automatic. In this article
we propose a fully automatic method that does not require
structure labeling. We demonstrate its performance on small
animal and human images. The data used in this study are
described in Sec. II of this article. In Sec. III, we introduce
the whole body image registration method we propose,
which includes three main steps. The experiments we have
performed and results we have obtained are presented in Sec.
IV. Both our algorithm and results are discussed in Sec. V.

II. DATA

Two types of images have been used in the study pre-
sented herein: images acquired from small animals and im-
ages acquired from humans. The small animal data sets in-
clude computed tomography �CT� and magnetic resonance
�MR� images while the human data sets only include CT
images. MR images have been acquired for the small ani-
mals to permit validation of the method we propose, which is
primarily designed for CT images, on soft tissue structures.
Soft tissue contrast in CT images is poor but the additional
MR image volumes we have acquired permits to validate
indirectly our method, as will be described in more details in
Sec. IV.

To permit long MR acquisition times with high signal to
noise and without motion artifacts, mice were first sacrificed,
and then imaged in a Varian 7.0T MR scanner equipped with
a 38 mm quadrature birdcage coil. A T1-weighted spoiled
gradient recalled echo sequence with a TR/TE of 20 ms/5 ms
and a flip angle of 5° was employed. The acquisition matrix
was 500�128�128 over a 90�32�32 field of view yield-
ing a spatial resolution of approximately 0.176�0.25
�0.25 mm3. Next the mice were imaged within the same
holder using an Imtek MicroCAT II small animal scanner to
generate the CT images. CT imaging was at a voltage of 80
kvp with an anode current of 500 �A. Acquisition param-

eters of 360 projections in 1° steps, exposure time 600 ms,
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and acquisition matrix 512�512�512 were employed. To-
tal scan time is just over 8 min, and images have 0.2�0.2
�0.2 mm3 isotropic voxels. The mice posture was then
changed arbitrarily and a second set of MR and CT scans
were acquired. This process was repeated in four mice. The
CT and corresponding MRI scans for each mouse can easily
be coregistered with a rigid body transformation because the
mouse was in the same holder during CT and MR acquisi-
tions.

Although our main domain of application is small animal
images, we have also used human data sets to show the gen-
erality of our algorithm. Two pairs of intersubject human
upper torso images were acquired. One pair of images con-
sists in a 512�512�170 and a 512�512�198 CT vol-
umes with a voxel resolution of 0.9375�0.9375�3 mm3.
The other pair of images consists in a 512�512�184 and a
512�512�102 CT volumes with a resolution of 0.9375
�0.9375�3 mm3 as well.

III. METHOD

The method we propose involves three main steps �shown
in Fig. 1�: intensity-based rigid body registration, point-
based nonrigid registration, and intensity-based nonrigid reg-
istration. These three steps are discussed in detail in the fol-
lowing sections.

FIG. 1. The flow chart of the algorithm, which includes three main steps:
intensity-based rigid body registration, point-based nonrigid registration,
and intensity-based nonrigid registration.
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III.A. Step one: Intensity-based rigid body registration

First, a standard MI based rigid body registration
algorithm14 is applied to the source and target CT volumes. A
rotation matrix R and a translation vector t, which maximize
the normalized mutual information15 �NMI� between the im-
ages are computed using Powell’s conjugate direction
method.16 The normalized mutual information is defined as

NMI =
H�A� + H�B�

H�A,B�
, �1�

where A and B are two images, and H�·� is the Shannon
entropy of the image which measures the amount of infor-
mation in this image

H�A� = − �
i�A

pi�i�log pi�i� , �2�

with pi�i� is the probability of an intensity value i in the
image A.

III.B. Step two: Nonrigid point-based registration

Next, a set of points is extracted from the skeletons in the
images to be registered. In CT images, the bones have a
higher intensity than soft tissues. The bony structures can
thus be segmented easily in CT images with one single
threshold. Here, a simple manual method has been used to
select this threshold. Isointensity surfaces were generated
with various thresholds and the intensity value that produced
the best surface was chosen. Points are then selected auto-
matically in the thresholded image as follows. For each axial
slice in the skeleton volume, the connected areas are detected
and the center of each of these areas is located. The set of
points used for registration is the set of central points, which
approximately corresponds to the centerline of the skeletons.

The sets of points extracted from the source and the target
images are then registered using the robust point matching
algorithm proposed by Chui et al.17 This algorithm takes two
sets of points as input and iteratively computes a correspon-
dence between these points and the transformation that reg-
isters them.

First, a correspondence matrix is calculated. Instead of
assigning a binary value for every pair of points, a continu-
ous value in the interval �0, 1� is calculated, according to the
soft assign algorithm proposed by Gold et al.,18

FIG. 2. The CT images with segmented holder. The
holder is segmented automatically via registration.
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mai =
1

T
exp�−

�xi − f��a��T�xi − f��a��
2T

� , �3�

where V : ��a ,a=1,2 , . . . ,K	 and X : �xi , i=1,2 , . . . ,N	 are
two sets of points from the source and target images. f is the
transformation or mapping function, which is used to register
the images �more details on this mapping function are pro-
vided below�. T is called the temperature parameter, which is
introduced to simulate physical annealing. In the original ar-
ticle �Chui et al.17�, the suggested initial value for T is 0.5.
The annealing schedule for T is T=T ·r, with r as the anneal-
ing rate. A recommended value for r is 0.93. In this work, we
have used the recommended values for every volume. The
fuzzy correspondence matrix is normalized at each iteration,
so that the sum of each row and each column is kept as one.
Thus, Eq. �3� establishes a fuzzy correspondence between
points in the set V and points in the set X; the fuzziness of the

FIG. 3. Bony structures in two micro-CT volumes �a� before registration, �b�
after ABA registration only, �c� using only the robust point-based registra-
tion algorithm, and �d� using both the point-based registration and the ABA
algorithms.
assignment decreases as the algorithm progresses. Major ad-
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vantages of this fuzzy assignment are that the cardinality of
the sets X and V does not need to be equal and that a virtual
correspondence between points in these sets can be estab-
lished using this fuzzy matrix, as explained next.

At each iteration, after the correspondence is determined,
a thin plate spline-based nonrigid transformation f is com-
puted, which solves the following least-squares problem:

min
f

E�f� = min
f

�
a=1

K


ya − f��a�
2 + �
Lf
2, �4�

where ya=�i=1
N maixi and ya can be considered as a virtual

correspondence for �a. This correspondence is computed by
weighting all the points in X. L is an operator which mea-
sures the smoothness of the thin plate spline transformation.
Here the integral of the square of the second order derivative
of the mapping function f is used. � is a regularization pa-
rameter that balances the terms. The value of � also changes
from iteration to iteration. Initially a high value is chosen for
�, leading to a smooth transformation. As the algorithm
progresses, the correspondence between points becomes
crisper and the smoothness constraint is relaxed to increase
accuracy. As is the case for the other parameters, the value of
� is modified according to an annealing schedule,

� = �init · T , �5�

A recommended value for �init is 1, which has also been used
here. The correspondence and transformation steps are com-
puted iteratively using Eqs. �3� and �4�, with the temperature
T decreasing. Finally, the transformation computed based on
the points is applied to the entire image volume. This de-
formed volume is then used as the input to the next step.

III.C. Step three: Intensity-based nonrigid
registration

The last step in our approach relies on an intensity-based
registration algorithm we have proposed, which we call ABA
for adaptive bases algorithm.19 This algorithm uses mutual
information as the similarity measure and models the defor-
mation field that registers the two images as a linear combi-
nation of radial basis functions with finite support,

v�x� = �
i=1

N

ci��x − xi� , �6�

where x is a coordinate vector in Rd, with d being the di-
mensionality of the images, � is one of Wu’s compactly
supported positive radial basis functions,20 and the ci ’s are
the coefficients of these basis functions. The goal is to find
the ci’s that maximize the mutual information between the
images. The optimization process for the coefficients in-
cludes a steepest gradient descent algorithm combined with a
line minimization algorithm. The steepest gradient descent
algorithm determines the direction of the optimization. The
line minimization calculates the optimal step in this
direction.

In our implementation, the algorithm is applied using a

multilevel approach. Here, multilevel includes multiscale
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and multiresolution. The resolution is related to the spatial
resolution of the images. The scale is related to the region of
support and the number of basis functions. An image pyra-
mid is created and the registration algorithm is applied at
each resolution level. The algorithm is started on a low-
resolution image with few basis functions with large support.
At each spatial resolution level, the region of support and the
number of basis functions are modified. Typically, as the
image resolution increases, the region of support is decreased
and the number of basis function is increased. As a conse-
quence, the transformations become more and more local as
the algorithm progresses.

In our experiments, three resolution levels are used in all
small animal CT images �64�64�64, 128�128�128, and
256�256�256 voxels�. At the lowest level we use a matrix
of 6�6�6 basis functions. At the intermediate level, we use
a matrix of 10�10�10 basis functions. At the highest res-
olution level we start with a matrix of 14�14�14 basis
functions and then use a matrix of 18�18�18 basis func-
tions. For the two human data sets, three resolution levels are
also used: 64�64�50, 128�128�99, and 256�256
�198 voxels for the first data set, and 64�64�25, 128
�128�51, and 256�256�102 voxels for the second data
set �the dimension depend on the dimensions of the original
data sets�. At the lowest level, 4�4�4, and then 8�8�8
matrices of basis function were used. At the intermediate
level, we used first a matrix of 12�12�10 and then a ma-
trix of 16�16�12 basis functions. At the highest resolution,
we used 20�20�14, 26�26�16, and 32�32�20 matri-
ces of basis functions. All those parameters were selected
experimentally. Practically, parameters are determined once
for one type of image and then used without modification to

register similar images.
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One feature that distinguishes our algorithm from others
�see, for instance, Rueckert et al.4� is the fact that we do not
work on a regular grid. Rather, areas of mismatch are iden-
tified and the deformation field is adjusted only on these
identified regions. This is done as follows. When the algo-
rithm moves from one level to the other, a regular grid of
basis function is placed first on the images. The gradient of
the similarity measure with respect to the coefficients of the
basis functions is then computed. The location of the basis
functions for which this gradient is above a predetermined
threshold is used to determine areas of mismatch. The ratio-
nale for this choice is that if the gradient is low, either the
images are matched well because we have reached a maxi-
mum or the information content in this region is low. In
either case, trying to modify the transformation in these re-
gions is not productive. Optimization is then performed lo-
cally on the identified regions �more details on this approach
can be found in Rohde et al.19�.

The algorithm progresses until the highest image reso-
lution and highest scale are reached. Hence, the final defor-
mation field v is computed as

v�x� = v1�x� + ¯ + vM�x� , �7�

where M is the total number of levels. Furthermore, we com-
pute both the forward and the backward transformations si-
multaneously, and we constrain these transformations to be
inverses of each other using the method proposed by Burr.21

Although this cannot be proven analytically, experience has
shown that the inverse consistency error we achieve with this
approach is well below the voxels’ dimension. In our expe-
rience, enforcing inverse consistency improves the smooth-

FIG. 4. �a� One coronal slice in the source volume, �b�
the corresponding coronal slice in the target volume, �c�
the transformed source image after ABA only, �d� the
transformed image after robust point-based registration
algorithm only, and �e� the transformed image after the
combination of the point-based registration and the
ABA algorithms.
ness and regularity of the transformations.
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One important objective of a nonrigid registration algo-
rithm is to produce transformations that are topologically
correct �i.e., transformations that do not include tearing or
folding�. This is difficult to guarantee and it is often imple-
mented by constraining the transformation �e.g., adding a
penalty term that is proportional to the second derivative of
the deformations field4�. Here, we follow the same approach,
but the field is regularized by constraining the difference
between the coefficients of adjacent basis functions �the ci’s�
using a threshold �. The concept is simple: if the coefficients
of adjacent basis functions vary widely, the resulting defor-
mation field changes rapidly. This can be useful as it permits
computing transformations that require large local displace-
ments but it may also produce transformations that are ill-
behaved. Thus, the threshold � can be used to control the
regularity and the stiffness properties of the transformation.
Small values produce smooth transformations that are rela-
tively stiff. Large values lead to transformations that are

more elastic but less regular.
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This threshold can also be used to vary spatially the prop-
erties of the transformations, which is of importance for the
application described in this article �in the past we have used
the same technique to register images with large space-
occupying lesions22�. Indeed, there are two broad categories
of structures in the images we need to register: bones and
soft tissues. The amount of deformation typically observed
for bony and soft tissue structures is very different and the
transformations should reflect this fact; they should be stiffer
for bony structures than for soft tissue structures. To create
spatially varying stiffness properties, a stiffness map is gen-
erated. This stiffness map has the same dimensions as the
original images and associates a value for � with each pixel.
In this work, we identify bony regions by thresholding the
images as described earlier. We then associate a small �
value to bony regions and a large � value to the other areas in
the stiffness map. Experimentally, we have selected 0.01 for
the bony region and 0.3 for the other regions, and we use

FIG. 5. Three pairs of intersubject mice skeletons be-
fore registration �the first column�, after rigid body reg-
istration �the second column�, and after the proposed
method �the third column�.
these values for all the volumes presented here.
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As described before, we have tested our method on two
very different sets of data: small animal images and human
images. When processing the small animal images, we need
to add an additional step to our processing sequence. Indeed,
mice are typically scanned in some type of holder and this
holder needs to be eliminated prior to registration �see Fig.
2�. Manual segmentation is time consuming and impractical,
considering the fact that one CT volume usually includes 512
slices. But automatic segmentation using common tech-
niques such as thresholding is difficult. This is so because the
intensity values of the mouse and of the holder are very
similar and because the body of the mouse is connected
tightly to the holder. Here, we solve the problem by segment-
ing the holder via registration. An empty holder is scanned
and registered to the holder that contains a mouse using a
normalized mutual information based rigid body registration
algorithm.14 After registration, the image with the empty
holder is subtracted from the image with the mouse and the
holder. This results in an image, which only contains the
mouse. Figure 2 shows representative results in the sagittal,
axial, and coronal orientations for a typical mouse CT image
volume. This method is fully automatic and robust. It can be
used with any type of holder provided that one image vol-

ume with an empty holder is available.
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IV. EXPERIMENTS AND RESULTS

IV.A. Qualitative results

Our approach has been qualitatively evaluated on three
types of problems: intrasubject registration of whole body
mouse images, intersubject registration of whole body mouse
images, and intersubject registration of upper body human
images. Examples of results obtained for each of these tasks
are shown in this section.

Figure 3�a� shows the skeletons extracted from two CT
volumes; one skeleton is shown in light color, the other in
dark color. In the following text the volume that is deformed
using our registration method is called the source volume
while the other is called the target volume. Figure 3�b� shows
the results we obtain when we use only the ABA algorithm
after the initial rigid body transformation. In this case, the
algorithm is applied to the entire image volume, and the
bones are extracted after registration. This figure shows that
for this data set, an intensity-based nonrigid registration al-
gorithm alone is insufficient to register the two volumes.
Figure 3�c� shows the results obtained after registering the
skeleton with the point-based method alone. Figure 3�d�
shows the final results when the ABA algorithm is initialized

FIG. 6. Different slices in three differ-
ent reference mice �the first column�,
the deformed slices after the proposed
method �the second column�, and the
corresponding target mice �the third
column�. The bright lines are contours
drawn on the target images.
with the results obtained in Fig. 3�c�. Results presented in
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this figure indicate that the point-based method leads to
qualitatively good results, but that these results can be im-
proved further with an intensity-based technique.

Figure 4 presents similar results but on the entire volume;
Fig. 4�a� shows one slice in the source volume and Fig. 4�b�
shows the slice with the same index in the target volume. If
the source and target volumes were perfectly registered,
these images would be identical. To facilitate the compari-
son, yellow contours have been drawn on the target image
and copied on all the other ones. Figure 4�c� shows the re-
sults when only ABA is used, Fig. 4�d� when only the point-
based method is used, and Fig. 4�e� when both methods are
combined. Comparing Figs. 4�d� and 4�e� it is clear that even
if the bones are registered correctly with the point-based
technique, the rest of the body is not. For instance, the con-
tour of the lower portion of the mouse body shown in Fig.
4�d� is not aligned to the target accurately. Again, combining
the two methods leads to results that are better than those

FIG. 7. �a� Skeleton of the source image, �b� skeleton of the target image,
�c�, �d�, and �e� source skeleton registered to target skeleton using a stiff
transformation, a very elastic transformation, and two stiffness values,
respectively.
obtained with a single method.
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Figures 5 and 6 show typical intersubject registration re-
sults. In both these figures three pairs of images pertaining to
different mice have been registered. Figure 5 shows the reg-
istration of the skeletons. In this figure, the left column
shows the skeletons in their original position. The middle
and right columns show the same but after rigid body regis-
tration and after registration with the proposed method, re-
spectively. Figure 6 shows the results we obtain on the entire
CT volume. The left column shows one slice in the source
volume and the right column shows the same slice in the
target volume. The middle column shows this slice in the
source volume once it has been registered and reformatted to
correspond to the target volume. Contours have been drawn
on the target volume and superimposed on the reformatted
source volume to show the quality of the registration.

Figures 7 and 8 show results we have obtained when per-
forming intersubject registration of human upper torso CT
images, and they illustrate the advantage of using two stiff-
ness values. In both figures, panels �a� and �b� are the source
images and the target images, respectively. Panels �c�, �d�,
and �e� show the source volume registered to the target vol-

FIG. 8. �a� One coronal slice in the source volume, �b� corresponding slice
in the target volume, �c�, �d�, and �e� source image registered to target image
using a stiff transformation, a very elastic transformation, and two stiffness
values, respectively.
ume using a stiff transformation, a very elastic transforma-



1515 Li et al.: Automatic registration of whole body CT images 1515
tion, and a transformation with two stiffness values, respec-
tively. In Fig. 7, only the bones are shown. In Fig. 8, the
complete volumes are shown. When a stiff transformation is
used, bones are deformed in physically plausible ways. But
the accuracy achieved for soft tissues is suboptimal �arrows
on Fig. 8�c��. When a more elastic transformation is used,
bones are deformed incorrectly �shown in Fig. 7�d��. Using
two stiffness values permits transformations to be computed
that lead to more satisfactory results for both the bony and
soft tissue regions.

Figure 9 illustrates results we have obtained with a set of
head and neck images. Figures 9�a� and 9�b� show one sag-
ittal CT image in one of the volumes �the source� and the
slice with the same index in the second volume �the target�
prior to registration. The contour has been drawn on the tar-
get image in order to facilitate comparison. Figures 9�c�–9�e�
show results obtained with our intensity-based algorithm
alone, results obtained with point-based registration alone,
and results obtained when both approaches are combined,
respectively. Figure 9�c� shows typical results obtained when
nonrigid registration algorithms cannot be initialized cor-

FIG. 9. �a� One sagittal slice in the source volume, �b� the corresponding
slice in the target volume, �c�, �d�, and �e� registration results obtained with
intensities alone, points alone, and with the proposed algorithm,
respectively.
rectly. The overall shape of the registered volume appears
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correct but bones have been deformed incorrectly. A closer
inspection of the deformation field �not shown here because
of space constraints� also shows that the deformation field is
very irregular. The deformation field obtained with the point-
based registration is smooth but the registration is relatively
inaccurate, as shown in Fig. 9�d�. As can be seen in this
panel, the shape of the head and its size are not the same as
those shown in Fig. 9�b�. Similarly, the size of the vertebrae
is incorrect. Figure 9�e� shows that the best results are ob-
tained when both approaches are combined.

Visual and qualitative validation of our approach indicates
that it can be used to register whole body images. To validate
this approach quantitatively, we have devised two experi-
ments, one to test the algorithm on the skeletons and the
other on soft tissue regions.

IV.B. Quantitative validation

The acquired data sets, described in Sec. II, can be used to
validate our method both on the skeletons and on soft tissue
structures of the same mouse acquired twice in a different
posture �longitudinal study� or of two different mice �inter-
subject registration�. We have four pairs of images to test our
algorithm on intrasubject longitudinal tasks, e.g., mouse 1
acquired at time 1 is paired with mouse 1 acquired at time 2,
etc. With the data set we have acquired, 24 pairs of images
can be created to validate our algorithm on intersubject tasks,
i.e., mouse 1 at time 1 can be paired with mouse 2 at time 1,
with mouse 2 at time 2, etc. Among these 24 pairs, 7 had to
be eliminated because one of the data set covered the entire
body while the other was missing the lower legs. This leaves
us with 17 pairs of images to perform our intersubject evalu-
ation.

Because of acquisition artifacts, the boundary between the
heart and the lungs could not bee seen at all in one of the
mice �mouse No. 3� CT volumes. In turn, this led to an
inaccurate registration in this region when CT images alone
were used. For this reason, mouse No. 3 was omitted for the
quantitative evaluation of the heart. Validation results on
both skeletons and soft tissues are reported in the following
sections.

IV.B.1. Validation on skeletons

To validate the algorithm on skeletons, the distance be-
tween each point on the deformed source surface and the
closest point on the target surface is computed. Table I shows
these distances at each step of the algorithm for both the
longitudinal and the intersubject registrations tasks. Hence,
the distances are calculated before and after the rigid body
registration, after the point matching algorithm, and after the
intensity-based nonrigid registration. After the proposed al-
gorithm, the mean distance for the intrasubject registration
task is 0.24 mm. It is 0.3 mm for the intersubject registration
task. Because the inter-registration task involves accounting
for morphological differences in addition to pose differences,
observing a slightly larger error for the second task is to be

expected.
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IV.B.2. Validation on soft tissue structures

The approach we have used to test our registration
method on soft tissues both for the intrasubject and the in-
tersubject registration tasks is as follows.

Step �1�: each magnetic resonance imaging �MRI� scan
was registered to its corresponding CT scan with a rigid
transformation;

Step �2�: CT scans were then registered using the method
we propose;

Step �3�: the transformation computed in step �2� was ap-
plied to the MRI scans. This permits evaluating the quality of
the CT-based registration on structures that are not clearly
visible in the CT images.

TABLE I. Distances in mm between the source and target bone surfaces
before rigid registration, after rigid registration, after registration using
points only, and with the method we propose for both the intra- and inter-
subject registration tasks.

Mouse No. Before rigid After rigid
After point
matching Proposed method

Intrasubject

1 1.7667 0.8175 0.4854 0.3008
2 0.6254 0.4151 0.3853 0.3290
3 0.8205 0.6778 0.2542 0.1422
4 0.7757 0.7164 0.4128 0.2080

Mean 0.9971 0.6567 0.3844 0.245

Intersubject

1 2.4047 1.0170 0.7313 0.4368
2 2.2495 0.4799 0.4964 0.1769
3 1.5536 0.9060 0.5390 0.2530
4 1.0805 0.5425 0.5289 0.2054
5 2.6875 0.5525 0.464 0.2433
6 2.5321 0.5983 0.5878 0.3550
7 2.1083 0.6605 0.7416 0.3255
8 1.2474 0.6147 0.5736 0.2330
9 0.7904 0.5203 0.6069 0.2496
10 1.3014 1.2376 0.4989 0.3300
11 1.1262 1.0090 0.4056 0.2666
12 3.1736 1.0154 0.5111 0.3314
13 2.8424 1.0267 0.5936 0.3795
14 1.9231 0.8696 0.5501 0.3168
15 2.1204 0.9429 0.5337 0.2999
16 2.4757 0.9207 0.6521 0.3734
17 2.2350 0.7434 0.5715 0.3370

Mean 1.9913 0.8034 0.5639 0.3008
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Step �1� in this process is a simple problem. Mice are
dead and placed in a holder. This holder is then moved from
one scanner to the other without removing the mouse. Reg-
istering the two data sets thus only requires computing a
rigid body transformation between two data sets in which no
or minimum nonrigid displacement can be expected. This is
done using a standard mutual information-based rigid body
registration algorithm.1 The accuracy of this registration step
has been evaluated qualitatively by blending the registered
MR and CT volumes and identifying structures visible in
both images, such as the contour of the lungs. A representa-
tive example is shown in Fig. 10. The left panel in this figure
is a color-coded MR image and the middle panel is the cor-
responding CT slice. Contours have been drawn on the CT
images and copied on the MR images. The right panel shows
an image in which the CT and MR images have been
blended. In every case, the registration was deemed accept-
able. In addition to this visual validation, whole body sur-
faces were extracted from the MR and CT image volumes
after registration with an intensity threshold. For each MR
surface point, the closest point on the CT surface was found
and its distance to the MR point computed. As shown in Fig.
10, the intensity is attenuated in the top and bottom portions
of the MR images. These regions were omitted when com-
puting the distance between the MR and CT surfaces. Table
II lists the average surface distances for all pairs of MR and
CT images used in the experiments described herein. With an
overall mean of 0.23 mm, these numbers indicate excellent
MR-CT registration results.

Next, the heart, kidneys, and bladder were segmented
manually in all the MR image volumes. The transformations
generated by the proposed method were then applied to the
structures segmented in the source image. This produced de-
formed structures that were compared to the segmented
structures in each of the target images using the Dice simi-
larity index23 defined as

FIG. 10. One MR image �left�, the corresponding CT
image �middle�, and the fused image between MR and
CT images �right�. The bright lines are contours drawn
on the CT image and copied to the MR image.

TABLE II. Distances in mm between the source and target mouse body sur-
faces at different acquisition time points.

MRI-CT
surface distance

Mouse
No. 1

Mouse
No. 2

Mouse
No. 3

Mouse
No. 4

Time 1 0.1851 0.2659 0.2267 0.2927
Time 2 0.1518 0.2583 0.2234 0.2636
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Dice similarity = 2 �
n�A1 � A2	

n�A1	 + n�A2	
, �8�

where A1 and A2 are two regions and n�·	 is the number of
voxels in a region. Figure 11 shows a few examples with
manual and automatic contours superimposed. It also shows
the value of the Dice index computed for these various cases
to provide a sense of the correlation between the Dice value
and the visual quality of the segmentation. A value of 0.7 for
the Dice value is customarily accepted as a value for which
two contours are in very good correspondence.24

Two observers have segmented soft tissue structures in
the images. Hence, three Dice values are computed and com-
pared: the Dice value between the automatic contours and
the manual contours drawn by the first observer, which we
call AM1; the Dice values between the automatic contours
and the manual contours drawn by the second observer,
which we call AM2; and the Dice values between the con-
tours drawn by the two observers, which we call M1M2. The
value of the Dice similarity measure between two observers
quantifies the inter-rater variability that can be expected for
the various segmentation tasks. Although, as discussed
above, our main objective is to develop a method for the
registration of CT images, we also investigated whether or
not using the MR images in the registration process would
improve the results. To do so, we added one registration step.
After the MR images have been registered to each other us-
ing the transformation generated to register the CT images,
we registered them once more with the ABA algorithm.

Table III lists the Dice values for the longitudinal regis-
tration task with and without the last MR registration step.
Our results show that Dice values are above 0.7 for the lon-
gitudinal registration task. Moreover, the Dice values be-
tween the automatic and manual contours are comparable to
the Dice values between the two observers, which indicates

that the variability between manual and automatic contours
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is similar to the variability observed between human raters.
Figures 12 and 13 show the results for the intersubject reg-
istration tasks. For both the intra- and intersubject registra-
tion tasks, the Dice values improve when the MR images are
used. We also note that the bladder is the most difficult struc-
ture to register because of large intersubject differences. This
is most likely due to the volume of urine that is present in the
bladder at the time of imaging.

V. DISCUSSION AND CONCLUSIONS

In this article, we presented a novel and fully automatic
approach for the registration of articulated structures appli-
cable to intra- and intersubject registration problems. While
it may appear, at first, that registering articulated structures
would require computing individual transformations for each
element in the structure and combining these transforma-
tions, our experiments show that it is not the case. This is
what differentiates our work from previously published work
and it may have a significant impact because it greatly sim-
plifies the solution to the problem. In particular, segmenta-
tion and identification of individual structure components is
no longer necessary.

Results have shown that, while accurate registration of
bony structures is possible with a robust point-matching
method, registration of the entire volumes requires a second
step. If, as is done in this work, the second step is based on
an image intensity algorithm, special care needs to be taken
to constrain the transformation locally to avoid deforming
the bony structures inappropriately while registering the rest
of the image volumes. Here we have addressed the issue with
what we call stiffness maps that constrains the relative value
of the coefficients of adjacent basis functions. We have found
this scheme to be particularly useful for human images but
less so for small animal images. This is so because basis

FIG. 11. The target images overlaid
with contours obtained automatically
and manually.
functions have a predetermined support and may cover a
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region that contains both bones and soft tissue; this is espe-
cially true for small animal images in which bones are small
compared to the voxel dimensions. In the current version of
our nonrigid registration algorithm, we use the position of
the center of the basis function to determine its constraint;
which may produce inaccuracies, i.e., soft tissue close to the
bones may not be deformed enough if the basis functions is
centered on a bony structure or bones may be deformed too
much if the basis function is centered on soft tissue. We are
currently addressing this issue by adding an additional
constraint in our algorithm that will prevent this from
happening.

The results we have obtained on the skeletons show a
submillimetric error for both the serial and the intersubject
registration task. The Dice values we have obtained with our
approach using only CT images for the intrasubject registra-
tion task indicate an excellent agreement between manual
and automatic contours. These results indicate that the

TABLE III. Dice similarity values between the two m
segmentation and the automatic segmentation �AM1
automatic one �AM2� for the intrasubject registration

Mouse Heart

The pr

No. 1 AM1 0.9040
AM2 0.7997

M1M2 0.8758
No. 2 AM1 0.8530

AM2 0.8518
M1M2 0.8624

No. 3 AM1
AM2

M1M2
No. 4 AM1 0.8930

AM2 0.8684
M1M2 0.8458

Mean AM1 0.8833
AM2 0.8400

M1M2 0.8613

The proposed me

No. 1 AM1 0.9220
AM2 0.7714

M1M2 0.8758
No. 2 AM1 0.9200

AM2 0.8987
M1M2 0.8624

No. 3 AM1
AM2

M1M2
No. 4 AM1 0.9160

AM2 0.8765
M1M2 0.8458

Mean AM1 0.9193
AM2 0.8489

M1M2 0.8613
method we propose could be used for longitudinal measure-

Medical Physics, Vol. 35, No. 4, April 2008
ments using only CT images. A possible issue, which will
need to be investigated further, is the effect a growing tumor
will have on the intensity-based component of our approach.
This may necessitate adapting the stiffness constraints as was
done in Duay et al.22 The intersubject registration results we
have obtained imply that CT images alone, with their rela-
tively poor soft tissue contrast, may not be sufficient to pro-
duce registrations that are accurate enough to measure small
differences. Using MR images in addition to the CT images
does, however, address the issue. One also notes that using
MR images alone is unlikely to produce accurate results.
Indeed, the skeletons that are easily identifiable in the CT
images need to be used to produce transformations that are
accurate enough to initialize MR-based registration
algorithms.

Although we have focused our work on CT images of
small animals, the results we present also show that the ap-
proach we propose is widely applicable. For instance, we

l segmentations �M1M2�, between the first manual
between the second manual segmentation and the

.

t kidney Right kidney Bladder

d method

150 0.8730 0.8120
374 0.7699 0.7213
033 0.8958 0.8907
930 0.8840 0.8860
926 0.8649 0.8529
810 0.8721 0.8707
820 0.8520 0.7100
710 0.9103 0.7708
966 0.8706 0.8364
900 0.8860 0.8040
080 0.8646 0.7752
152 0.8878 0.8869
950 0.8738 0.8030
772 0.8524 0.7801
990 0.8816 0.8712

+ the extra step

090 0.9180 0.7730
055 0.7582 0.7393
033 0.8958 0.8907
230 0.9330 0.9510
114 0.9002 0.8802
810 0.8721 0.8707
040 0.8890 0.7650
965 0.9111 0.8020
966 0.8706 0.8364
120 0.9230 0.8980
212 0.8984 0.8553
152 0.8878 0.8869
120 0.9158 0.8468
837 0.8670 0.8192
990 0.8816 0.8712
anua
�, and
task

Lef

opose

0.9
0.8
0.9
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.9
0.9
0.8
0.8
0.8

thod

0.9
0.8
0.9
0.9
0.9
0.8
0.9
0.8
0.8
0.9
0.9
0.9
0.9
0.8
0.8
have shown, albeit on a few cases, that it can be used for the
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registration of chest and head and neck images. Further
evaluation on a larger data set will need to be performed to
establish the robustness of our approach to this type of
problem.

For the small animal studies, the average runtime of the
robust point matching algorithm is 171 min. The average
runtime of the adaptive basis algorithm is 89 min. All algo-
rithms are run on a 2 GHz Pentium PC with 1 G memory.
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