Quantitative image quality evaluation of MR images
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The authors are using a perceptual difference model (Case-PDM) to quantitatively evaluate image
quality of the thousands of test images which can be created when optimizing fast magnetic
resonance (MR) imaging strategies and reconstruction techniques. In this validation study, they
compared human evaluation of MR images from multiple organs and from multiple image recon-
struction algorithms to Case-PDM and similar models. The authors found that Case-PDM compared
very favorably to human observers in double-stimulus continuous-quality scale and functional
measurement theory studies over a large range of image quality. The Case-PDM threshold for
nonperceptible differences in a 2-alternative forced choice study varied with the type of image
under study, but was =1.1 for diffuse image effects, providing a rule of thumb. Ordering the image
quality evaluation models, we found in overall Case-PDM = IDM (Sarnoff Corporation) =~ SSIM
[Wang et al. IEEE Trans. Image Process. 13, 600-612 (2004)] > mean squared error = NR [Wang
et al. (2004) (unpublished)] > DCTune (NASA) > IQM (MITRE Corporation). The authors con-
clude that Case-PDM is very useful in MR image evaluation but that one should probably restrict
studies to similar images and similar processing, normally not a limitation in image reconstruction
studies. © 2008 American Association of Physicists in Medicine. [DOI: 10.1118/1.2903207]
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I. INTRODUCTION

There are extraordinary developments in magnetic resonance
(MR) imaging to speed acquisition and/or improve image
signal-to-noise ratio (SNR), creating a great need for quanti-
tative image quality evaluation. With regards to hardware,
new developments include increased field strength to 7 T;
multicoil parallel imaging to 32 channels and beyond to
speed MR scanning and/or increase SNR. There are a large
number of MR reconstruction algorithms aimed at utilizing
partial k space for image reconstruction including SENSE,'
GRAPPA,” HYPR,” k—t SENSE," TGRAPPA,” and PROPELLER,’
where the “¢+ 7 algorithms correspond to dynamic imaging
over time. It is common for a researcher to describe new
hardware or image reconstruction algorithms, and assert that
it is an improvement based upon SNR or contrast-to-noise
ratio (CNR) values, root-mean-squared (RMS) values, Shan-
non’s information content,7 or anecdotal evaluations. There
is a substantial need to provide more rigorous image quality
evaluations. In addition, particularly with regards to image
reconstruction where many parameters can be involved, it is
possible to create optimization experiments consisting of
thousands of images to be evaluated. In this case, there is a
great need for computer evaluation of images.
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As compared to x-ray, computed tomography (CT), and
radionuclide imaging, relatively little has been done in quan-
titative image quality evaluation of MR images. With regards
to the other imaging modalities, there has been very signifi-
cant effort to evaluate image quality using task based, detec-
tion studies. Receiver operating characteristic (ROC) and al-
ternative forced choice (AFC) are two popular experimental
methods in medical imaging.g_12 In a typical ROC experi-
ment, a specified signal may or may not be present and the
human observer uses a rating scale to express his confidence
in a decision as to signal presence or absence." In an AFC
experiment, the signal is always present, and the observer
must choose between multiple alternative images, parts of
images, or alternative signals in one image.13 Much less has
been done with detection in magnetic resonance imaging
(MRI). Yoshikawa et al.'* used ROC experiments to com-
pare the breath hold gradient and spin-echo T2-weighted im-
aging for the detection and characterization of focal liver
lesions. Lee ef al."® used ROC experiments to compare high-
resolution breathing-free imaging techniques to breath-hold
imaging techniques for image quality and focal region detec-
tion on T2-weighted MR imaging of the liver. Arbab et al.'®
used ROC experiments to detect hypoperfused segments in
flow-sensitive alternating inversion recovery images for op-
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timization of inversion time to quantify regional cerebral
blood flow. In our laboratory, Huo et al.'” and Jiang et al."®
recently used detection experiments to evaluate reconstruc-
tion algorithms using a 4-AFC task for detecting a simulated
lesion in the liver. Saeed'® used 2-AFC experiments to mea-
sure the detection threshold for an artificially induced lesion
in MR thumb images.

We believe that the detection paradigm has several short-
comings with regards to image quality evaluation for many
MR images. First, in MR disease diagnosis, the radiologist’s
task is much more varied than that of finding a focal lesion in
x-ray or radionuclide imaging. For brain imaging, there are
over 100 potential findings identified in a common atlas of
clinical imaging.zo Some are diffuse dilation of ventricular
system; signal intensity changes in necrotic tissues; multiple
lesions with irregular confluent margins; multifocal, noncon-
fluent abnormal regions with distinct margins; diffuse foci
patches caused by meningeal enhancement; cluster of ser-
piginous flow voids; asymmetry or malformation of the
brain, etc. In many cases (e.g., multiple sclerosis), multiple
findings are required to make a differential diagnosis.20 It
would be impractical to create experiments evaluating ones
ability to identify such large numbers of findings. Moreover,
because of the complexity of the diagnosis and because of
the extraordinary variability in acquiring MR data and recon-
structing it, there is a chance that if one optimizes an image
for detection of a single focal lesion, the image might be
rendered unusable for some other aspect. Second, the large
variety of anatomical pathologies do not map well to the
significant effort in detection modeling for finite lesions in
x-ray and radionuclide imaging. (See Barrett, Ref. 21 and
Eckstein, Ref. 22, for some representative recent publica-
tions.) It is noteworthy that this modeling typically assumes
a statistical background, whereas in MRI, there is often a rich
anatomical background which is well known to radiologists.
From these arguments, it does not appear that we have a
useful, generally applicable computational method for detec-
tion experiments in MRI. Third, in the case of interventional
MRI (iMRI), the task is not detection at all. For example, in
iMRI guided radio-frequency ablation of tumor, the task is
no longer detection of pathology. The needle, the target tu-
mor, and any critical tissue to avoid, like arteries, must all be
well above the detection threshold. Fourth, a significant de-
sign issue in MR is the creation of fast imaging techniques,
many of which can introduce localized reconstruction arti-
facts in the image. The artifacts are undesirable and must be
minimized. However, the artifacts might not fall on a particu-
lar lesion of interest and not interfere with its detection at all.
Fifth, sometimes the task is to determine visually if a volume
(heart wall, brain ventricular region, tumor, etc.) has
changed. Again this does not match well to the detection
paradigm, although there has been image quality research
expressly on this subject.23 Last, and most important, the
time and effort for human detection studies would preclude
performing them over the thousands of reconstruction possi-
bilities for fast MR imaging.

Given the complications associated with the detection
paradigm, we have used other approaches to quantitatively
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FiG. 1. Block diagram of the perceptual difference model (Case-PDM) is
shown in (a). The inputs of the model are two images, a reference image (b)
and a test image (c). The output is a spatial map (d) showing the perceived
difference between two images. PDM could be used to tell the visual dif-
ference between two input images, as shown in the overlaid display in (e).

assess image quality. A favored experimental method
is double-stimulus continuous-quality scale (DSCQS)
experimentmﬁ26 where we ask subjects to compare a possibly
degraded “fast MR” test image to a full k-space reference
and directly rate the image quality of the test image as com-
pared to the high quality reference. DSCQS is considered the
most reliable and widely used method for subjective testing
proposed by the International Telecommunication Union of
the television industry, Rec. ITU-R BT.500-10.”7 This
method has been shown to have low sensitivity to contextual
effects, a feature that is of particular interest considering the
aim of our testing.28 DSCQS has also been used to evaluate
image compression methods for still images.”’32 More re-
cently, it has been applied to the evaluation of medical im-
ages, including MR, CT, ultrasound, and telemedicine
images.”’lg’%25 33735 This methodology matches well our ex-
periments in fast MR imaging because we can routinely cre-
ate a “slow” high quality “gold standard” reference.

In addition to detection, there are a variety of other ap-
proaches for quantitatively assessing image quality. To assess
MR image reconstruction algorithms, we have used a percep-
tual difference model (Case-PDM) which mimics the func-
tional anatomy of the visual pathway and contains compo-
nents that model the optics and sensitivity of the retina, the
spatial contrast sensitivity function, and the channels of spa-
tial frequency found in the visual cortex. Its structure dia-
gram is shown in Fig. 1(a) and described in detail by Salem
et al.* Inputs are a fast, probably degraded, MR imaging
method [Fig. 1(c)] and a slower high quality reference image
[Fig. 1(b)]. Outputs are a spatial map [Fig. 1(d)] of the like-
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lihood of a perceptible difference and a scalar image quality
metric averaged over the spatial map. Similar perceptual dif-
ference methods have been often applied to evaluate image
compression. Among them, there are models which incorpo-
rate the CSF and luminance adaptations (e.g., Ref. 36), mod-
els which incorporate the observer preferences for suprath-
reshold artifacts (e.g., Ref. 37), and perceptual metrics which
attempt to model human visual processing based on psycho-
physical and physiological evidence (e.g., Refs. 38 and 39).
Several numerical observer models have been created for
such comparisons including Sarnoff’s IDM (or the
INDmetrix-IQ),** DCTune (developed by NASA),*' and
SSIM (structural similarity index).“’43 There are some other
subjective image quality metrics applied to image compres-
sion which consider only one input image. They include
IQM (developed by MITRE)* and NR (no-reference percep-
tual image quality assessment).” These metrics are based
upon the power spectrum estimation and artifact measure-
ments. Finally, in MRI there are particular objective image
quality metrics, including signal-to-noise ratio,* peak signal-
to-noise ratio,”’ CNR,* mean-squared error (MSE),** root-
mean-squared error,” and Shannon’s information content.’
Another similar objective measurement called artifact power
was used in some parallel imaging applications.so*52 These
mathematically based objective metrics do not utilize any
information about viewing conditions and do not adapt to
local image content, while these two issues play a major role
in human perception of image quality.53

In this article, we experimentally measure fast MR image
quality and compare results to seven image quality evalua-
tion methods. The seven different image quality evaluations
have different features; i.e., some include a contrast sensitiv-
ity function and some include cortical filters. To aid the
reader, we classify features succinctly below where a (Case-
PDM), b (Sarnoff’s IDM), ¢ (SSIM), d (NR), e (DCTune), f
(IQM), and g (MSE). Features are: subjective model
{abcdef}, objective model/metric {cg}, color images {bcef},
gray scale images {abcdefg}, viewing condition {abef}, lu-
minance adaptation {abc}, contrast sensitivity function {a},
contrast pyramid {b}, cortical filtering {ab}, masking effects
{ab}, O-norm {ab}, and temporal effect {b}.

Three kinds of experiments were used. They include
DSCQS experiments which aim to determine model-subjects
correlation; functional measurement theory (FMT) experi-
ments which aim to test the comparability of model evalua-
tion scores across images with different contexts while com-
pared to human subject; and new designed 2-AFC
experiments which aim to determine the imperceptible dif-
ference threshold for the models as a threshold discrimina-
tion method. Numerical observer evaluation is done with
Case-PDM (v2, as established by Huo in his Ph.D. thesis,54
this version has been used in recent publications,17’25’55 and it
is only slightly different than the original, described in
2002), Sarnoff’s IDM,* DCTune,”' SSIM,*” IQM,* and
NR.* MSE is also included as an objective metric because
MSE has been used in many MR applications“_58 although
researchers have reported limitations and poor performance
of MSE as the image quality measurement.”***"** And we
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FIG. 2. Raw images used for human observer experiments. Of them, (a)—(c)
are for the DSCQS experiment; (d) and (e) are for the FMT experiment; and
(b) and (f) are for the 2-AFC experiment.

apply seven image quality evaluation methods to fast MR
images; these include Case-PDM by comparing model/
metric results to human evaluation of image quality. We then
discuss the applicability of Case-PDM based on these experi-
ment data and make our suggestions.

Il. METHODS

Three different types of experiments will be described in
this article. The DSCQS experiment was used for testing the
correlation between human subjects and perceptual models
when rating identical raw images with similar processing. To
minimize context effects, the FMT experiment was used in-
stead of DSCQS when rating different raw images with dif-
ferent processing. To detect the just perceptible difference,
the 2-AFC experiment was used. The same parameter
set (viewing distance=0.3 m, pixel size=0.3 mm, minimum
luminance=0.01 cd/m?, maximum luminance
=99.9 cd/m?, and display bits=8) was applied to all models
whenever possible (some models/metrics like MSE do not
have parameter value input).

ll.A. Experimental conditions

In the DSCQS experiment, we examined three different
reconstruction algorithms [SENSE,” SPIRAL,'” and GRAPPA
(Ref. 60)] on different images. Details of the reconstruction
algorithms are described in the references. Images are: brain
MR images (SENSE) in Fig. 2(b), cardiac MR images
(GRAPPA) in Fig. 2(c), and phantom MR images (SPIRAL) in
Fig. 2(a), with image sizes of 256X 256, 209X 256, and
128 X 128 pixels, respectively. For the FMT experiment, two
raw brain images [Figs. 2(d) and 2(e)] of size 198X 256
were used to generate test images as described in Sec. II C.
For the 2-AFC experiments, two different original images
[(Figs. 2(d) and 2(f)] were used to generate the whole test
image data sets, with the same size of 256 X256. One is a
brain MR image and the other is an abdomen MR image.
Each image was processed by adding three types of artifacts:
noise artifacts, blur artifacts, and reconstruction artifacts.
Gaussian white noise with zero means and different standard
deviations (o0=1-30) were added to the original image to
create the noisy data sets. Blurred data sets were created by
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TaBLE 1. Descriptions of protocols, image data sets, and processing algorithms

Image types

Image processing
or reconstruction algorithm

DSCQS Brain, heart, phantom
FMT Brain
2-AFC Brain, abdomen

SPIRAL,® SENSE,” GRAPPA®
GRAPPA," WGRAPPA®
Adding white noise or Gaussian blur in image,
GRAPPA,d zero-filling

“Reference 17.
PReference 25.
“Reference 60.
Reference 2.

“Reference 63.

convolving the original image with a circular averaging filter
(pillbox) of the radius 0.5-0.7. The reconstruction artifacts
were added by modifying the k-space data. The original full-
sampled k-space data were decimated by the factor of 2 (i.e.,
one of every two k-space lines in phase encoding direction is
omitted), except for certain number of center k-space lines,
and the missing k-space data were estimated with GRAPPA
(Ref. 2) or zero-filling method. And all test images in the
2-AFC experiment were carefully adjusted to have subtle
difference with the original image. All the experiments’ test
data sets are summarized in Table I.

We used a display software running on a conventional
Dell Precision 330, 1.8-GHz personal computer (Dell, Inc.,
Round Rock, TX) with a display adapter of NVIDIA
GeForce2 GTS with 32 MB RAM. The display had an 8-bit
dynamic range and the luminance response was adjusted us-
ing a ColorVision SpiderTM monitor calibration unit (Color
Vision, Inc., Rochester, NY) and OptiCalTM software (Color
Vision, Inc., Rochester, NY). We used a standard SONY
Trinitron flat-surface display color monitor (model
CPDG520P) with a refresh rate of 85 frames per second and
a display resolution of 1280X 1024 pixels. The display
gamma was set to be 3.0, giving a result which is nearly
perceptually linear. The display pixel size on the screen was
0.3 mm. The minimum and maximum luminance was
0.01 Cd/m? (black) and 99.9 Cd/m? (white) at gray levels
of 0 and 255, respectively. An alternative is to use a percep-
tually linear display as described in DICOM PS 3.14 2007.
All experiments were performed in a dark room. The view-
ing was binocular and the viewing distance was fixed at 0.3
m. To maintain constant display conditions across observers,
subjects were not allowed to adjust window or level settings
or to use the zoom function.

Totally eight subjects, aged between 21 and 45 years, par-
ticipated as observers: two radiologists (named Rad_1 and
Rad_2), and six engineers including five experts (Eng_1
—5). All observers had normal or corrected-to-normal vi-
sions, and their acuities were measured using a Snellen eye
chart at a distance of 10 ft (3.05 m) and a reading card at 14
in. (0.356 m). Four subjects, including two radiologists and
two engineers (Eng_1 and Eng_2) took the DSCQS experi-
ment with the data set of SENSE reconstruction. Three sub-
jects, including one radiologist (Rad_1) and two engineers
(Eng_1 and Eng_2), took the DSCQS experiments with spi-
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ral and GRAPPA data sets. Four subjects, all engineers
(Eng_1, Eng_4-6), took the FMT experiment. And two
subjects, both engineers (Eng_1 and Eng_3), took all the six
2-AFC experiments.

I.B. Human subject correlation: DSCQS experiment

DSCQS is a human subject rating method recommended
by the International Telecommunication Union,27 and it is
similar to that previously reported by Salem et al** as ap-
plied to MR images and by Martens and Meesters™ in a
similar model validation study as applied to other images.
We used the method previously reported from our
laboratory.25

II.B.1. Experimental setup

To test the full range of image quality in our images, for
each experiment, we selected 40 test reconstructed images
with Case-PDM scores uniformly spread from best to worst.
Each human subject presentation consisted of a two-panel
display, with the high-quality reference image and a ran-
domly selected test image on the left and right, respectively.
Observers were instructed to score the quality of the test
image on a scale of 100-0, with 0 being the best quality and
100 being the worst quality. Observers were aware that we
considered the reference image to be “best” and that they
should consider it to have a score of 0. A training session
consisted of 30 test images was supplied for each subject
before the experiment. The training data set was representa-
tive of the images found in our test cases. Subjects were
asked to compare the test image to its reference and rate its
quality on a scale of 100-0, with O being best. Subjects were
told to assume that the reference image had a score of 0.
Aspects of image quality such as artifacts, sharpness, noise,
etc. were all considered in the single score. Data were en-
tered using a mouse or keyboard. To account for intraob-
server differences, each of the 40 test images was displayed
and evaluated twice within the same session. The experiment
was carried out in a darkened room and normally took 1 h.
There was no time limitation, and subjects were allowed to
revise their results, including backtracking, at any time.
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Il.B.2. Data analysis

DSCQS data were processed to reduce intraobserver vari-
ability and interobserver scale differences. First, the two
scores for the same test image, from the same subject, were
averaged to reduce intraobserver variability, and we use i to
represent the average. To compensate for interobserver scale
effects, a nonlinear scale transformation was used for each

Umax — Umid

Uy max — U

subject, as recommended by the International Telecommuni-
cation Union in their report on methods for assessing televi-
. . 27 . . .

sion images.”" The transformation is given below where
nand u.,,, are scores before and after transformation, respec-
tively; #mins Umax> and #;q are minimum, maximum, and me-
dian scores, respectively, for each subject; g i, and Uy max
are the hard boundaries, 0 and 100, respectively,

Umin — Umid

_ U —Up min
uCOlT -

U0 max — U0 min %0 max ~ Umid

Uo max ~ U0 min Y0 min ~ Umid

)X (=2t} # i

Constant C

The performance of different subjects was compared to
investigate the possible difference. The intracorrelation was
defined as the linear correlation coefficient of the two mea-
surements from the same subjects. The intercorrelation was
defined as the linear correlation coefficient between two dif-
ferent subjects’ averaged measurements. Mean-dif and max-
dif were calculated as the average and maximal difference
between the two rating scores given to the same image. Sub-
ject rating data from each subject were fitted to model
y=ax+b separately, the x intercepts of these fitted lines were
also calculated, and these intercepts actually corresponded to
the data points where Case-PDM found the difference but
human subjects did not. Therefore, they could be regarded as
a measurement of the “nonperceptible” threshold.

Model data were compared to human evaluation in differ-
ent ways. For the testing of prediction accuracy, model pre-
dictions and corresponding human ratings were fitted to a
linear model y=ax+b, and the correlation coefficients and
the RMS errors were calculated. To test the prediction mono-
tonicity, rank information was extracted from the data (abso-
lute values were not considered) and compared with the hu-
man ranking order information, giving a “Spearman rank-
order correlation coefficient,” as calculated in Ref. 61.
Outlier ratios were calculated by dividing the number of out-
liers by the total number to measure the prediction consis-
tency. Outliers were defined as the points who give errors
larger than two times of the standard deviation, assuming the
linear model fitting. The predictions for the same data set
from the other similar models were also calculated and com-
pared to Case-PDM using the above four parameters.

II.C. Minimizing context effects: FMT experiment

To validate Case-PDM score for different MR images and
reconstruction methods, FMT experiment was used instead
of the DSCQS experiment. In image quality research, it is
known that if multiple scenes (or one scene, but multiple
types of distortions) have to be judged in a session of direct
rating experiment like DSCQS, subjects may use a separate
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(1)

internal quality scale for each of those scenes (or distortions).
The FMT experiment is adopted from Anderson’s functional
measurement theory,62’30 and in this approach image qualities
are compared rather than separately evaluated in order to
force subjects to link the quality ratings for both images that
have different scenes or degradation patterns. This approach
has been used efficiently in image quality assessment.”’

Il.C.1. Experimental setup

Two raw brain images (hereafter called brain 1 and brain
2), taken from the MR scan of a healthy volunteer, and two
reconstruction methods (GRAPPA and WGRAPPA)® were used
for generating two data sets by applying different sizes of
k-space ACS region. Each data set has 12 images and can be
classified into two groups. For data set 1, all 12 images were
generated by using GRAPPA reconstruction, with six of brain
1 images and another six of brain 2 images; for data set 2, all
12 images are images of brain 1, with six generated by using
GRAPPA reconstruction and another six generated by using
WGRAPPA reconstruction. For each data set, each test image
was compared to every other test image, including a com-
parison to itself, giving a total 78 comparisons. Each pair of
images was shown randomly twice, giving 144 evaluations.
Each image pair was displayed side by side on the screen,
and the human subject was asked to rate the quality differ-
ence between them (subjects were asked: “how much left
image is better than right image”) using a scale from —10 to
+10, where +10 means that the left image is maximally bet-
ter than the right. Subjects were instructed to consider all
aspects of image quality including artifacts, sharpness, noise,
etc. The plus and the minus signs were used to indicate
whether the left or the right image was preferred. And, a
training session of 60 randomly selected images pairs, which
were not included in the test data sets but similar to them,
was presented to each subject before the start of the actual
experiment. For each trial there was 18 s time limit.
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Il.C.2. Data analysis

For each subject, one 12X 12-element matrix was ob-
tained (one row and one column per stimulus) for each part
of the experiment, with element (i, ;) representing the score
given by the subject for the difference in quality between the
pair of stimuli, stimuli i and j being displayed on the left and
the right hand sides of the GUI, respectively. To apply the
FMT method, one needs to observe parallelism for the scores
within the different rows and columns or to calculate the
interaction between rows and columns by means of two-way
analysis of variance method.™ If parallelism was observed or
no significant interaction was found, according to FMT, a
quality score on an interval scale for each stimulus can be
determined by averaging (with opposite signs) the row and
column means of the matrix that correspond to that stimulus.
A general quality score for all subjects can now be obtained
by averaging the individual quality scores. Before being av-
eraged over the subjects, the individual scores were normal-
ized using a z-score transform™”

X;j—X

Zi= s (2)
o

where X and o are mean and standard deviation for score x,
to minimize the variation in the individual score, which is
caused by the fact that not all subjects used the full range of
the numerical scale in comparing image qualities.

I.D. Just perceptible difference: 2-AFC experiment

Psychophysical measures such as forced-choice task have
commonly been used in determining signal threshold espe-
cially in medical images.l‘%’(""65 We adopted signal detection
theory8 into our experiment design and data processing. We
use the 2-AFC experiment to measure the human perception
of the small differences between the reference image and test
image. The ability to detect this small difference was repre-
sented by the probability of correctness in the 2-AFC experi-
ment. It was then converted to d’ (detectability index) and
compared with the Case-PDM predictions. And this is a dif-
ferent situation with the pervious SKE/BKE detection ex-
periments.

II.D.1. Experimental setup

For each trial, one reference image is displayed on the top
of screen, and two test images are displayed side by side at
the bottom of screen. In these two test images, one of them is
the same as the original image, and the other one is a slightly
degraded image. The locations (left or right) of the test im-
age and reference image were randomly selected, and the
subjects were asked to specify the correct location of the
reference image by inspecting and comparing any image de-
tails. Training sessions were provided before the actual ex-
periment to help the subjects familiar with the image con-
tents. The train data set is independent of the experiment data
sets. The experiment was carried out in a darkened room. A
perceptually linearized, high quality monitor was used. There
was no time limitation in the experiment, but the subjects

Medical Physics, Vol. 35, No. 6, June 2008

Miao, Huo, and Wilson: MR image quality evaluation using perceptual difference models

2546

were not allowed to revise their results. If the subject made a
correct choice in one trial, the subject was informed by a
beep from the computer.

For each of the six experiment conditions (two original
images times three types of processing), 30 test images were
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FiG. 3. Experiment to evaluate correlation to human subject. Data are from
SENSE (a), SPIRAL (b), and GRAPPA (c) reconstructions in the DSCQS experi-
ment with correlation coefficients of 0.94, 0.97, and 0.91 correspondingly.
Cross points represent responses from radiologists, open square and triangle
points represent responses from image engineers, and solid circle points
represent average responses. The average human subject data (solid circle)
were fitted to y=ax+b, and the functions were represented by the straight
lines in the figures.
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TaBLE II. Data analysis for SENSE data set.

Rad 1 Rad 2 Eng 1 Eng 2 Average
Intracorrelation 0.971 0.972 0.962 0.985 N/A
Mean_dif 5.297 6.152 5.115 3.725 N/A
Max_dif 21.179 20.742 19.700 10.000 N/A
Corr_with Case-PDM 0.912 0.895 0.951 0.939 0.944
Intercept 1.09 -0.28 1.98 1.64 1.13

generated with different levels of degradation. All degrada-
tions were very subtle and not very easy to detect from the
original image. Each experiment was divided into six ses-
sions. And in each session, 30 test images were randomly
displayed eight times (resulting in 30X 6 X 8=1440 trials/
experiment/subject). There were no time limitations for the
subject in the experiment, but on average, subjects spent
about 15-20 min in a session.

II.D.2. Data analysis

For each test image, experiment results of 48 trials di-
rectly generate a probability of correct choices. These per-
centage value were converted to d’ or detectability index
using the detection theory. Before calculating d’, we aver-
aged z scores of left and right choices to minimize the bias.*
The detailed descriptions of this process were discussed in
the Appendix of Ref. 13. We fitted these data points into the
model of y=ax? (a, b are constants) to optimize the regres-
sion line, in which y represents for d’ and x represents for the
Case-PDM predictions.

After the relationship between the Case-PDM predictions
and d’ was determined, we could determine the threshold
value. The threshold is often defined as the stimulus strength
that produces a probability correct halfway up the psycho-
metric function. A definition of threshold that is relatively
independent of the method used for its measurement is to
define threshold as the stimulus strength that gives a fixed
value of d’. The stimulus strength that gives d’'=1 (76%
correct for 2-AFC) is a common definition of the threshold.®
We use this definition and the Case-PDM value that corre-
sponds to d’ =1, which is determined as the threshold value.

lll. RESULTS

lll.A. Identical raw images with similar processing
(DSCQS)

For each of the three DSCQS experiments, the 40 test
images of the corresponding data set were evaluated by the
subjects, and the human rating results were plotted as the
function of Case-PDM scores. Figures 3(a)-3(c) correspond
to results from SENSE, Spiral, and GRAPPA, respectively.
Cross points represent responses from radiologists, open
square and triangle points represent responses from image
engineers, and solid circle points represent average re-
sponses. The average human subject data were fitted to a
model y=ax+b. High correlations were observed between
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the human subject ratings and Case-PDM predictions for all
three plots.

The human subject ratings were further analyzed and the
results are shown in Table II for SENSE data set. As described
in Sec. II, intracorrelation, mean-dif, and max-dif were cal-
culated to analyze the consistency between two measure-
ments of the same subject. Correlations with Case-PDM and
x intercepts are shown in the bottom two rows. Similarly,
human subject data from the SPIRAL and GRAPPA data sets
were analyzed (Tables III and IV, respectively). The intercor-
relation between different subjects is shown in Table V.

Case-PDM and other models were compared to averaged
human evaluation in Table VI, both with regards to correla-
tion coefficient, rank order, outlier ratio, and RMS. The
Spearman rank-order correlation coefficients measure the
prediction monotonicity. Outlier ratios measure the predic-
tion consistency. IQM showed an inverse correlation because
a low IQM score indicates poor image quality, whereas low
scores from other models indicate good image quality. Re-
sults were good for the Case-PDM, IDM, and SSIM models.
For comparison, we performed a similar analysis comparing
one human subject rater with another, and results are given in
Table V. Values in Tables V and IV are similar indicating
that the best models can be used to rank images almost as
well as human raters.

TaBLE III. Data analysis for sPIRAL data set.

Rad 1 Eng 1 Eng 2 Average
Intracorrelation 0.933 0.941 0.951 N/A
Mean_dif 7.810 9.360 8.600 N/A
Max _dif 28.820 34.060 30.000 N/A
Corr_with Case-PDM 0.885 0.842 0.922 0.972
Intercept -1.28 -3.59 4.40 0.13
TaBLE IV. Data analysis for GRAPPA data set.
Rad 1 Eng 1 Eng 2 Average
Intracorrelation 0916 0.936 0.981 N/A
Mean_dif 8.586 6.359 3.750 N/A
Max _dif 38.650 24.670 20.000 N/A
Corr_with Case-PDM 0912 0.878 0.899 0914
Intercept 3.29 0.85 2.25 2.17
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TaBLE V. Intercorrelation analysis in the DSCQS experiment for four subjects.

Correlation coefficient

Rank-order correlation coefficient

SENSE SPIRAL GRAPPA SENSE SPIRAL GRAPPA

Rad 1_Rad 2 0.954 N/A N/A 0.955 N/A N/A
Rad 1_Eng 1 0.956 0.926 0.935 0.964 0.854 0.952
Rad 1_Eng 2 0.963 0.882 0.948 0.973 0.920 0.974
Rad 2_Eng 1 0.951 N/A N/A 0.957 N/A N/A
Rad 2_Eng 2 0.953 N/A N/A 0.973 N/A N/A
Eng 1_Eng 2 0.974 0.904 0.949 0.979 0.921 0.970
Average 0.959 0.904 0.944 0.967 0.898 0.965

TaBLE VI. Comparison of Case-PDM with other similar models from aver-
aged human subjects data. (Correlation is between method and subjects.)

GRAPPA
Gray 209 X 256

SENSE SPIRAL
Gray 256 X256 Gray 128 X128

Data set Correlation coefficient (prediction accuracy)
Case-PDM 0.944 0.972 0.914
IDM 0.955 0.971 0.958
SSIM 0.951 0.962 0.941
NR 0.824 0.916 0.930
MSE 0.712 0.825 0.891
DCTune 0.715 0.191 0.319
1IQM —-0.600 —-0.688 -0.241

Rank-order correlation coefficient (prediction monotonicity)
Case-PDM 0.971 0.974 0.932
IDM 0.978 0.944 0.963
SSIM 0.974 0.943 0.958
NR 0.705 0.886 0.897
MSE 0.946 0.868 0.955
DCTune 0.815 0.091 0.459
QM —-0.166 -0.713 -0.074
Outlier ratio (prediction consistency)
Case-PDM 0.050 0.000 0.025
IDM 0.000 0.000 0.000
SSIM 0.025 0.000 0.000
NR 0.050 0.000 0.000
MSE 0.050 0.000 0.025
DCTune 0.050 0.000 0.000
1IQM 0.075 0.026 0.050
RMS error

Case-PDM 10.643 5.936 12.869
IDM 9.637 6.073 9.081
SSIM 10.002 6.881 10.755
NR 18.364 10.121 11.608
MSE 22.735 14.293 14.410
DCTune 22.638 24.800 30.030
1IQM 25.901 18.337 30.759
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lll.B. Different raw images with different processing
(FMT)

To evaluate different raw images with identical process-
ing, data set 1 (described in Sec. II C) was used in the ex-
periment. The scores in the 12 X 12 matrix averaged over all
subjects were plotted in Fig. 4(a). It shows that the lowest
curve corresponds to the stimulus with the highest image
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—0O- stm2
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— —e — stim4
—+— stm5
—<— stim6
- < - stm7
—/\~ stim8
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Difference in quality
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I
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FIG. 4. Image quality evaluation with different raw brain images (brain
slices 1 and 2) identical processing (GRAPPA reconstruction). Difference-in-
quality scores, averaged over all subjects were shown in (a). The numbers
1-6 and 7-12 on the x axis correspond to brain slice 1 and brain slice 2,
respectively. Each point on the curves indicates the score for the difference-
in-quality between the corresponding row and column stimuli in the 12
X 12 stimulus matrix. Averaged subjective quality curves obtained by using
Anderson’s FMT are shown in (b). Error bars represent standard deviations.
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FIG. 5. Image quality evaluation with identical raw brain images (brain slice
1) different processing (GRAPPA and WGRAPPA reconstructions). Difference-
in-quality scores, averaged over all subjects were shown in (a). The numbers
1-6 and 7-12 on the x-axis correspond to GRAPPA reconstruction method and
WGRAPPA reconstruction method, respectively. Each point on the curves in-
dicates the score for the difference-in-quality between the corresponding
row and column stimuli in the 12 X 12 stimulus matrix. Averaged subjective
quality curves obtained by using Anderson’s FMT are shown in (b). Error
bars represent standard deviations.

quality and the other 11 stimuli are rated as having lower
quality in each comparison. At observation, the immediate
salient feature is an overall pattern of N-shaped parallelism,
arguing for an additive-type integration rule.”” After z-score
transformed, the averaged human subject data were plotted
against PDM scores in Fig. 4(b), and data from two different
raw brain images were linked by solid line to form two FMT
curves, respectively. Each of two FMT quality curves is only
slightly different to the other, indicating Case-PDM agreed
with human subject nicely.

To evaluate identical raw image with different processing,
data set 2 (described in Sec. Il C) was used in the experi-
ment. The averaged score matrix was plotted in Fig. 5(a).
Same pattern of parallelism can be observed from this plot.
Human subject ratings were transformed into z scores and
then averaged over all four subjects. The averaged human
subject data were plotted against PDM scores in Fig. 5(b),
and data from two different reconstruction methods were
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TaBLE VII. Spearman rank-order correlation coefficients for the models.
(Correlation is between method and subjects.)

Case-PDM IDM MSE
Similar raw image 1.000 0.980 1.000
Identical processing
Identical raw image 0.990 0.990 1.000

Similar processing

linked by solid line to form two FMT curves, respectively.
Two FMT quality curves almost overlaps, indicating Case-
PDM agreed with human subject nicely.

To exam model’s prediction monotonicity for each data
set, we calculated the Spearman rank-order correlation coef-
ficient with 1 indicating perfectly correlated. The Spearman
rank-order correlation coefficient in Table VII shows that all
three models have similar performance in prediction mono-
tonicity, and Case-PDM was better correlated with subjects
than IDM when evaluating images with similar contents and
identical processing.

lll.C. Just perceptible difference (2-AFC)

For each of the six experimental conditions (two raw im-
ages, three types of processing), a plot of the relationship
between d’' and Case-PDM values was generated. One result
from the brain images reconstructed with GRAPPA is shown in
Fig. 6. Data points were fit to a model y=ax” with estimated
a and b using a least-squares approach. The fitted line was
plotted in the figure, and the threshold (d’'=1) was marked
with a star. The fitting accuracy was examined by calculating
the correlation coefficient of the model transformation
log(y)=log(a)+b log(x). The correlation coefficient, thresh-
old value and fitted a@ and b value are listed in Table VIII.

3 T T
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2.5 regression H
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FiG. 6. One result from the 2-AFC experiment. Reconstruction artifacts
were included into a brain MR image, and the relationship between d’ and
Case-PDM predictions is shown. One could observe that Case-PDM scores
show good correlation with d’, but the relationship is not linear. The thresh-
old value was represented with a star in the plot.
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TABLE VIII. Data analysis for the 2-AFC experiment. (Correlation is be-
tween method and subjects.)

Correlation  Fitted “a” Fitted “b” Threshold
Brain-noise 0.770 1.394 1.452 0.795
Brain-blur 0.790 1.085 0.802 0.902
Brain-recon 0.800 2.222 1.556 0.598
Abdomen-noise 0.450 0.583 0.936 1.779
Abdomen-blur 0.790 0.692 0.908 1.498
Abdomen-recon 0.730 0.919 0.747 1.118

IV. DISCUSSION
IV.A. Analysis of experiments

Case-PDM compared very favorably to human observers
across similar reconstructions in DSCQS and FMT experi-
ments with identical and similar raw image data, respec-
tively. The DSCQS experiment was designed to test the per-
formance of Case-PDM and other image quality measures as
compared to human evaluation. Test images are distributed in
a large range of image quality. As we could see in Fig. 3, in
all three experiments (SENSE regularization, SPIRAL imaging,
and GRAPPA reconstruction), the 40 test images covers the
range from high to low quality, corresponding to Case-PDM
scores from 0 to about 40. The Case-PDM scores and human
subject ratings showed good linear correlation (r>0.9) over
this large range of image quality. Despite the large range, our
correlation results are nontrivial. That is, rather than creating
images having remarkably different image quality, many
were rather subtly different. The subject data were further
analyzed as shown in the Tables II-V. One could see that in
general the intracorrelation between the two measurements
of the same subject is higher than the correlations between
the subjects and Case-PDM. And we observed that radiolo-
gists and engineers performed similarly; this is because the
experiment was not connected with a particular clinical task.
If comparing subject-subject correlation (Table V) and PDM-
subject correlation (Table VI), one can easily find that both
have similar correlation coefficients: for three different data
sets, the former are 0.96, 0.90, and 0.94; the latter are 0.94,
0.97, and 0.91. Similar rank-order correlation coefficients are
also obtained: the former are 0.97, 0.90, and 0.97; the latter
are 0.97, 0.97, and 0.93. In all cases, the differences in rank
order scores arise from at most one image out of order. This
indicates that Case-PDM ranking can be as good as human
ranking. A 95% confidence interval (CI) was used to indicate
the reliability of all correlation coefficients in this article be-
cause 95% CI is recommended and commonly used in clini-
cal trials.*®

The x intercepts in Figs. 3(a)-3(c) provide one method to
determine the “nonperceptible difference” threshold. We
could observe from Tables II-IV that these x intercepts vary
from different subjects and from different image reconstruc-
tion, and we even find some physically meaningless, nega-
tive numbers in our results. Obviously, this is not a very
robust method to calculate the threshold because significant
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extrapolation is required. The 2-AFC experiment is a better
method and the results are more consistent and reliable.

In some instances, rather than simply ranking image qual-
ity, we would like to determine image reconstructions which
are imperceptibly different from the full k-space, reference
images. In this case, we wish to use Case-PDM as a thresh-
old discrimination tool. We compared results to human
evaluation using the 2-AFC experiments. One could see that
for all the three types of artifacts we tested (noise, blur, and
GRAPPA reconstruction), the test images are all with only
subtle differences with the original image (giving a low
Case-PDM score of 0-3). As seen in Fig. 6 and Table VIII,
for all six experiment conditions (two raw images times three
types of processing) Case-PDM correlated well with d' mea-
surements in the small range. These proved that Case-PDM
could still be used to represent the image quality under low-
degradation conditions, although as we observed from Table
VI, the relationship between Case-PDM and d’ was not lin-
ear and was different between these six experiment condi-
tions. The mean value of the threshold Case-PDM scores
from six experiment conditions is 1.1 and the standard de-
viation is 0.45 which is about 40% of the mean value.

IV.B. Comparison of models

One could compare the performance of Case-PDM and
other similar models for rating tasks from Table VI. In gen-
eral, Case-PDM, IDM, and SSIM outperform other models
(MSE, NR, DCTune, and IQM); they give better prediction
accuracy (higher correlation coefficients and lower RMS),
prediction monotonicity (higher Spearman rank-order corre-
lation coefficients), and prediction consistency (lower outlier
ratios). With identical raw images and similar processing, we
found that three “perceptual difference” models (Case-PDM,
IDM, and SSIM) gave virtually identical results, with Sar-
noff IDM insignificantly better than the other two. This
strengthens our confidence that these models are useful. In
fact, if we rank order MR reconstructions according to image
quality scores, at most we found one image difference among
the three methods. In the 2-AFC experiment, we examined
both different images and different processing. A DSCQS
experiment did not make sense because moving heart images
always are degraded as compared to brain. Instead, we did a
test to examine the just perceptible difference threshold with
the 2-AFC. We also computed the mean and standard devia-
tion of nonperceptible difference thresholds for different
models. For mean value, Case-PDM is 1.1; IDM is 1.7;
SSIM is 0.0059; and MSE is 2.9. For standard deviation
value, Case-PDM is 0.45; IDM is 0.89; SSIM is 0.0091; and
MSE is 3.9, which correspond to standard-to-mean ratios of
0.4, 0.9, 1.5, and 1.3, respectively. Results with the Case-
PDM were much tighter than the other methods. Although,
the variation for Case-PDM was greater than we had hoped,
if we get a score around 1.1, we can be fairly confident that
we are down near the threshold for human detection of a
difference. If one needs an absolute value for just perceptible
difference, a human subject experiment for the particular im-
ages and processing is in order. And the result from the FMT
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experiment also showed that Case-PDM outperformed IDM
by showing a higher rank-order correlation coefficient when
evaluating similar raw brain images with similar reconstruc-
tions. Considering all the tests, Case-PDM scored the best of
all seven models.

IDM also performed well in our studies. IDM compared
favorably to ROC studies of x-ray mammographic images by
Krupinski et al.”™" In one study, they measured perfor-
mances of six radiologists for viewing 250 mammographic
images with microcalcifications of different contrast levels
and compared results to those for IDM. IDM showed a high
correlation [r?(quadratic)=0.973] in this study. It is encour-
aging that IDM has done well with these x-ray medical im-
age data which are very much different than MR images.

IV.C. Range of applicability of Case-PDM

PDM models are only applicable when there is a gold
standard reference. They are not applicable to sequence op-
timization where one is changing MR contrasts. And one
cannot compare PDM scores across different input images.
That is, we cannot reconstruct two different input images,
evaluate their PDM scores, and rate the quality of the recon-
structions. This is seen from results from the DSCQS experi-
ment. However, if images are very similar, then it is possible
to compare PDM scores. This can be seen in the result from
the FMT experiment in Fig. 4 where two different MR slices
from the same brain and acquisition formed two very close
curves after the same processing, which means subjects had
no preference toward either of the two different images.

Case-PDM is very applicable for ranking results from an
experiment to optimize reconstruction/acquisition param-
eters. In this case there is a single input image and image
data are processed with the same algorithm but different pa-
rameters. So in this instance, we have identical raw image,
similar processing.m’25 The DSCQS experiment supports its
applicability for ranking. The 2-AFC experiment supports
this too. And all three models (Case-PDM, IDM, and SSIM)
gave similar rankings in our case. So Case-PDM could be
used in a multiple data set, too. Although the Case-PDM
scores from different data sets may not be directly compa-
rable, one could extract the ranking information from them,
and the ranking information is comparable. At least in some
cases, we can extend the Case-PDM to evaluate single im-
ages with algorithms having a different structure. That is, we
found that in the result from the FMT experiment in Fig. 5
where two curves overlapped for both GRAPPA and WGRAPPA.

Another way to apply such models is to determine when
there is an imperceptible difference between the reference/
gold standard image and the test image. The threshold values
for imperceptible difference were similar and the average
value 1.1 can be used, as a rule of thumb. However, it was
somewhat disappointing that the threshold did depend upon
the image under investigation. If the application requires an
absolutely imperceptible difference, then additional forced
choice experiments are required for the images and process-
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ing under investigation. Alternatively, one is probably quite
safe using the lowest threshold value obtained 0.6. This is
our conservative recommendation.

The use of similar or identical images is not a limitation,
allowing one to evaluate the many algorithmic approaches
and the almost infinite number of variables in MR image
reconstruction.

V. CONCLUSIONS

In conclusion, considering all tests, Case-PDM scored the
best of the seven models by providing high model-subject
correlations and consistent prediction of detection thresholds
for just perceptible differences across a variety of images and
processing. Two other models (IDM and SSIM) also de-
scribed results from the DSCQS experiment. In FMT experi-
ments, Case-PDM compares favorably to human evaluation
for situations with similar images (e.g., brain images) and
similar processing (e.g., GRAPPA and WGRAPPA) over a broad
range of image quality, allowing us to rate different image
reconstruction algorithms. In addition, if we focus on very
high quality images, then we can determine images having
no perceptible difference from the reference. The Case-PDM
threshold for nonperceptible differences varied with the type
of image under study, but was =1.1 for diffuse image ef-
fects, providing a rule of thumb for evaluations. We conclude
that Case-PDM is very useful in MR image evaluation but
that one should probably restrict studies to similar images
and similar processing, normally not a limitation in image
reconstruction studies.
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