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Rapid progression of joint destruction is an indication of poor prognosis in patients with rheumatoid
arthritis. Computed tomography �CT� has the potential to serve as a gold standard for joint imaging
since it provides high resolution three-dimensional �3D� images of bone structure. The authors have
developed a method to quantify erosion volume changes on wrist CT scans. In this article they
present a description and validation of the methodology using multiple scans of a hand phantom
and five human subjects. An anthropomorphic hand phantom was imaged with a clinical CT scan-
ner at three different orientations separated by a 30-deg angle. A reader used the semiautomated
software tool to segment the individual carpal bones of each CT scan. Reproducibility was mea-
sured as the root-mean-square standard deviation �RMMSD� and coefficient of variation �CoV�
between multiple measurements of the carpal volumes. Longitudinal erosion progression was stud-
ied by inserting simulated erosions in a paired second scan. The change in simulated erosion size
was calculated by performing 3D image registration and measuring the volume difference between
scans in a region adjacent to the simulated erosion. The RMSSD for the total carpal volumes was
21.0 mm3 �CoV=1.3%� for the phantom, and 44.1 mm3 �CoV=3.0%� for the in vivo subjects.
Using 3D registration and local volume difference calculations, the RMMSD was 1.0−3.0 mm3.
The reader time was approximately 5 min per carpal bone. There was excellent agreement between
the measured and simulated erosion volumes. The effect of a poorly measured volume for a single
erosion is mitigated by the large number of subjects that would comprise a clinical study and that
there will be many erosions measured per patient. CT promises to be a quantifiable tool to measure
erosion volumes and may serve as a gold standard that can be used in the validation of other
modalities such as magnetic resonance imaging. © 2008 American Association of Physicists in
Medicine. �DOI: 10.1118/1.2900111�
I. INTRODUCTION

Rheumatoid arthritis �RA� is a chronic, inflammatory
disease1 with a large social and economic impact.2 In
America, over 2 million people suffer from RA �Ref. 3� and
the direct medical costs per RA patient are over $8000 per
year, or over $16 billion total.4 This cost is expected to in-
crease as the population ages and the number of affected
individuals gets larger. RA causes pain, swelling, and joint
destruction principally to the hands and feet, but all joints
can be involved. Over time significant disability and early
mortality develop.5 Joint replacement surgery is used to re-
place destroyed joints but the understanding of the inflam-
matory processes has led to the development of effective
medical treatments such as disease-modifying antirheumatic
drugs and biologic agents that specifically target key mol-
ecules in the inflammatory process and relieve arthritis
symptoms. These therapies have the potential to slow or even
reverse structural joint damage.6

Two main structural changes due to RA are visible on a
radiograph: narrowing of the adjacent bones in a joint and

erosions, where the disease creates cavities in the bone. Hand
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radiography is widely used as an imaging modality to visu-
alize erosions since it is fast, inexpensive, and widely avail-
able. However, radiography provides only a two-dimensional
�2D� representation of the carpal bones, which are complex
three-dimensional �3D� structures, and only the projected
erosion area can be measured. As can be appreciated in Fig.
1, the wrist joints, in particular, have a great deal of overlap-
ping structure that obscures erosions on projection images.
Computed tomography �CT� scans of the wrist potentially
allow for improved quantification of the erosion size since
the volume can be measured directly. In this article we detail
an image processing method to quantify the volume of RA
erosions using a clinical CT system.

Computer-aided diagnosis �CAD� in fields such as mam-
mography and abdominal imaging often focuses on develop-
ing fully automated methods, which require no user
interaction.7 The ultimate goal of such techniques is to serve
as a surrogate for the judgment of the radiologist or other
skilled reader. In practice these methods usually require the
expertise of a highly trained physician to confirm the soft-

ware diagnosis.
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In general, the goals of software methods to assess struc-
tural changes from arthritis differ from conventional CAD in
several important aspects. Arthritis imaging requires assess-
ment rather than diagnosis; methods are required to measure
changes over time rather than make a one-time diagnosis.
For a single patient there often are numerous joints and
bones that are assessed for structural changes. Since a com-
posite score is generally formed by combining the individual
measurements for each region or joint, inaccurate assessment
of a single region can be considered part of the measurement
error. This contrasts with CAD in cancer diagnosis where
misclassification of a single lesion can have serious conse-
quences. Finally, changes to the bone margins on either a
radiograph or CT image are relatively simple to appreciate
and can be assessed by a less skilled individual.

The goal of our methodology is to provide reproducible
metrics that quantify the degree of change to the erosion
volume. Since it is usually necessary to evaluate the entire
patient population for clinical studies, a requirement of the
methodology is to provide a measurement for all subjects in
the study; no failures can be tolerated.

To address the issues raised above, a semiautomated
method is a reasonable approach for carpal segmentation. A
reader would be required to perform the segmentation but
with integrated image processing routines to allow for faster
and more objective bone margin detection. The goal is to
provide a convenient and reproducible method that is ca-
pable of providing a measurement for every subject and visit
in a longitudinal study. Once the individual carpals are seg-
mented in 3D, the change in volume due to erosions from
RA progression can be determined.

Our task is not unlike the need to segment soft tissue
lesions or other structures on 3D medical images. A variety

FIG. 1. Wrist radiograph demonstrating the projected overlapping bone
structure. The figure also identifies seven of the eight carpal bones. The
pisiform �not identified on the figure� is a small round-shaped bone obscured
on the image by the triquetral.
of semiautomated algorithms have been described and vali-
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dated in the literature including the level-set8–10 and live
wire11 approaches, which are often used to segment soft tis-
sue structures. These methods can be powerful tools for
computer-aided diagnosis as and potentially could also be
applied to our task. We chose the specific approach for 3D
segmentation of wrist carpals based on the somewhat unique
anatomical nature of this region. The close presence of adja-
cent bones in the wrist is a major confounding factor particu-
larly for diseased joints. However, the task is simplified by
the relatively large contrast between cortical bone and the
interbone regions. Our approach combines a robust edge-
tracking step with an active contour algorithm that was op-
timized to be robust for these bones.

Previously published studies have investigated segmenta-
tion of the carpal bones on wrist CT scans with a variety
of goals.12–16 Snel et al.13 and Sebastian et al.15 performed
wrist segmentation to examine the kinematics of the
carpal bones. Other studies have examined wrist scans as a
validation of the general 3D segmentation methods.14,16 Van
Cleynenbreugel et al.12 describe a semiautomated method to
segment bones on spiral CT scans. These techniques were
developed to better understand carpal kinematics or as part
of a more general 3D segmentation package; none focuses on
examining changes due to erosion growth, which requires a
high degree of precision in a local diseased region.

In this article we describe and validate a semiautomated
software technique to segment the carpal bones on CT im-
ages and to measure changes in erosion volume longitudi-
nally. There were three steps in the analysis procedure: seg-
mentation of the individual carpal bones, 3D binary image
registration, and calculation of local volume differences. The
software was tested using two anthropomorphic hand phan-
toms that were imaged with a clinical CT scanner and the
scans were segmented by two relatively unskilled readers.
An in vivo validation study using five subjects was also per-
formed. Performance of the software tool was evaluated by
measuring the reproducibility of carpal volume measure-
ments and the time necessary for the readers to perform the
segmentation. We also performed a simulation study to quan-
tify the accuracy of detecting erosion volume changes longi-
tudinally.

II. MATERIALS AND METHODS

II.A. Controlling parameters

By definition, a “semiautomated” segmentation tool re-
quires a user to guide the underlying low-level image pro-
cessing algorithms. In skeletal images, bone margins are usu-
ally well defined and relatively easy to detect automatically
if the software has prior knowledge of the neighborhood
where the structures lie. Algorithm failures are generally sig-
nificant deviations from the true margins, often caused by the
presence of adjacent structures, such as adjoining carpal
bones or internal trabeculae; such cases require reader inter-
action to guide the software to the correct approximately
location. As a guiding principle our software is designed to
minimize the degree to which the final segmented contours

are a direct result of delineation by the reader. Through
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mouse clicks, the reader can guide the software to the gen-
eral location of the proper bone margin before the software
attempts a second automated segmentation using the reader-
entered information as a constraint. We illustrate this prin-
ciple in Fig. 2. In Fig. 2�a� the software produces an inaccu-
rate result. In Fig. 2�b� the reader attempts to draw the bone
margins in the correct location, and in Fig. 2�c�, an active
contour model edge detection routine refines the manually
entered margin. With this technique we maintain the objec-
tivity and precision of the software segmentation while in-
corporating the common sense and expertise of a human
reader.

II.B. Isolation of individual carpals

The first step in the procedure was to isolate each indi-

FIG. 2. Segmented slice of a hamate bone that illustrates the hybrid reader-
software edge detection technique. In �a� the edge tracking software has
detected a bone margin within the true boundaries of the carpal. The arrow
indicated the true bone margin. In �b� the reader manually edits the contour
�indicated by arrow�. In �c� the automated active contour routine refines the
manual edits.
vidual carpal in a rectangular volume of interest. This was
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done manually with a graphical user interface �GUI� tool that
displayed the CT images in the original axial as well as the
reformatted sagittal and coronal planes. This typically re-
quired less than 3 min per hand and was factored into the
reader time we quote in Sec. III. Here we balanced the real-
time reader interaction time versus the need for additional
software development and concluded that it was not cost
effective to invest effort in an automated carpal isolation
step.

II.C. Segmentation procedure

Using the GUI tool to scroll through the images, the
reader first identified a CT slice near the center of the carpal
and placed a seed point adjacent to the bone surface �Fig.
3�a��. The software then used an edge tracking routine to
attempt a full segmentation of the carpal �Fig. 3�b��. On a 2D
image the tracking algorithm proceeded by examined adja-
cent pixels in the image and choosing the location with the
maximum gray scale gradient that also satisfied the topologi-
cal constraint of a clockwise or counterclockwise contour.
This edge tracking algorithm is described in greater detail
elsewhere.17 Where the edge tracking failed, the operator
could guide the software �Fig. 3�c��. In Fig. 3�d� the software
has closed the contour and performed an active contour re-
finement step described below.

II.D. Segmentation of subsequent slices

Once the first slice was successfully segmented, the
reader instructed the software to proceed to the next adjacent
slice. To increase objectivity and speed we implemented a
technique that used the correctly segmented contour to guide
an automated delineation of the subsequent slice. The correct
contours from the previous slice served as an initial estimate
of the new segmentation and further refinement of the con-
tour was accomplished by multiple iterations of the active
contour algorithm �Figs. 3�e� and 3�f��.

II.E. Active contour refinement

The edge tracking and any reader editing produced a seg-
mentation that required additional refinement to better fit the
bone margins. We implemented a simple active contour
model that used a gray scale gradient-based cost function to
optimize the fit. The cost function was calculated and applied
on a pixel-by-pixel basis. The active contour routine is dem-
onstrated in Fig. 4 and described below.

For optimal implementation of the technique it was nec-
essary to provide control over several parameters so that the
reader could optimize the software for each specific case.
Four parameters nmax, �, Niter, and fGS, described below, pro-
vided substantial algorithm control and could be varied by
the reader through the GUI to achieve the best results. The
software would then respond by displaying the consequence
of the choice on a color-coded contour overlaid on the gray

scale image.



is the final segmentation after the active contour step is applied.
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II.F. Contour preprocessing

We define a contour as a series of pixels, Pi �i=1−N�
located at �xi ,yi� on a CT slice �Fig. 4�a��. Each contour is a
closed region of interest and consequently �x1 ,y1� is adjacent
to or near �xN ,yN�. Before each application of the active con-
tour model algorithm, the software removed selected pixels
from the contour according to the following rule. Starting at
a location �xi ,yi�, subsequent pixels �i+1, i+2, . . .� were
eliminated from the contour until the distance between a
pixel Pj and Pi was greater than two units. This procedure
accomplished a degree of contour smoothing, and reduced
the potential for “knots” to occur where the contour doubled
back on itself creating a second closed loop of pixels.

II.G. Cost function

Figures 4�b� and 4�c� demonstrate how the cost function
is calculated at a given pixel Pi. To improve edge detection,
the method calculated gradients by performing an average
over a number of pixels, n, adjacent to Pi. n was not fixed
but was a function of the local curvature and was calculated
according to the following rules:

n = 1 �� � 1� ,

n = Int��� �nmax � � � 1� ,

n = nmax �for � � nmax� ,

where �=2�r /�. r is the radius of the circle defined by the

FIG. 4. Illustration of the active contour model algorithm.
FIG. 3. Example of semiautomated segmentation for the first slice of a car-
pal. In �a� the reader entered a seed point and �b� initiated an edge tracking
routine. In �c� the reader made a small edit to guide the edge tracking back
to the correct bone margin. In �d� the software closed the contour and per-
formed an active contour refinement step described below. �e� shows the
subsequent slice with the segmentation from the previous slice overlaid. �f�
points �xi−3 ,yi−3�, �xi ,yi�, and �xi+3 ,yi+3�. In the example pro-
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vided in Figs. 4�b� and 4�c�, n=2. �, and nmax were param-
eters that were controlled by the reader.

Gradients were calculated either in the horizontal or ver-
tical directions depending on the relative positions of Pi−n

and Pi+n. Three gradient values were calculated

G1 = �
j=i−n

i+n

I�� j� − I�Pj� ,

G2 = �
j=i−n

i+n

I�� j� − I�	 j� ,

G3 = �
j=i−n

i+n

I�Pj� − I�
 j� ,

where I denotes a calculation of the gray scale value at a
point on the image �Fig. 4�c��. The contour point Pi is relo-
cated to the location of the maximum gradient: to �i if G1 is
maximum, to Pi if G2 is maximum �does not move�, or to 	i

if G3 is maximum. A single iteration consists of applying the
procedure described above to each pixel in the contour. The
software can be directed to perform a total Niter iterations for
improved edge detection, where Niter is controlled by the
user.

II.H. Gradient threshold refinement

A common segmentation artifact of the method is demon-
strated in Fig. 5. In this example bone surfaces that are ob-
lique to the axial plane cause an abrupt change in the mar-
gins from the adjacent slice and the automated segmentation
fails. To remedy such cases, the reader could employ a
simple gradient threshold refinement algorithm, which elimi-
nated points on the delineated margin that did not fall on a
sharp gradient. The software performed a single iteration of
the active contour algorithm and calculates G2 at each point
of the contour. The values were sorted and a fraction fGS of
the points containing the lowest gradient values were dis-
carded from the contour. fGS, a parameter controlled by the
reader, typically ranged from 0.05 to 0.2.

II.I. Software validation

The software was validated using multiple scans from two
anthropomorphic hand phantoms. Each phantom was
scanned three times with an orientation of approximately
−15°, 0°, and 15° with respect to the axial direction. A spiral
CT protocol provided axial slices with a slice thickness of
0.625 mm and an in-plane isotropic pixel size of 0.195 mm.
Scanning with different angles provided a way to test the
methodology for repositioning reproducibility. The eight car-
pal bones of the wrist were segmented using the software
described above by two different readers. Reader 1 �J.D.�
was a Ph.D medical physicist and reader 2 �M.M.� was a
summer intern preparing to enter medical school. Reader 2
segmented the wrist phantoms two times giving a total of

3�angles��2�phantoms��2�repeats�=12 segmentations.
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II.J. In vivo validation

We also performed a validation study of the segmentation
software by examining the repositioning reproducibility on
five subjects participating in a clinical study of RA. The
volumes of all eight carpals for a baseline and 6 month

FIG. 5. Example of gradient threshold refinement step on a scaphoid carpal.
In �a� the carpal margins are sufficiently oblique that the adjacent segmen-
tation fails to provide a useful starting point and the segmentation fails. In
�b� the gradient threshold refinement step is applied. In �c� the standard
active contour algorithm is employed to refine the contour and produce the
final result.
follow-up visits were measured and compared. For these
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subjects a spiral CT protocol provided axial slices with a
slice thickness of 1.0 mm, and an in-plane isotropic pixel
size of 0.195 mm.

II.K. Reproducibility and reader time

We performed two studies to validate the software. The
first study provided a measurement of the reader reproduc-
ibility for determining the individual carpal volumes. Inter-
reader reproducibility was quantified by calculating the root-
mean-square standard deviation �RMSSD� of the carpal
volumes between readers 1 and 2. Intrareader reproducibility
was determined using the duplicate readings performed by
reader 2. The readers also recorded the time to segment each
carpal including the isolation step

II.L. Simulated erosions

The ultimate goal of this work is to quantify the progres-
sion of erosions in subjects with rheumatoid arthritis. An
erosion typically occupies a small percentage of the total
bone volume, therefore quantifying changes by comparing
the total volumes of the baseline and follow-up scans was
problematic. Small changes would likely be lost in the mea-
surement noise.

To overcome this problem we used 3D image registration
followed by an examination of baseline to follow-up volume
differences in a local region where the change would be a
larger fraction of the volume. For the purposes of this study
we defined the �=−15° as the “baseline” and the �=0° or
�= +15° as the “follow-up” scans. Comparisons were made
between the �=−15° and �=0° acquisitions ��=15 deg�
and between the �=−15° and �= +15° acquisitions ��
=30 deg�. The study used six of the eight carpal bones: capi-
tate, hamate, trapezoid, lunate, triquetral, and scaphoid.

3D binary volumes, created using the segmented images
of each carpal bone, were defined as Bbaseline and Bfollow-up

�Figs. 6�a� and 6�b��. To mimic the changes due to erosion
growth, a simulated erosion was placed on Bfollow-up at a ran-
dom location on the surface of the bone by removing all
material within a radius of the erosion location �Fig. 6�b��.
The radius was a randomly generated number between 0.2
and 1.0 mm. A gold standard erosion volume VGS was de-
fined as the volume of voxels removed from the follow-up
image.

Binary volumes, Bbaseline and Bfollow-up, were then regis-
tered using a simple 3D image registration algorithm that
minimized the fraction of nonoverlapping voxels �Fig. 6�c��.
Two additional 3D binary images were defined. Bloss was
defined as the image continuing voxels that were filled in
Bbaseline but not in Bfollow-up �Fig. 6�d��. Bgain was defined as
the image continuing voxels that were filled in Bfollow-up but
not in Bbaseline �Fig. 6�e��. Figure 6�f� shows Bgain and Bloss

overlaid.

II.M. Registration algorithm

As an initial step the registration algorithm aligned the

geometric centers of the binarized carpals, Bbaseline and
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Bfollow-up. A cost function was defined as the sum of the num-
ber of voxels in Bgain and Bloss and was investigated a func-
tion of three variables that determined the relative position,
and the three Euler angles that described the relative angle
between Bbaseline and Bfollow-up. The procedure determined the
values for the six variables that minimized the cost function
using standard minimization techniques.

Two additional refinement steps were employed before
calculating the final erosion volume.

II.N. Binary eroding „definition of Nbin…

A true loss of erosion volume should occupy a large num-
ber of connected voxels, while the differences associated
with the minor random variations of the segmentation proce-
dure are more random. The goal of the next step was to

FIG. 6. Illustration of refinement procedure. �a� and �b� show the biniarized
Bbaseline and Bfollow-up with the simulated erosion. In �c� the images are spa-
tially registered. �d�, �e�, and �f� show Bloss �dark voxels�, Bgain �light voxels�
and both overlaid. In �g� the results of the binary erosion step is shown.
reduce the amount of this “registration noise” while main-
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taining the changes associated with true erosion loss. There-
fore, the method employed a binary erosion step to the dif-
ference images, Bgain and Bloss, designed to reduce the
amount of misregistration while maintaining the majority of
voxels associated with true bone loss.

A 3D binary eroding filter was applied to Bloss and Bgain.
At each occupied voxel in Bloss and Bgain, Nadj was calculated
as the number of occupied voxels from the 26 adjacent loca-
tions. Nbin was defined by the following rule: all voxels for
which Nadj�Nbin were eliminated from the images �Fig.
6�g��. It was our hypothesis that image locations, which were
part of a large group of connected voxels �true erosion
growth�, would less likely to be eliminated by this step. One
goal of the study was to test this hypothesis and determine
the optimal value for Nbin using the segmented carpals and
simulated erosions. Prior to analysis we chose Nbin=13 as the
default value 13 since this constituted half the number of
adjacent voxels.

II.O. Constraint to local region „definition of REr…

Calculation of the erosion volume using the full 3D vol-
umes was prone to excessive misregistration noise. There-
fore, the method constrained the volume difference calcula-
tion to a local region. REr was defined by the following rule:
All voxels outside a radius of REr of the erosion location
were eliminated before the final volume calculation. The de-
fault value for REr was 1.0 mm. We used a priori chosen
default values for Nbin and REr but also investigated the effect
on erosion volume precision of each variable as part of an
optimization analysis.

II.P. Calculation of the “erosion” volume, VEr

Based on the assumption that erosion loss occurs over a
relatively large �compared to the voxel size� but compact
area, a final 3D region growing step was performed to iden-
tify the largest group of connected voxels. The final value of
VEr was defined as the number of voxels in this group.

III. RESULTS

Table I gives the average inter- and intrareader reproduc-
ibility results for all eight carpal bones on both phantoms for
the three orientations: −15°, 0°, and 15°. The reader time
was less than 5 min per carpal or 40 min per wrist scan. The
fourth row of Table I provides the in vivo RMSSD results.

Although the RMSSD was a small percentage of the car-
pal volume, changes due to erosion growth would most

TABLE I. Reproducibility results for comparison of total carpal volumes.

RMSSD �mm3� Mean volume �mm3� CoV

Intrareader 14.3 1629.2 0.9
Inter-reader 22.8 1610.0 1.4

Repositioning �phantom� 21.0 1629.1 1.3
Repositioning �in vivo, N=5� 44.1 1485.3 3.0
likely be undetectable with this level or error. Therefore, we
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also investigated 3D registration and calculation of local vol-
ume difference to improve the sensitivity to small changes.
The results are shown in Fig. 7, a graph of VEr versus VGS for
the default values of Nbin=13 and REr=10 mm. The RMSSD
values were 1.21 mm3 ��=15°� and 1.18 mm3 ��
=30°�, a considerable improvement over the total volume
measure.

Finally, we performed an optimization study to investigate
the dependence of the reproducibility on Nbin and REr. Figure
8, a plot of the RMSSD versus Nbin, demonstrates a local
minimum at Nbin=16, indicating the optimal value for the
binary eroding parameter. Figure 9 shows the dependence of
the precision on REr. A local minimum defining the optimal
value occurs at 1.0 mm, which also corresponds to the maxi-
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FIG. 7. �a� Graph of VEr vs VGS for �=15 deg. VGS is the gold standard
erosion volume that is known exactly from the algorithm that produced the
simulated erosion in the follow-up erosion VEr is the erosion calculated by
the method after 3D registration of Bbaseline and Bfollow-up. �b� Graph of VEr vs
VGS for �=30 deg.
mum radius of the simulated erosions. In practice the maxi-
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mum size of the volume change will be unknown and mis-
estimating the maximum possible change will have an effect
on the precision. To better appreciate this effect we have also
produced identical graphs for different maximum generated
erosion radius values �Figs. 10�a� and 10�b��. Figure 11 is a
3D surface plot of RMSSD �combining the 15° and 30° re-
sults� that demonstrates the dependence on Nbin and REr. An
optimal value of RMSSD=1.12 mm3 is found at pREr

=1.0 mm and Nbin=16.

IV. DISCUSSION

Measurements of erosion progression in patients with RA
have generally relied upon semiquantitative scoring systems;
no past studies of RA progression have quantified the true
erosion size with either radiography or a 3D modality. There-
fore, the amount of precision required for our method to be
useful is difficult to estimate. We found that the repositioning
reproducibility was 21 mm3 �Table I�. Although small as a
percentage of the carpal volume, it is large compared to the
amount of change that might occur over the relatively short
duration of most clinical studies.
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The in vivo repositioning reproducibility was larger than
for the phantom measurements, however, the patients were
imaged with an older protocol that used a 1.0 mm slice thick-
ness as opposed to the 0.625 mm slice thickness that was
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FIG. 10. �a� Graph of the RMSSD vs REr for erosions created with a radius
less than 0.6 mm �Nbin=13�. �b� Graph of the RMSSD vs REr for erosions
created with a radius less than 0.8 mm �Nbin=13�.
FIG. 11. 3D surface plot of the RMSSD vs REr and Nbin.
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used for the phantom. An examination in a local region ad-
jacent to indexed erosions revealed no significant change in
the erosion volume. This may potentially be due to the short
time difference between the baseline and follow-up visits �6
months�; study using subjects with a longer follow-up may
reveal larger changes.

We chose to quantify erosion volume in a local region
where the aggregate effects would not dominate. Local vol-
ume comparison was made possible by the rigid-body nature
of the carpal bones, which facilitated 3D registration. How-
ever, the implication of this approach is that a trained indi-
vidual is necessary to identify erosion locations on the scans
so that the local region can be isolated. In practice this is
relatively simple task for a trained reader and can be done
quickly using a GUI tool. Using 3D registration and local
volume comparison, we measured the RMSSD for the phan-
tom to be on the order of 1−3 mm3, a significant improve-
ment over the measured precision when comparing total vol-
umes. There was only a minor difference between the �
=15° and �=30° tests indicating that the method was ro-
bust to changes in patient positioning from baseline to
follow-up.

A reader time on the order of 1 h per wrist might be
prohibitive for a method used for patient management, how-
ever, as one component of a clinical study, the cost is not
excessive. Additionally the measurements can be made by a
less skilled operator at a reduced expense compared to a
trained physician. The reader component would likely be a
small fraction of the total study cost when considering all the
necessary expenditures. The need for a skilled individual to
identify the erosions on the CT scans is likely to require a
small amount of time compared to what is necessary for
segmentation.

Outliers on Fig. 7 are primarily due to misregistration
artifacts and generally occurred with simulated erosions that
were located on carpal surfaces that are roughly parallel to
the axial plane. Since clinical CT systems have nonisotropic
voxel shapes, the 3D margins of erosions located on near
axial surfaces are not well segmented. This effect may be
mitigated by exclusively selecting erosions located on sur-
faces that are roughly perpendicular to the axial plane. Such
a selection criterion would potentially reduce the number of
true erosions detected, but may enhance the precision of the
technique by eliminating the “noise” due to the outliers.

High resolution cone-beam CT systems are in develop-
ment in different laboratories.18 These systems are fast and
produce high spatial resolution images with near isotropic
voxels, therefore 3D image registration of segmented carpals
should be significantly more accurate. Additionally, new
multislice clinical CT systems offer near isotropic voxel
scans at a significantly higher resolution than the system we
used for our study. Using an improved CT scanner it may be
possible to detect change without indexing erosion locations,
but by comparing global volumes.

Figures 9 and 10 indicate a significant dependence of the
precision on the size of the local region constraint. Our de-
fault value of 1.0 mm3 was chosen with prior knowledge of

the maximum simulated erosion size, however, in practice, it
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will be difficult to estimate the correct threshold radius REr.
Examination of the figures suggests that it is preferable to
overestimate REr since the magnitude of the slope is smaller
to the right of the local minimum.

Figures 8 and 11 indicate optimal values for Nbin=16 and
REr=1.0 mm. These results demonstrate that the default
value �Nbin=13� was slightly lower than the optimal value.
For future validation and clinical studies we will use Nbin

=16, however, for the results given in this article we used
Nbin=13 to not bias the results by optimizing and validating
the methodology using the same data. There was not suffi-
cient data to perform an independent optimization step be-
fore validation.

Whether this method is sufficiently precise to detect
changes for each erosion has not yet been tested, however,
even a method that cannot detect volume differences for in-
dividual erosion will be valuable in research studies. Most
current clinical projects are designed to detect progression or
nonprogression of joint damage in cohorts of patients. For
each subject, our method evaluates 12 carpals each poten-
tially containing multiple erosions. The large number of mea-
surements will help mitigate the effect of lower accuracy.
Additionally, the method could also be further developed to
measure erosion volumes in the more distal and proximal
joints of the hand. The carpometacarpal, proximal interpha-
langeal, and metacarpophalangeal joints, and distal radius
and ulna are common sites of erosions as well.

This tool was developed to assist in a study of RA pro-
gression that used CT as well as magnetic resonance imaging
�MRI�.19 MRI has great potential as an imaging modality for
RA since it causes inflammation of the soft tissue which is
visible with MRI. However, MRI is not specific for erosions
since inflammation can have other causes and MRI does not
image the bone directly. An analysis of erosions based on the
segmentation of CT scans will be a useful tool to confirm the
presence of true erosions on MRI scans and lead to a better
understanding of MRI assessment of RA.

In addition to carpal segmentation, there are other poten-
tial and actual applications of a semiautomated 3D segmen-
tation technique. While a fully automated software analysis
of radiological images is a worthwhile goal, it is rare that
perfect segmentation is possible on all cases without some
user interaction. Normal anatomical variation inevitably pro-
duces examples that a single algorithm cannot anticipate.
The semiautomated approach we describe here could serve
as a model for other applications that require accurate seg-
mentation for all cases. It should also be possible to apply
our method to other anatomical sites and modalities where a
reader can be used to guide the segmentation procedure. As
an example, we have modified the tool to segment cartilage
on knee MRI scans.20

There are several limitations of the study. The carpal reg-
istration technique was tested using simulations on two hand
phantoms rather than in vivo subjects with real erosions fol-
lowed longitudinally. In addition to erosions, CT scans of
RA patients are likely to have joint narrowing, which can

further confound edge detection and decease the level of au-
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tomation with our method. The likely consequence of apply-
ing the segmentation tool to RA patients’ scans is moderately
increased reader interaction to correct software failures and
leads to a longer user time per scan. For our registration
study we used only six of the eight carpal bones; 3D regis-
tration of the pisiform and trapezium was not robust due to
their symmetrical shape. The simulated erosion shapes were
spherical unlike true erosions, which have an irregular shape.
We assumed healthy bone as the baseline state while, in
practice, studies are also likely to examine changes in dis-
eased subjects who already demonstrate structural changes
due to RA. Future studies with in vivo subjects are ongoing
and will address these issues.

V. CONCLUSIONS

We have documented and validated a semiautomated soft-
ware technique to segment carpal bones on CT scans to as-
sess RA of the wrist. This method shows promise for appli-
cation in clinical studies of the disease. Future work will
involve testing with longitudinal CT scans and data and ap-
plication to other anatomical sites and modalities such as
MRI of the knee.
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