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The purpose of this study was to propose and implement a computer aided detection �CADe� tool
for breast tomosynthesis. This task was accomplished in two stages—a highly sensitive mass
detector followed by a false positive �FP� reduction stage. Breast tomosynthesis data from 100
human subject cases were used, of which 25 subjects had one or more mass lesions and the rest
were normal. For stage 1, filter parameters were optimized via a grid search. The CADe identified
suspicious locations were reconstructed to yield 3D CADe volumes of interest. The first stage
yielded a maximum sensitivity of 93% with 7.7 FPs/breast volume. Unlike traditional CADe algo-
rithms in which the second stage FP reduction is done via feature extraction and analysis, instead
information theory principles were used with mutual information as a similarity metric. Three
schemes were proposed, all using leave-one-case-out cross validation sampling. The three schemes,
A, B, and C, differed in the composition of their knowledge base of regions of interest �ROIs�.
Scheme A’s knowledge base was comprised of all the mass and FP ROIs generated by the first stage
of the algorithm. Scheme B had a knowledge base that contained information from mass ROIs and
randomly extracted normal ROIs. Scheme C had information from three sources of information—
masses, FPs, and normal ROIs. Also, performance was assessed as a function of the composition of
the knowledge base in terms of the number of FP or normal ROIs needed by the system to reach
optimal performance. The results indicated that the knowledge base needed no more than 20 times
as many FPs and 30 times as many normal ROIs as masses to attain maximal performance. The best
overall system performance was 85% sensitivity with 2.4 FPs per breast volume for scheme A, 3.6
FPs per breast volume for scheme B, and 3 FPs per breast volume for scheme C. © 2008 American
Association of Physicists in Medicine. �DOI: 10.1118/1.2953562�
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I. INTRODUCTION

Mammography is currently the most effective early-detection
tool for breast cancer screening. To provide a reliable
and efficient second reader to aid breast-imaging radiolo-
gists, recent research has been directed towards devel-

oping computer-aided detection �CADe� tools for
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mammography.1–17 Although these tools have shown promise
in identifying calcifications, detecting masses has proven
relatively more difficult primarily due to presence of dense
overlying tissue in a mammogram. Breast tomosynthesis has
the potential to improve detection and characterization of

breast masses by removing overlapping dense fibroglandular
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tissue. These systems provide 3D slice images from a modi-
fied full field digital mammography system which acquires a
limited-angle cone beam CT scan under mammography po-
sitioning. Recent studies such as that by Poplack et al.18

demonstrated decreased recall rate and superior image qual-
ity for tomosynthesis versus conventional mammography.
The goal of tomosynthesis to provide 3D information at
comparable dose, resolution, and patient throughput to mam-
mography, and with lower cost and hardware requirements
compared to alternatives such as breast computed tomogra-
phy or breast magnetic resonance imaging. However, with
tomosynthesis, instead of the traditional four mammography
views per case, the radiologist must interpret a large volume
of data per breast volume. Given this constraint, the role of
CADe is especially important in breast tomosynthesis. If this
modality is ever intended to replace mammography as a
screening tool, then a CADe algorithm that presents the ra-
diologist with initial cues could potentially become indis-
pensable to maintain current clinical workflow. In fact, in-
vestigators in CT colonography have already begun to show
that CADe can potentially ease radiologist workflow with
large 3D datasets.19

Previous CADe studies have reported CADe models for
breast tomosynthesis. Reiser et al.20 have modified their 2D
mammography algorithms to work with 3D tomosynthesis
data. Their dataset consisted of 36 cases wherein 35 were
biopsy proven malignant masses and 1 was benign. The
training and testing set were the same, resulting in sensitivity
of 90% with 1.5 false positives �FP� per breast volume.20

Chan et al.21 have combined information from 2D projection
images with 3D volumes in 52 cases wherein 41 were ma-
lignant masses and 11 were benign. They reported sensitivi-
ties of 80% and 90% at an average FP rate of 1.2 and 2.3 per
breast, respectively, while using a leave one out cross vali-
dation scheme. Comparable performances have been re-
ported in other studies using smaller datasets.22–24

We propose to build a CADe scheme for tomosynthesis,
incorporating unique preprocessing techniques and informa-
tion theory methods. The CADe system in this study has two
key components: �1� A highly sensitive mass detector, and
�2� statistical models designed to reduce false positives. The
“high-sensitivity, low specificity” stage of the proposed algo-
rithm is the first component and is comprised of a Difference
of Gaussians �DoG� filter. The second, “high-sensitivity,
high-specificity” stage of the algorithm is comprised of false
positive �FP� reduction using information theory principles.
Previous 2D algorithms for mammograms that use informa-
tion theory and similarity metrics to reduce false positives
have shown that the ability of the system to optimally per-
form such a task is dependent on the nature of the “known”
examples in the database available to it as the learning
cases.25,26 Therefore, further analysis is performed to identify
the optimal knowledge base for our system. Three FP reduc-
tion schemes were evaluated that differ in the kind of infor-
mation available for the task of false positive reduction. Fi-
nally, to explore if there are performance increases to be
realized if more signal information was given to the system,

two variants of the FP reduction system were compared—

Medical Physics, Vol. 35, No. 8, August 2008
using only the central reconstructed slice of the CADe sus-
picious location versus using a summed slab of slices.

II. METHODS AND MATERIALS

II.A. Dataset

Our dataset was collected using a prototype breast tomo-
synthesis system Mammomat Novation TOMO �Caution: In-
vestigational Device. Limited by U.S. Federal law to inves-
tigational use. The information about this product is
preliminary. The product is under development and is not
commercially available in the U.S.; and its future availability
cannot be ensured.� by Siemens Medical Solutions �Erlan-
gen, Germany�, which acquires 25 projection images over a
50° angular range in approximately 13 s. The projection im-
ages are acquired using an amorphous selenium direct digital
detector with a large surface area �24�30 cm� and with an
85 �m pixel pitch. Projection images of 2816�3584 pixels
with 2�1 pixel binning in the tube motion direction are ac-
quired by this system at the rate of two images/s. Institu-
tional review board approval was obtained, and informed
consent was required and obtained for all subjects. This
study was compliant with the Health Insurance Portability
and Accountability Act. The protocol called for bilateral
MLO views to be acquired in screening cases, while bilateral
MLO and CC views were acquired for diagnostic and biopsy
cases. An MQSA dedicated breast radiologist with over
15 years of experience interpreted these cases in blinded
readings. The gold standard was established from informa-
tion available from all modalities for a subject including
mammography and, when available, ultrasound and MRI for
nonbiopsied lesions, while biopsied lesions resulted in de-
finitive histopathologic truth. One hundred human subject
cases were used wherein there were 25 mass cases and 75
normal cases. All of these subjects were recruited at Duke
University Medical Center in Durham, NC and had an aver-
age age of 57 years. Approximately 24% of the subjects had
breast density of 25%, 20% were 50% dense, 46% were 75%
dense and 10% were considered to have 100% dense breast;
83% of these subjects were Caucasian, 13% African-
American and 4% identified themselves as either Hispanic or
Asian. Due to some unilateral cases, a total of 192 scans
were evaluated. The 25 mass cases contained 28 lesions of
which ten were biopsy-proven malignant lesions and the rest
were benign. Focal asymmetries and calcifications were ex-
cluded from this study. Average lesion size is approximately
�100�100��41 pixels or �8.5�8.5��3.5 mms.

II.B. Overview of the CADe system

The CADe scheme is comprised of two distinct stages—
the “high-sensitivity, low specificity” stage wherein regions
of interests �ROIs� are extracted followed by the high-
sensitivity, high-specificity stage that uses information theory
principles to reduce false positives. We worked with the raw

projection images with only standard detector preprocessing
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including dead pixel and uniformity correction. A schematic
of the two stages can be seen in Figs. 1 and 3. The system
performs the following steps:

a. For each of the 25 projection images, the breast edge
was detected by estimating an optimal threshold to dis-
tinguish the class distributions of the foreground and
background pixels. Only information inside the breast
boundary was preserved and was subsequently filtered.

b. Threshold segmented, filtered projection images from
step �a� to yield CADe suspicious locations in 2D.

c. Reconstruct only the CADe suspicious locations gener-
ated by step �b� via shift and add reconstruction method
to yield 3D volumes of CADe suspicious locations.27

d. Locate the center of the CADe reconstructed suspicious
locations in 3D and map to the filtered backprojection
�FBP� 3D reconstructed volume used during radiologist
interpretation.

e. Extract ROIs from FBP reconstructed slices at the lo-
cations specified in step �d�.

f. Implement various FP reduction schemes to attain final
system performances.

II.B.1. Stage 1—Filtration and ROI extraction

For each breast view, the 25 projection images were fil-
tered using a Difference of Gaussians �DoG� filter.28–30 The
DoG filter in two dimensions is achieved by subtracting a
rotationally symmetric, two-dimensional Gaussian with
width parameter �1 from another rotationally symmetric,
two-dimensional Gaussian with width parameter �2. Math-
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images
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suspicious
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w = G1�r��1� − G2�r��2� , �1�

where

Gi�r��i� =
1

��i
�2��

e�− � r2

�i
2	
 , �2�

where r is the distance to the origin and �i is the constituent
width parameter of the filter template. Of note here is the
relationship between the two standard deviations where �1

��2.
Each of the filtered projection images was then subjected

to adaptive thresholding to yield CADe suspicious locations
in each of the projections. In that process, the thresholds for
each of the projection images were dynamically selected by
starting with the top 10% of the pixel values of the filtered
projection image resulting in an initial set of CADe suspi-
cious locations. Further drops in the threshold resulted in
either an increase in the area of the initial suspicious loca-
tions or in the formation of new ones. The threshold was thus
dropped as low as possible without merging together any two
suspicious locations. For dense breasts, this threshold often
included approximately 15% of the top pixel values, while
for fatty breasts the thresholds were generally selected at
about 25% of the top pixel values. Only the segmented 2D
projection images thus obtained were shifted and added us-
ing the acquisition angle and known geometry to yield 3D
locations of the volume of interest �VOI� of just the CADe
locations.31

A 3�3�3 connectivity rule was used to yield CADe
suspicious locations in 3D space making it possible to deter-
mine location and shape of the object of interest. Specifi-

:

ity,

ity

FIG. 1. Stage 1—the filtration and ROI extraction or the
high-sensitivity, low specificity stage of the CADe
algorithm.
tage 1
high
nsitiv
low
ecific
cally, every pixel in each of the slices of the reconstructed
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slices of the CADe suspicious locations was assigned to a
VOI using its proximity to a cluster of pixels. This resulted
in a set of VOIs for every scanned breast view. Since the
shift and add reconstruction algorithm did not have any mea-
sures in its implementation to prevent out of plane blur, the
resulting reconstructed CADe suspicious volumes from the
first stage had significant blur in planes other than where the
centroid of the volume of interest lies, resulting in a starburst
shape wherein the true object lies in the plane where the
contributions from all the projection images come into focus.
Thus, it is assumed that a mass came into focus in the plane
with the least cross-sectional area of the volume obtained
after reconstruction. False positives due to overlapping tissue
in just a few projection images should result in weaker 3D
reinforcement of signals. An example of such a reconstruc-
tion is shown in Fig. 2. This 3D location of the volume of
interest was then compared to the radiologist-determined
ground truth to determine if a given CADe location is a true
positive or a false positive. To determine whether a CADe
suspicious location is indeed a true positive, the following
rule was used:

If �A�CADe� � A�Truth�
A�CADe� � A�Truth�	 � 0.3, then TP,

where A�CADe� is the area of the CADe location, and
A�Truth� is the area of the truth location.

The optimization of the first high-sensitivity, low-
specificity stage of the algorithm was done using all avail-
able cases, as there were not enough mass cases in our data-
base to establish separate reasonably sized testing and
training sets. The figure of merit was the maximum sensitivi-
ties as a function of the two DoG parameters, �1 and �2. For
the lesions in our database, the average size is approximately

(a)

(b)

Depth
(Z)

Y

Reconstruct using 25
images with CADe
suspicious locations

FIG. 2. �a� 25 CADe suspicious locations in 2D for subject 33 �b�. Reconstru
blur is observed in Z direction. �c� A 256�256 ROI centered at the X ,Y loca
volumes and shown in “b.”
100�100 pixels �8.5�8.5 mm�. A search was therefore per-
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formed wherein the filter parameters were varied from
32 to 152 pixels �2.7–12.92 mm� to bracket that size.

Once the algorithm had identified initial candidates for
mass detection by giving the X, Y, and Z location of the
centroid of the volume of interest, regions of interest �ROIs�
were extracted from the reconstructed breast slice images
obtained by filtered backprojection �FBP� which yielded
1-mm-thick slices with 85�85 �m pixel pitch.32,33 Also
shown in Fig. 2 is the corresponding lesion ROI that was
extracted from the FBP reconstructed volume. The FP reduc-
tion scheme therefore was based upon the same recon-
structed image data as used by radiologists. Two sets of ROIs
were extracted to assess the effect of information from one
versus many slices. In the first set, 256�256 pixel ROIs
�22�22 mm� centered at the central slice containing the sus-
picious CADe location were extracted. For the second set,
256�256 ROIs representing the summed slab of five slices
�5 mm� were extracted. Since lesions typically span multiple
reconstructed slices, these two sets investigated whether giv-
ing more “signal” to the false positive reduction scheme re-
sulted in an improvement in performance. Use of a slab
would also reduce the impact of slight errors of localization
in the Z direction.

II.B.2. Stage 2—False positive reduction

Information theory principles were used to reduce false
positives �FPs� in the second stage of the algorithm. The
fundamental quantities of information theory are entropy and
relative entropy. For any probability distribution, entropy is
defined as a quantity that follows an intuitive notion of a
measure of information. In other words, entropy, among
other measures such as variance etc., is a way to quantify the
uncertainty involved in a random variable. This notion is

Lesion

(c)

Direction of tube
motion (X)

CADe suspicious locations using the images in “a.” Significant out of plane
at the depth with the sharpest focus is extracted from the FBP reconstructed
cted
tion
extended to define “mutual information” which is a measure
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of the amount of information one random variable contains
about another. Hence, mutual information is a reduction in
the uncertainty of one random variable due to the knowledge
gleaned from observing the other random variable. Math-
ematically, it is given by the following relation:34

MI�X;Y� = �
x�X

�
y�Y

p�x,y�log� p�x,y�
p�x�p�y�

	 , �3�

where X and Y are two random variables, p�x ,y� is their joint
probability mass function because this is a discrete rather
than continuous random variable, and p�x� and p�y� are the
marginal probability mass functions of X and Y.

Traditionally CADe schemes measure, among others,
morphological and texture features of a suspicious location
for subsequent false positive reduction using trainable clas-
sifiers. Research has been done by Suzuki et al.35–38 toward
alternative approaches to FP reduction by using massive
training artificial neural networks. This study used mutual
information as a similarity metric for false positive reduction
that relies completely on the statistical properties of the im-
age histograms and the relationship between pixels of an
image. Furthermore, information theoretic similarity mea-
sures make no assumptions about the underlying image dis-
tributions, which may be advantageous given the relatively
small number of lesions in our dataset. The theoretical
approach adopted in this study has been presented
previously39–41 for 2D mammograms. This study extended
the concept for 3D reconstructed slices and slabs.

An information theory based system compares an un-
known query ROI to every ROI in its “knowledge base”
�KB� using a similarity metric such as mutual information.
Similarity metrics are then combined using a decision
index41 given in Eq. �4�

D�Q� =
1

m
�
j=1

m

MI�Q,Mj� −
1

n
�
j=1

n

MI�Q,Nj� , �4�

where Q is the query ROI, MI�· , · � is the mutual information
between the query Q and the ROI in the KB. Mj and Nj are
the jth mass and normal ROI, respectively, in a KB that
contains a total of m mass and n normal ROIs. By applying
various thresholds on these indices for all cases in the data-
base the performance can be studied as a receiver operating
characteristic �ROC� curve. Both area under curve �AUC�
and partial area under curve �pAUC� above 90% sensitivity
were measured nonparametrically.42,43 To estimate the two-
sided p value for the central slice versus sum of adjacent
slices datasets for each scheme, a set of cases was boot-
strapped to estimate the difference in performance. This was
repeated to obtain an estimate of the difference distribution.

The performance of an information theory based system is
dependent on the composition of the knowledge base. The
first stage of the algorithm generates ROIs that are either
mass lesions or FPs. Of note here is the imbalance in the
number of lesion ROIs when compared to the total number
of FPs generated by the first stage. Given this imbalance, it is
imperative to explore the effect of knowledge about normal

breast parenchyma represented by those FPs. This was stud-
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ied in two ways. First, an increasing number of FPs was
sampled from all FPs available while holding the number of
true positives constant, thus decreasing the ratio of mass
ROIs in the KB and progressively giving the system more
indirect “knowledge” of normal breast parenchyma. The sec-
ond approach is to provide the system with direct informa-
tion about normal breast parenchyma via randomly selected
normal ROIs instead of suspicious FP regions generated by a
CADe algorithm. Since these ROIs were extracted from ran-
dom locations from within the breast volume there is a po-
tential for some overlap with FPs generated by the first stage
of the algorithm. Varying the number of mass ROIs in the
knowledge base can also change composition of the knowl-
edge base. However, given that our database consists of a
limited number of mass ROIs, its effect was not studied in
this experiment.

Three schemes were therefore developed to investigate
the optimal ratio of normal and false positive ROIs in the
knowledge base, as shown in Fig. 3. In scheme A, FP reduc-
tion was done using a KB containing ROIs from the CADe
algorithm’s first stage. These ROIs were either mass ROIs or
FPs. In scheme B, the KB contained only mass ROIs and
randomly selected normal ROIs from well-separated depths
in all the normal cases’ reconstructed volumes. A total of
1390 such normal ROIs were extracted for this study. To
access performance of the scheme A classifier, a leave-one-
case-out validation scheme was used. Thus, for every ROI
that was presented to the system as a query ROI of unknown
pathology, all other ROIs generated from that specific sub-
ject’s reconstructed volumes were excluded from the KB.
For scheme B, all the FPs of the first stage of the algorithm
served as queries to the system to assess its specificity. Sen-
sitivity for scheme B was evaluated using a leave-one-case
-out sampling scheme on all available ROIs that contained a

Normal
ROIs

Scheme B -
KB contains
Mass +

Normal ROIs

Scheme C -
KB contains
Mass +

Normal + FP
ROIs

Mass
ROIs

FP
ROIs

Scheme A -
KB contains
Mass + FP
ROIs

FIG. 3. Composition of knowledge base of false positive reduction stage of
the CADe algorithm �a� scheme “A” KB composition �b� schemes “A” and
“B” composition.
mass. Thus the system has no knowledge of FP ROIs in its
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KB and hence the performance is not dependent on the na-
ture of FP lesions generated by the first stage of the algo-
rithm. Finally, scheme C included information from all three
sources: �1� Masses �2� CADe generated FPs �3� normal
breast tissue, combined into a single KB. Analysis was done
in a leave-one-case-out manner for this KB as well. In the
end, the scores for all ROIs thus obtained from various
schemes were then combined using the decision index given
by Eq. �4�.

III. RESULTS

III.A. Optimization of stage 1

Optimization of the first high-sensitivity, low-specificity
stage of the algorithm involved a grid search over the 2 DoG
parameters, �1 and �2. Maximum sensitivity for each com-
bination is shown in Fig. 4. The parameter sets that were not
explored are represented with a zero percent sensitivity.
While the FP rate for each parameter set was recorded, no
specific optimization for the FP rate was performed. There
were two distinct areas with high reported sensitivities, cen-
tered at �1 and �2 pairs of 40 /72 �3.4 /6.12 mm� and
56 /96 pixels �4.76 /8.16 mm� with 9.3 and 7.7 FPs/breast
volume, respectively. The parameters 56 /96 yielded fewer
false positives and were therefore picked for further analysis
of stage 2. Thus, the first stage of the algorithm yielded a
maximum sensitivity of 93% and 1472 FPs resulting in a FP
rate of 7.7 FPs per breast volume. All available cases were
used for the optimization of this stage due to the small size
of the dataset resulting in the possibility of a positive bias in
the reported performance of the proposed algorithm.

III.B. Optimization of the FP reduction stage

III.B.1. Scheme A—effect of FP ROIs in the KB

Scheme A seeks to differentiate between a mass and a FP

FIG. 4. Sensitivity as a function of the two filter parameters for stage 1 of
the algorithm. The combination marked by the “�” was chosen, yielding
93% sensitivity with 7.7 FPs/breast volume.
query. A plot of the ROC AUC as a function of increasing
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number of FPs is presented in Fig. 5, where the x axis shows
number of FPs as multiples of the total number of mass ROIs
while using the scheme A classifier. The error bars are ob-
tained by simple random sampling25,44 from all the available
FPs of the first stage. Twenty subsets of the FP ROIs were
generated for each data point on the graph. Each subset was
selected without replacement after randomization between
subsets. When the sum of adjacent slices was used, as the
number of FPs was increased the performance increased.
When there were 20 times as many FPs as mass ROIs, the
system reached a sensitivity of 89%. Adding more FP ROIs
no longer improved the performance. A similar trend was
observed while using only the central slice of the VOI with a
maximum sensitivity of 88%. Addition of more FP ROIs
after a ratio of 25 times that of the masses again does not
improve performance. It should be noted that as the number
of multiples of FP in the KB increases, the error bars in Fig.
5 will also decrease because of increasing overlap in selected
FP ROIs for each draw.

III.B.2. Scheme B—effect of normal ROIs in the KB

Scheme B assessed the behavior of the system with the
presence of normal ROIs in the KB. Figure 6 depicts this
trend as a function of increasing number of normal ROIs in
the system. As previously described in Sec. III B 1, the error
bars are obtained when the same data point of the graph is
evaluated using 20 different subsets of the normal ROIs
available. AUC increased as more normal ROIs were added
to the KB and levels off at a ratio of 25 times as many
normals as masses for sum of adjacent slices. The same lev-
eling off in performance for central slice was seen with 30
times as many normals as mass ROIs. Performance was com-
parable to that of scheme A. Scheme B attained a maximum
classifier AUC of 86% for central slice ROIs and 89% for

0 5 10 15 20 25 30 35 400.81
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Number of FPs in KB in multiples of number of mass ROIs
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C

Central Slice
Sum of adjacent slices

FIG. 5. The figure of merit, ROC AUC, is plotted as a function of increasing
number of FP ROIs in the system.
sum of slices ROIs. As with scheme A, use of the slab ROIs
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did not affect performance substantially, although here in
scheme B it had a more noticeable increase in performance
than for scheme A.

III.C. Classifier performances

Table I presents overall classifier performance for all
schemes. As implemented, summing adjacent slices did not
improve the classifier performance in a statistically signifi-
cant way compared to using only the single, central slice
ROI for any of the schemes evaluated, either for AUC or
partial AUC. Shown in Fig. 7 are the ROCs and partial ROCs
of just the central slice classifiers of all schemes.

Sensitivity when plotted as a function of the average FP
rate while the decision threshold is varied results in the Free-
Response Receiver Operating Characteristic �FROC� curve.
Figure 8 shows the system FROCs prior to FP reduction as
well as after FP reduction for schemes A, B, and C. These
were obtained by varying the decision threshold over classi-
fier outputs of the central slice classifiers of the three
schemes starting with a threshold set at 91.5% sensitivity.
For each scheme, the threshold was then progressively
dropped to obtain the entire curve. Scheme A outperformed
others in terms of FPs per breast volume at equivalent sen-
sitivity. At an operating point of 91.5%, scheme A was suc-
cessfully able to discard 69% of the FPs per breast volume,
scheme B correctly eliminated 53% of the FPs per breast

0 5 10 15 20 25 30 35 400.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Number of normal ROIs in KB in multiples of number of mass ROIs

Cl
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sif
ier

AU
C

Central Slice
Sum of adjacent slices

FIG. 6. The figure of merit, ROC AUC is plotted as a function of increasing
number of normal ROIs in the system.

TABLE I. Classifier performance for a KB containing mass and FP ROls �sche
all 3 sources—mass, FP and normal ROls �scheme C�. The AUC and pAUC
p values for all schemes is shown.

Scheme

Central slice only

AUC pAUC

A 0.88�0.02 0.49�0.09
B 0.86�0.03 0.41�0.09
C 0.87�0.02 0.45�0.09
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volume, and last, scheme C was able to correctly discard
62% of the FPs per breast volume. The final performances
were a sensitivity of 85% at 2.4 FPs per breast volume, 3.6
FPs per breast volume, and 3 FPs per breast volume for
schemes A, B, and C, respectively. The Jackknife Free-
Response Receiver Operating Characteristic �JAFROC�45

was used to evaluate these FROC curves. None of the differ-
ences between the FROC curves of the three schemes studied
were statistically significant. A human subject example from
subject 122 is shown in Fig. 9. While this subject had 5 FPs
in total only two reconstructed slices containing 1 TP and 2
FPs are shown for illustration purposes. These results were
obtained when the CADe algorithm with a scheme A central
slice classifier is used while operating at 91.5% sensitivity.
After FP reduction, the FP in slice 40 was eliminated, how-
ever one FP along with the TP survived in slice 36. This
subject had biopsy confirmed cancer.

IV. DISCUSSION

Several CADe algorithms exist for breast tomosynthesis
data in current literature. All published tomosynthesis CADe
algorithms used some form of feature extraction scheme for
the FP reduction stage. This study was unique in that it uti-
lized information theory principles for this task. Given this
relatively small dataset, the model still provided generaliz-
able results when using scheme B. The generalizability here
refers only to the fact that scheme B performance is indepen-
dent of the nature of FPs generated by the first stage of our
specific algorithm. The performance of schemes A and C can
be influenced by the nature of FPs generated by other filters
or another first stage of a CADe algorithm, whereas that of
scheme B is independent of the kind of FPs. Additional in-
formation about mass cases would merely enhance system
performance over datasets that include subjects from other
geographical locations, patient populations, etc. This is be-
cause inclusion of more mass cases will help the system
obtain more accurate “knowledge” of the various kinds of
mass cases. A larger, more varied KB will have at least rep-
resentative examples from all the major lesion types and will
better capture the variations of various lesions.

As the amount of data available increases, an understand-
ing of what constitutes an optimal KB in terms of the optimal
number of FPs and/or normals will become pivotal for all
practical applications. This is because similarity metrics need
to be calculated for each query presented to the system with
every ROI in the database. If there is nothing to be gained in

�, mass and normal ROls �scheme B� and when the KB contains ROls from
oth the central slice and the sum of adjacent slices and their corresponding

Sum of adjacent slices p value

UC pAUC AUC pAUC

0.03 0.46�0.10 0.3 0.2
0.03 0.36�0.10 0.5 0.2
0.03 0.41�0.10 0.43 0.19
me A
for b

A

0.89�

0.89�

0.88�
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terms of performance, then having more ROIs in the data-
base simply adds to time needed for the system to generate
CADe marks on a new case. To better understand the com-
position of such an optimal KB for tomosynthesis data, three
FP reduction schemes were compared, each based on ROIs
from only a single central slice versus a summed slab of
slices from the first stage of the algorithm. While doing so,
several trends were observed. There was no statistically sig-
nificant difference in classifier performance when comparing
the use of a single, central slice only versus the sum of ad-

(a)

FIG. 7. �a� Nonparametric ROC curves of the central slice classifier for sch
three schemes.
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jacent slices, regardless of whether the AUC or partial AUC
was the figure of merit. Scheme B’s performance was almost
the same as that of A and C, even though B does not use FPs
in its KB. The performance of scheme B was independent of
the nature of FPs generated by the first stage of the algo-
rithm. JAFROC analyses of the system performances for the
three schemes also indicate that there is no statistically sig-
nificant difference between scheme B when compared
against scheme A and C. Thus the results obtained for
scheme B may be more robust when given either different

(b)

A, B, and C. �b� Partial ROC curves for sensitivity greater than 0.9 for the

� 	

FIG. 8. System FROCs. Prior to FP re-
duction, the system performance was
at 93% sensitivity with 7.7 FPs per
breast volume. Final system perfor-
mances for the three schemes are de-
picted for the central slice classifiers.
emes
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cases or another set of unknown ROIs from these same cases
that contain false positives generated by a different filter or
algorithm. The performance of scheme C was between that
of A and B as it added the use of FPs in its KB.

The study of the optimal balance between positive and
negative cases in the KB also yielded several interesting
trends. For scheme A, the system reached its maximum per-
formance with a FP ratio of 20 times that of mass ROIs in its
KB. A similar trend was observed in scheme B when the KB
contained information about only masses and normal breast
tissue where nearly 30 times as many normal ROIs were
needed in the KB as mass ROIs. Thus it appeared that
scheme B required more examples of randomly extracted

FIG. 9. �a� Slice 41 prior to FP reduction, �b� Slice 41 after FP reduction, �c�
Slice 21 prior to FP reduction, �d� Slice 21 after FP reduction. Subject 122
had biopsy confirmed carcinoma. While this subject had 6 FPs in total from
stage 1 of the CADe algorithm, only reconstructed slices 41 and 21 are
shown in this figure for illustration. After setting the threshold for scheme A
central slice classifier to operate at 91.5% sensitivity, we are able to elimi-
nate the FP in slice 21. However, the FP in slice 41 survives along with the
TP.
normal ROIs compared to scheme A which used more sus-
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picious normal anatomy presented in FP ROIs. Regardless of
the nature of the negative, nonmass cases, both systems
showed that when given an increasingly larger number of
nonmass ROIs in its KB, their performance increased toward
an asymptote. Furthermore, we found that more nonmass
ROIs than mass ROIs were needed in order for the algorithm
to learn the naturally greater variability of normal breast
anatomy. Both schemes displayed larger standard deviations
in performance levels initially with tighter confidence levels
attained as the schemes were given increasing information
about the diversity of normal breast tissue.

Estimates of the least number of FPs or normal ROIs
needed to obtain maximal performance can potentially
change when more mass ROIs are added to the KB. How-
ever, a study of what that optimal number is with the current
size of the dataset has lead us to the understanding that fewer
FPs and normal ROIs in the KB result in greater variability
in performance, and that there indeed exists a minimal ratio
of these ROIs to the number of mass ROIs in the KB to
attain maximal performance. Therefore, while such a ratio is
likely to change with additional mass cases, there are two
important conclusions to be drawn from these results.

These results of experiments to study optimal knowledge
base composition show that for the current CADe system it
is possible to attain maximal performance with little over
half the number of ROIs in virtually all the three schemes.
This is significant as it implies an appreciable improvement
in the computational efficiency of the algorithm. The total
processing time for the second stage of this algorithm that
uses a LOO CV scheme is N2 /2. A reduction in the number
of ROIs in the knowledge base by half would imply an im-
provement of a factor of 4 in overall computational effi-
ciency. However, in a clinical setting the computational effi-
ciency needs to be looked at from the point of view of a
single breast volume being examined. The first stage of the
algorithm generates approximately eight CADe marks per
breast view. When using a Linux Intel 2.6 GHz dual-core
dual-processor system, it takes about 1 s for the system to
come up with an average MI score for a single query ROI
when compared against our entire knowledge base. This im-
plies a processing time of about 2 s to come up with each of
the two terms for Eq. �4� for every CADe mark from the first
stage, and hence about 16 s to process the entire breast vol-
ume with eight such potential locations generated by the first
stage of the algorithm. Reduction in the knowledge base of
half would imply a computational reduction of half, i.e., 8 s
in a clinical setting.

There were limitations to this study. More cases with le-
sions should be added to capture the diversity of breast
masses. Because of the relatively small size of available
dataset, the optimization of the initial filtering stage was
done using all available cases with some resulting possibility
of bias; addition of new cases could potentially imply a dif-
ferent optimal filter parameter set. The decision to sum five
adjacent slices was based on the observation that most le-
sions spanned a space of at least 5 mm. Improvements in
performance due to variation of this parameter in the algo-

rithm has not been investigated in this study. Last, studies
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remain to be done in improving system performance by
studying other similarity metrics and ROI sizes.

V. CONCLUSION

A CADe system for breast tomosynthesis was developed
which attained promising results over a dataset of 100 human
subjects consisting of 25 mass cases. The best overall system
performance was achieved while using a knowledge base
consisting of mass and false positive ROIs. Adding normal
ROIs in addition to or in place of the false positives resulted
in the same sensitivity but slightly worse specificity, but may
represent more generalizable results as doing so decreased
the dependence on specifics of this detection algorithm. In
conclusion, this CADe system was based on a human subject
data set and used an innovative false positive reduction
scheme of featureless information theory based similarity
metrics, and demonstrated promising results for mass lesion
detection.
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