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The objective of this research was to develop and validate a custom computed tomography dose-
reduction simulation technique for producing images that have an appearance consistent with the
same scan performed at a lower mAs �with fixed kVp, rotation time, and collimation�. Synthetic
noise is added to projection �sinogram� data, incorporating a stochastic noise model that includes
energy-integrating detectors, tube-current modulation, bowtie beam filtering, and electronic system
noise. Experimental methods were developed to determine the parameters required for each com-
ponent of the noise model. As a validation, the outputs of the simulations were compared to
measurements with cadavers in the image domain and with phantoms in both the sinogram and
image domain, using an unbiased root-mean-square relative error metric to quantify agreement in
noise processes. Four-alternative forced-choice �4AFC� observer studies were conducted to confirm
the realistic appearance of simulated noise, and the effects of various system model components on
visual noise were studied. The “just noticeable difference �JND�” in noise levels was analyzed to
determine the sensitivity of observers to changes in noise level. Individual detector measurements
were shown to be normally distributed �p�0.54�, justifying the use of a Gaussian random noise
generator for simulations. Phantom tests showed the ability to match original and simulated noise
variance in the sinogram domain to within 5.6% �1.6% �standard deviation�, which was then
propagated into the image domain with errors less than 4.1% �1.6%. Cadaver measurements
indicated that image noise was matched to within 2.6% �2.0%. More importantly, the 4AFC
observer studies indicated that the simulated images were realistic, i.e., no detectable difference
between simulated and original images �p=0.86� was observed. JND studies indicated that observ-
ers’ sensitivity to change in noise levels corresponded to a 25% difference in dose, which is far
larger than the noise accuracy achieved by simulation. In summary, the dose-reduction simulation
tool demonstrated excellent accuracy in providing realistic images. The methodology promises to
be a useful tool for researchers and radiologists to explore dose reduction protocols in an effort to
produce diagnostic images with radiation dose “as low as reasonably achievable.” © 2009 Ameri-
can Association of Physicists in Medicine. �DOI: 10.1118/1.3031114�
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I. INTRODUCTION

The use of computed tomography �CT� in modern healthcare
continues to grow rapidly due to its excellent low-contrast
tissue resolution, three-dimensional information, and rapid
acquisition times.1 Despite its high diagnostic value, there
are concerns about the risks associated with exposure of pa-
tients to ionizing radiation,2 and the principle of “as low as
reasonably achievable” �ALARA� has been proposed as the
goal for radiation dose in clinical practice.3 To accomplish
this, efforts are underway to control radiation exposure
through improved techniques and avoidance of unnecessary
examinations. A challenge in this effort is the ability to ac-
quire clinical images at reduced dose for the purpose of
studying the effects of increased noise on diagnostic perfor-
mance. Concerns about radiation risks limit the ability to
perform repeated scans on the same patient with different
techniques or suboptimal protocols, in order to determine the

effects of dose reduction. Patient motion and variation in

174 Med. Phys. 36 „1…, January 2009 0094-2405/2009/36„1
contrast-delivery time would also make it difficult to acquire
identical images differing only in dose; thus it has been prob-
lematic to gather data for studies of the impact of noise on
diagnostic accuracy.

Given this scenario, an attractive alternative would be a
method to simulate reduced-dose images by adding synthetic
noise retrospectively to existing images. This approach has
been used for projection radiography, where realistic noise
can be created by direct addition of properly filtered random-
noise fields in the image domain.4–6 CT images, created by
filtered backprojection, however, have nonlocal noise prop-
erties, which are very difficult to simulate directly in the
image domain.7 On the other hand, it is straightforward to
inject synthetic noise, corresponding to a decrease in tube
current at the same beam quality �kVp� and collimation, into
the projection �sinogram� domain to create realistic simu-
lated reconstructions. In fact, it appears that all the major

manufacturers have developed noise simulation software for
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internal testing,8–11 and promising results have been
reported.12 Unfortunately, general application of this method
in the academic research community has been hampered due
to the lack of availability of raw scan data and file format
information, which manufacturers considered proprietary.
Newer scan systems now allow archiving of raw data files
and vendors are becoming more willing to collaborate with
researchers, leading to an increase in research based on sino-
gram data, as evidenced by recent reports.10,13–17

A key concern with any such simulation tool is the level
of realism in the images produced. Publications to date have
validated methods with phantom experiments, reporting
matched variances that are not statistically significantly
different.12 Details of these techniques and their implemen-
tation are limited, however, and there are often caveats about
what range of dose reduction or what protocols can be accu-
rately simulated.10 Furthermore, there has been limited dis-
cussion about the sensitivity to changes in noise level in
medical images, and what level of accuracy is required for
matching noise levels. In this article, a simulation method is
described in detail, including: incorporating an accurate CT
noise model;18 experimental methods to determine param-
eters necessary for the model; and validation experiments
with both objective and subjective measures of image qual-
ity, to assess accuracy and to establish just noticeable
differences19 �JNDs� in noise simulation. This general ap-
proach can be adapted for other scanner systems. Finally,
potential applications of this tool are discussed.

II. METHOD AND MATERIALS

The research goal was to characterize and validate a
method for use in tube-current reduction simulation at a con-
stant kVp and detector geometry. A procedure for simulating
reduced-dose images was developed, using a model to gen-
erate synthetic CT noise, along with methods to experimen-
tally determine the parameters used in the model. Validation
techniques were developed to quantitatively measure the
agreement of noise properties in both the sinogram and im-
age domain. The realistic appearance of synthetic noise in
images was confirmed by performing observer studies with
radiologists. Additionally, tests were conducted to ascertain
the effect of various model components on visual noise and
also to establish the “just noticeable difference”19 in noise
levels for observers.

II.A. Simulations and reconstruction procedure

The procedure developed for simulating clinical images
corresponding to a given tube-current reduction consisted of
the following steps:20

�1� Data files containing measured sinogram data were ex-
ported from a CT scanner using optical disks or network
transfer. �Such data access is now available on many
multirow detector CT scanners.�

�2� Scan protocol information was extracted from the sino-
gram data header, i.e., tube voltage, tube-current modu-

lation, rotation time, measurement period, and collima-
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tion. �Format structure of the data files is unique for each
scanner design and must be obtained from the manufac-
turer.�

�3� Attenuation measurements, Am=log�S0 /Sm� �the loga-
rithm of the ratio of unattenuated signal S0 to measured
signal Sm�, and the tube current for each gantry measure-
ment were extracted from the data file.

�4� The sinogram data were converted from a logarithmic
attenuation space to a transmission space measurement,
Tm=exp�−Am�.

�5� The transmission sinogram data �Tm� were multiplied by
the bowtie filter transmission profile p�d� for each detec-
tor position d, and by the incident flux Q0�g� at each
gantry step g to produce measured linear sinogram data,
Im�d ,g�=Q0�g�p�d�Tm�d ,g�. These factors can be ob-
tained by techniques described in the subsequent Secs.
II C 2, II D 2, and II D 3.

�6� The amount of additive variance �a required to trans-
form each high exposure measurement to the desired
noise level was calculated from the model �Eq. �6�� and
parameters provided in the Sec. II D 4.

�7� The simulated signal was obtained by adding the prod-
uct of a Gaussian random number �MATLAB randn, with
zero mean and unity variance� and the square root of
added variance �obtained in step 6� to the existing high
exposure scan, Isim= Im+���a�randn.

�8� The logarithm of the ratio of unattenuated signal to the
simulated signal was calculated to obtain a simulated
attenuation sinogram, Asim�d ,g�=log�Q0�g�p�d� / Isim�,
and this quantity was inserted back into a data file simi-
lar to the source file.

�9� Using vendor-supplied reconstruction software, the new
simulated sinogram data were used to reconstruct image
slices.

II.B. Noise model

An accurate acquisition-noise model is essential for real-
istic CT current-reduction simulation. The sinogram noise
model for a CT system must incorporate factors such as the
exiting x-ray spectrum of an object, the instantaneous inci-
dent flux level, the position of the detector in the fan beam,
and the amount of electronic noise of the scanner. Scanner
components included in this model were bowtie filters, tube-
current modulation, polyenergetic x-ray spectra, and energy-
integrating detectors. Measurement noise was considered to
be uncorrelated between detectors, as has been reported by
the researchers at State University of New York �SUNY� at
Stony Brook.13,21 Measured energy-integrating signals can be
shown to obey compound Poisson statistics,18 for which the

mean signal S̄ and its variance for a given spectrum are

S̄ = �� , �1�

�S
2 = �2� + N0, �2�

where � is the mean number of total quanta incident on the

detector, and � is a scaling factor dependent on the x-ray



176 Massoumzadeh et al.: Validation of CT dose-reduction simulation 176
spectrum and detector sensitivity. The scaling factor � was
considered to be a constant in this model, although it has a
small dependence on spectra for clinical scan conditions.18

The electronic background noise N0 of the scanner may be a
function of amplifier gain and offset, etc. The mean number
of total quanta depends linearly on the mAs and detector
size, which allows a straightforward simulation for changes
in current at a constant spectrum, i.e., kVp. �Changes in
spectra result in more complicated dependencies that were
not considered in this research project.�

The measured signal-to-noise ratio was characterized by
the noise equivalent quanta �NEQ�, defined as the square of
the mean signal divided by the signal variance22

NEQ =
S̄2

�S
2 =

����2

�2� + N0
. �3�

For NEQ�20, it is appropriate to use a Gaussian random
number generator for synthesis of simulated noise because
the central limit theorem ensures normal �Gaussian� distribu-
tions for large numbers of events.23 If Gaussian noise, with
mean zero and variance �a, is added to each measurement in
x-ray flux space, the resulting NEQ may be written as

NEQsim,low =
����2

�2� + �a + N0,Hi
. �4�

This is valid because the synthetic and measured noise
mechanisms are independent, normal statistical processes;
hence, the total variance is the sum of these variances.

To simulate the CT signal for a lower tube current, let �
be the ratio of the desired lower tube current mAsim to the
original tube current, ���mAsim� /mAoriginal�1. The mean
number of quanta ��� in Eq. �3� can be replaced by �� to
give a target NEQ, and an appropriate system noise can be
inserted into the high dose scan �Eq. �4�� to match the target.
Consequently, by equating the NEQ from Eq. �3� to the
NEQsim,low from Eq. �4�,

����2

�2� + �a + N0,Hi
=

�����2

�2�� + N0,Low
, �5�

the amount of required additive variance �va� can be ob-
tained

�a = �2��1

�
− 1� + �N0,Low

�2 − N0,Hi� . �6�

The mean of the total quanta ���, incident on the detector at
gantry location g and detector d, is proportional to the quanta
flux incident on the object times the transmittance of the
object, T�d ,g�=exp�−A�d ,g��. The flux incident on the ob-
ject equals the output of the x-ray tube

Q0�g� = KcmA�g�s , �7�

�where K is a constant, c is the collimation, mA is the tube
current at gantry step g, and s is the measurement time�
multiplied by the bowtie filter transmittance �p�d�, which is
nonuniform across the fan beam at detector position d�.

Therefore, � in Eq. �6� can be written as
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��d,g� = Q0�g�p�d�T�d,g� , �8�

resulting in

va�d,g,�� = �2Q0�g�p�d�T�d,g�

	�1

�
− 1� + �N0,Low

�2 − N0,Hi� . �9�

Note: �=1 indicates a full-dose scan with no additional vari-
ance, i.e., �a�d ,g ,��=0; �
1 indicates an extremely low-
dose scan with large �a�d ,g ,��. The components necessary
for the developed model �the function p�d� and constants �,
K, and N0� were determined empirically by a series of mea-
surements for each scanner, as described below.

II.C. Experimental techniques

Methods were developed to determine the parameters re-
quired for the noise model in the simulation software. As a
validation, the outputs of the simulations were compared to
actual measurements in both the sinogram and image do-
mains. Observer studies were performed to confirm the real-
istic appearance of simulated images. Additionally, the effect
of various components of the noise model on simulations
was studied. Institutional Review Board approval was ob-
tained for use of data files taken from clinical patient scans.

II.C.1. Scanners and software

Scans were performed on three 16-row scanners �Soma-
tom Sensation 16, Siemens Medical Solutions, Forchheim,
Germany� located in the BJC Hospital campus in St. Louis,
MO. CT sinogram data files were downloaded from clinical
scanners using optical disks or network transfer. The files
contained various types of information, including attenuation
measurements �Am—see Appendix A 1�, the instantaneous
tube current for each gantry measurement, and protocol set-
tings �e.g., electronic integration time and collimation
width�.

MATLAB software �MathWorks, Natick, MA� was used for
data analysis, algorithm development, numeric computation,
and data visualization. Image slices were reconstructed from
sinograms with offline software provided by Siemens Medi-
cal Solutions using a research reconstruction code that
closely matches the clinical scanner consol reconstruction.
Image domain analysis and display were performed with
ImageJ,24 �NIH, Washington, DC�. For the forced-choice ob-
server tasks, individual reconstructed images were loaded
from DICOM files into MATLAB and a combined montage of
multiple images �two for two-alternative forced choice
�2AFC�, four for four-alternative forced choice �4AFC�� was
created, which was then loaded into a single DICOM file for
display. For all images, the display brightness and contrast
were adjusted to be appropriate for the clinical viewing task,
e.g., a cadaver head �used to determine observer sensitivity
to simulated noise� had a brightness level of 50 Hounsfield
units �HU� and a window width of 150 HU. Using ImageJ,
observers would sequence through the image sets, with their

choices recorded by an attendant.
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II.C.2. Scan parameter experiments

To determine the bowtie filter profile and the x-ray flux
scaling factor, an empty gantry �air only� was scanned at four
current levels �e.g., 50, 150, 300, and 500 “effective mAs”
with 120 kVp and 16	0.75 mm collimation. �Effective mAs
is the parameter setting available on Siemens CT consoles,
used by the technologist to specify image quality for a par-
ticular patient protocol. It is defined as the product of tube
current and rotation time divided by the beam pitch; thus, it
provides a dose surrogate. As such, it does not directly relate
to the physical tube current and rotation time. These param-
eters always were determined independently from the header
of the CT sinogram data file for the experimental conditions
reported here.�� Two protocols were used, body �pitch of 1.0
and 0.5 s rotation time� and head �pitch of 0.5 and rotation
time of 1.0 s�, each of which invoked a different bowtie fil-
ter.

To determine the magnitude of electronic system noise
�N0 in Eq. �2��, a fabricated, poly�methylmethacrylate�
�PMMA� cylinder phantom �35.4 cm diameter� was scanned,
using a series of tube currents ranging from the lowest to the
highest available settings �50, 150, 300, and 500 effective
mAs�, 120 kVp, 16	0.75 mm collimation, pitch of 1, and
0.5 s rotation time. The combination of the varying attenua-
tion levels in the phantom �maximum log attenuation of 7.7�
and the different current levels provided a controlled range
of flux levels spanning the whole clinical range of signal
intensity �10 natural logarithm units�, including reasonable
changes of x-ray spectrum due to beam hardening. The phan-
tom was centered on and aligned along the gantry axis by a
fixture, such that only the phantom was present within the
scanner’s field of view, thus isolating the attenuation proper-
ties of the phantom from any extraneous structures, i.e., there
was no patient table present in the scan.

To validate the simulation model for use with tube-current
modulation,25 an azimuthally asymmetric object, consisting
of a human skull, was scanned with two mAs settings �50
and 250 effective mAs�, and with tube-current modulation
both on and off, using 120 kVp, 16	0.75 mm collimation,
pitch equal 1.0, and 0.5 s rotation time. To determine the
interscanner variability of the scaling factor K, 17 clinical
patient scans, with tube-current modulation on �11 scans� and
off �6 scans�, were collected from three scanners in the BJC
Hospital complex in St. Louis, MO. Noise calculations for
the direct air exposure portions outside the scanned object
were performed and were assessed in comparison to the
tube-current magnitude recorded in the file header, as a
check on the accuracy of the tube-current modulation model.

For studies of observer sensitivity to the simulated noise
and a determination of the JND in noise levels, a preserved
adult male cadaver head was scanned with 50, 150, 300, and
500 effective mAs on a 16-row scanner, using 120 kVp, 16
	0.75 mm collimation, pitch equal 1.0, and a rotation time
of 0.5 s. Simulated sinograms with different noise levels

were used to reconstruct images.
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II.D. Determination of simulation parameters

II.D.1. Statistical properties of sinogram data

A fundamental assumption used in step 7 of the simula-
tion procedure �Sec. II A� is that the noise fluctuations are
normally distributed. The statistical properties of detector
measurements were studied by applying a chi-square ��2�
goodness-of-fit test26 �MATLAB, chi2gof� to the sinogram
data, against the null hypothesis that the data were drawn
from a normal distribution. For air or detrended cylinder
scans, transmittance measurements �e−A�d,g,r�� of detector d
and row r were sampled over G gantry steps �either 2000 or
subsets of 1160 each�. A �2 test was performed on the mea-
surements for each detector to compute a p value, which is
defined as the probability that a �2 value greater than the
observed �2 would be obtained from measurements of a true
normal population. As discussed by Press et al.,27 the use of
the �2 test involves an implicit assumption that the measure-
ment process itself, as well as the fundamental signal, is
normally distributed, in particular that systematic outliers in
the data can be avoided. In a CT scan, there are sometimes
random events, such as current spikes or small objects on the
gantry shroud in the field of view, that produce outlying data
points that resist detrending and can lower p values by fac-
tors of 10. For example, a set of 2000 measurements from a
detector may have a p value of 0.005, while analysis of its
two subregions of 1000 points will each have a p value
greater than 0.1. �The opposite is also observed: two subre-
gions may have p values less than 0.05, but when combined
the resultant p value is greater than 0.05.� Press et al. suggest
that smaller acceptance criteria �� values� may be appropri-
ate in the presence of such non-normal measurement errors,
e.g., using 0.001 rather than the conventional 0.05 criterion.
An acceptance criterion for individual p values must also
take into consideration that multiple, independent tests were
being performed for many detectors, which will lead to ran-
dom occurrences of small p values even for a normal popu-
lation. In this case, it is hard to state significance by simply
comparing the percentage of detectors that do not satisfy the
extreme criterion.13 This is often accounted for by adjusting
the acceptance criterion as a function of the number of tests,
e.g., a Bonferroni correction28 can be applied with ��=1
− �1−��1/n for n tests. �In a test with 672 detectors, the Bon-
ferroni correction for �=0.05 would yield ��=0.000 076.�
This in effect follows the suggestion of Press et al., for a
lower acceptance criterion, but reveals little about the char-
acteristics of the total measurement population.

Rather than considering just a single extreme p value as
the test for normality, the evaluation that was utilized was
based on the distribution of all measured p values, which is
required to be uniformly distributed between zero and one
for all measurement sets for the Gaussian hypothesis to be
valid. The p values generated from the above �2 test for each
detector were analyzed by Fisher’s method29 with a test sta-
tistic FM

2 =−2	d=1
Nd log�pd�, which is defined as a �2 test hav-

ing 2Nd degrees of freedom. This was evaluated using the
complement of an incomplete gamma function �MATLAB,

2
gammainc�. The extremum probability �pX value� that FM is
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greater than that of a normal distribution is then compared
with the conventional criterion �=0.05.

These tests were applied for the range of four currents
�50, 150, 300, and 500 effective mAs� for both an empty
gantry air scan and a highly attenuating object �35.4 cm
PMMA cylinder� using the body protocol. In the case of the
cylinder phantom, detectors in the region near the cylinder
edge experience large variations in signal due to small posi-
tioning errors coupled with high gradients in the object
profile;30 therefore, these regions were excluded from the
analysis. Low-frequency signal changes, such as tube-current
or detector instability, were often present in addition to the
stochastic quantum noise in the measurements; thus, a de-
trending operation was performed using a cross-gradient
operator,31 see Appendix A 2. The primary beam through the
center of the cylinder was attenuated by maximum of about
e−7.7, corresponding to intensities that were about 2000 times
less than those in air. This provided the lowest flux condi-
tions that could be experimentally measured. The pX values
�obtained by Fisher’s method to characterize all the detectors
in a given scan experiment� were themselves analyzed by
Fisher’s method to test the overall Gaussian nature of sino-
gram data.

II.D.2. Bowtie filter profile

The following technique was used to determine the form
of the bowtie filter profile, p�d�. Because the x-ray path
length through a patient is typically smaller in the periphery
of the body relative to its center, bowtie filters shape the
intensity of the incident x-ray beam into a nonuniform flux
across the fan beam to minimize dose to the patient32 and to
obtain equal signal over all rays exiting the patient. Specific
bowtie profiles are provided for scans of particular parts of
the anatomy, e.g., head bowties have a narrower fan beam of
flux compared to body filters. The result of the bowtie filter
is a reduced flux in the outer region of the fan beam. If there
is no attenuating object present, this creates higher noise lev-
els in periphery regions relative to the isocenter. CT scanners
are calibrated to produce data for filtered backprojection that
will have a uniform mean attenuation of zero for air; so a
scan of an empty gantry produces a sinogram with essen-
tially constant mean value �zero� for attenuation �or unity for
transmittance� for each detector across the fan beam; this
profile for one detector row is shown in Fig. 1�a�. However,
due to the variation in flux level across the fan beam, vari-
ance across the field of view of detectors is not constant �Fig.
1�b��. �Note: Engel et al.,33 recently demonstrated that the
presence of objects adds measureable scatter signal �up to
10% of primary flux� in direct exposure regions. This effect
was not analyzed in this study.� As is shown in Appendix A
1, measuring the noise in a detrended transmission signal as
a function of detector position d provides an estimate of the
relative transmission of the bowtie filter, p�d�.

The variance of the cross-gradient �Appendix A 2� at each
detector position was computed for multiple gantry positions
�e.g., 1400 �for head protocol� or 2500 �for body protocol�

gantry steps�, and the profile of this variance versus detector
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index was fit to an eighth-order polynomial function; the
normalized inverse of this fit serves as the bowtie filter trans-
mission profile, p�d�. The accuracy of the profile was esti-
mated by computing the root-mean-square �rms� of the rela-
tive error between the measured variance and the inverse of
the fitted profile,

Erms =�1/Nd	
d=1

Nd

��T
2�d� − �1/p�d���d��/�1/�p�d���d����2

=�	
d=1

Nd

�1 − p�d���T
2�d��2/Nd.

As shown in Appendix A 4, Erms must be corrected for bias
due to stochastic fluctuations of the measurements. �For
comparing measurements to the profile, there is no noise

FIG. 1. The effect of bowtie filter on signal statistics. �a� Plot of mean
transmittance signal as a function of detector position for air scans at 50
�points� and 500 mA s �line� in a 16-row scanner, with mean transmittance
of Td�50 mA�= 1.0002�0.0019 and Td�500 mA�=1.0001�0.0009 over
2000 gantry steps. �b� Plot of the variance of transmission signal for the
same two scans. While the means are similar and relatively constant, the
variance is non-uniform, being greatest in the low-flux periphery areas, and
its magnitude is inversely proportional to the current.
contribution to bias from the profile polynomial.�
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II.D.3. Incident flux

The following technique was developed to measure the
scaling factor relating the tube current to the x-ray quantum
flux. Solving Eq. �7� for the scaling factor K gives

K =
Q0�g�

cmA�g�s
. �10�

As shown in the Appendix A 1, Q0�g� is inversely propor-
tional to the variance of the transmittance signal �T

2�d ,g� and
the bowtie filter profile, p�d�. Therefore, Q0�g� can be esti-
mated by averaging the detrended noise �CG

2 �d ,g�
=�T

2�d ,g� /4 given in Appendix A 4 over all detectors for an

air scan �T̄�d ,g�=1�,

Q0�g� =
1

Nd
	
d=1

Nd 1

4p�d��CG
2 �d,g�

. �11�

K can be estimated by averaging Eq. �10� over all gantries

K̄ =
1

Ng
	
g=1

Ng 
 Q0�g�
cmA�g�s� . �12�

To determine the intrascanner variability of K, air scan
measurements were performed at four different current levels
�50, 150, 300, 500 effective mAs�, and a mean and standard
deviation for K was calculated. To estimate interscanner vari-
ability, means of K for three different scanners in the BJC
Hospital complex were calculated and a standard deviation
computed.

A variation of this technique can be useful in determining
the flux level in any clinical scan, including those using tube-
current modulation, even if the instantaneous tube current
value is not available. Most scans have sinogram data that
include some regions outside the patient with direct exposure
�air only� measurements. These air regions in the sinogram
data can be segmented, e.g., by thresholding for transmit-
tances greater than 0.99, to collect samples with direct expo-
sures. The variance of cross gradient of the signal from the
selected segmented regions normalized by the bowtie filter
profile represents the flux �Q0� of the scan given by Eq. �11�.
This method can thus be used to measure tube-current modu-
lation or to validate tube-current parameters extracted from
data file headers.

II.D.4. Electronic system noise

Electronic system noise is several orders of magnitude
smaller than the quantum noise present in the direct beam,
and hence, only becomes appreciable in the presence of a
highly attenuating object. A method for measuring this com-
ponent is described by Whiting et al.18 and involves scanning
a precisely aligned cylinder object; fitting the sinogram pro-
file signals to a parameterized model; and obtaining the sig-
nal statistics from fluctuations about this mean “reference
truth” model. From such measurements, variance can be
plotted as a function of signal magnitude, with the intercept

of the fitted linear equation being equal to the system noise.
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A less complicated and more convenient estimate of sys-
tem noise was obtained by scanning a highly attenuating
cylinder and assuming that the sinogram attenuation profile
of the cylinder was stationary during one rotation. �A cylin-
der could be centered to within 3–4 mm of the isocenter,
which leads to systematic intensity modulation in the profile
near the edges of the cylinder that would distort estimates of
stochastic noise. The magnitude of this systematic modula-
tion as a function of position in the cylinder profile was
estimated by the methods of Whiting and Muka34 or Earl.30

Data were analyzed only in regions where stochastic noise
comprised more than 98% of the signal energy, which was
typically the central 200–300 detectors.� The mean and vari-
ance of the transmittance signal �T�d ,g�=e−A�d,g�� were cal-
culated for each detector location. Rewriting Eqs. �1� and �2�
in terms of the transmittance gave the measured variance in

terms of the measured mean, �S
2=�S̄+N0, with two adjust-

able parameters, � and N0. These parameters were deter-
mined by using a nonlinear Nelder–Mead simplex optimiza-
tion �MATLAB, fminsearch� to minimize the mean-square
relative error between the measured and modeled variance,
averaged over all detectors �see Fig. 2�. Edges of the cylin-
der, which contain high variance due to positioning sensitiv-
ity caused by large edge gradients, were excluded. This re-
sulted in an estimate for the incident flux scaling factor ���
and system noise �N0�.

II.D.5. Influence of model components

The effect of the bowtie filter and background noise on
image properties was observed by producing simulated im-
ages with different combinations of these components en-

FIG. 2. Plot of transmittance variance divided by mean transmittance as a
function of detector position for scan of a 35.4 cm cylinder for 50 mA s. For
uniform flux �no bowtie� with no additive system noise, this would be ex-
pected to be a constant, but the bowtie filter and system noise cause excess
variance. Points represent the measurement and the solid line represents the
noise model of Eqs. �1� and �2�, with parameters �K=3242 and N0=38�
selected to minimize the square of the relative error. The dotted line corre-
sponds to cylinder profile �not to scale� as a function of detector position.
abled, such as including or excluding the bowtie filter in the
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simulation of low-dose cylinder scan from a high-dose cyl-
inder scan. Noise statistics �means, standard deviations� were
measured in regions of interest �ROI� in the images, and
comparisons were made between them. In addition, visual
inspection of simulated clinical images, with and without the
components, revealed the visual impact they had on image
features.

II.E. Simulation validation

To validate the dose-reduction simulation, statistics from
both the sinogram and image domain were compared for
low-dose simulations �obtained from high-dose scans� and
actual measured low-dose scans. Observer studies were also
conducted to assure that simulated images appeared realistic.

II.E.1. Quantitative analysis in sinogram
domain

Scans of a 35.4-cm diameter PMMA cylinder were ob-
tained with four current levels �50, 150, 300, and 500 effec-
tive mAs�, using 120 kVp, 16	0.75 mm collimation, pitch
equal 1.0, and a 0.5 s rotation time. Sinogram data at the
higher effective mAs were used as the basis for a lower-dose
simulated sinogram. In the sinogram data domain, the vari-
ance was calculated for all detectors over 3000 gantry steps,
as was the rms relative error between the original and simu-
lated scans �rmsRE=���original−simulated� /simulated�2�.
As shown in Appendix A 4, this rms relative error has a bias
due to the stochastic noise in the variance measurements; a
correction was applied to the rms relative error by subtrac-
tion of the computed bias from the mean-square relative er-
ror. The magnitude of this effect was estimated by perform-
ing two simulations with the same data and same
parameters—the magnitude of this rms relative error was

FIG. 3. Images of cylinder and cadaver head, showing selected ROI. Statisti
in Fig. 12 to determine accuracy of simulations.
7.29%, in agreement with a calculated bias of 8.3%.
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II.E.2. Quantitative analysis in image domain

In the image domain, multiple ROIs were selected, and
the means and standard deviations were calculated for corre-
sponding locations in both original and simulated slices. For
cylinder phantom scans, eleven slices were selected from
images and ten ROIs were chosen in each slice �Fig. 3�a��,
resulting in a total of 110 ROIs for comparison. Simulated
lower-dose scans were prepared from higher dose scans:
three sets for 50 mAs �from 150, 300, 500�, two sets for
150 mAs �from 300 and 500�, and one set for 300 mAs
�from 500 mAs �. This gave a total of six sets of simulated
ROIs to be compared with three sets of original ROIs, for a
total of 660 comparisons.

For cadaver-head scans, 31 slices were selected, with
seven ROIs in each slice �Fig. 3�b��, including areas of ex-
terior air and interior areas of bone and soft tissue, for a total
of 217 ROIs per current level. Again, four current levels
were acquired, with three original measurements and six
simulated measurements from the higher dose scans, for a
total of 1302 ROIs for comparison. Between scans, the ca-
daver head changed orientation slightly, so that reconstructed
images could not be exactly aligned and the difference image
contained major artifacts. Therefore, the means of ROI sta-
tistics were calculated for exterior and interior regions of
each scan, and the relative error between means was re-
ported, rather than computing the rmsRE on a pixel-by-pixel
basis.

The rmsRE between the standard deviations of the ROIs
was reported as a measure of accuracy. Note that, due to the
stochastic noise of individual scans, even with a perfect
simulation model there would be a finite rms relative error
between any two scans. The analysis in Appendix A 4 pro-

each ROI were collected and analyzed. Plot of image-domain noise shown
cs for
vides an estimate of this variance floor as a function of indi-
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vidual measurement variances, and a correction was applied
�subtracting a variance floor from the measured variance� to
remove this bias from the reported results.

II.E.3. Image domain observer study

In addition to quantitative testing of simulation results, it
is important that observer studies be performed to insure that
simulations appear realistic to radiologists. Images of a ca-
daver head were used to conduct a four-alternative forced-
choice observer study35 �4AFC� for the ability to distinguish
simulated from original images. Scans of the cadaver head
were performed at four current levels �50, 150, 300, and
500 mAs � �Fig. 4�. The raw data from the higher current
levels were used for a simulation of images at the lowest
current level of 50 mAs , providing images from four source
currents �150, 300 mAs , and two instances from the
500 mAs scan�. Six original and 12 simulated image slice
positions �out of 31 reconstructed slices available� were se-
lected for the observer experiment. Sets of four images were
created, with a random selection of one original and three
simulated. The four images were randomly placed in the
four-up matrix. The observer was instructed to select one
image �the “original”� that had different noise characteristics
from the other three. Forty sets of four images �total of 160
images� were displayed one set at a time, and an attendant
manually recorded the position of the image choice selected
as the original by the observer. The relative frequency with
which an observer picked each image from the set was cal-
culated, with the expectation that a 25% frequency would
indicate random selection �no difference between the original
and simulated images�. Because the selection is a binomial

FIG. 4. Image of four-up cadaver head used in 4AFC study. Upper left
simulated 150–50 mAs ; upper right original 50 mAs , lower left simulated
300–50 mAs , and lower right simulated 500–50 mAs .
process, the responses are not expected to be normally dis-
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tributed. �Normal curves were fit to the relative frequencies
and the normality of the data distributions were tested with
Shapiro–Wilk W tests. If data were not normally distributed,
the arcsine transformation was performed on the relative
frequencies,36 and the normality of the transformed data was
tested.� The arcsine-transformed data were entered into a re-
peated measures analysis of variance. Statistical analyses
were performed with JMP Statistical Software �SAS Insti-
tute, Inc., Cary, NC�.

Six radiologists with a mean clinical experience of
10.7 years �range: 7–17 years� participated in the experi-
ment. Before the study, they received the following orienta-
tion in distinguishing between the original and simulated im-
ages. Two image sets were provided. Each set consisting of
the original images at all four dose levels presented next to
each other, as well as samples of lower-dose simulated im-
ages generated from the three higher-dose raw data scans
�same slice location as shown in first step� presented next to
the corresponding original image �total of 12 sample dose
levels�. The observers were allowed to view all samples with
no time limit and an attendant was present to answer any
questions.

II.F. Just noticeable difference

To establish guidelines for the accuracy required in noise
simulation, experiments were performed to determine
the amount of difference between image noise levels
that could be discerned by observers. This was measured as
the JND,19 which is defined as the point at which an
observer operates midway between random guessing and
perfect certainty. A 2AFC experiment was conducted,
for which the JND performance level is
75% �=�random guessing�50% �+perfect certainty�100% ��
/2. Images were prepared from a 500-mAs cadaver head
scan, containing 151 slices; all the image slices had nomi-
nally comparable noise levels. A reference low-dose simu-
lated noise level was set at 50 mA s and compared with five
higher-dose levels, with dose differing by 10% �55 mAs �,
20% �60 mAs �, 30% �80 mAs �, 40% �90 mAs �, and 100%
�100 mAs �. For each of the above noise levels, 40 slices
were randomly selected from the 151 slices available, and
paired simulated images at the two different dose levels were
displayed next to each other, with a random order for the
position of the lower dose image �Fig. 5�. Observers were
asked to select the image in the pair that had lower noise,
which was recorded by an attendant. The percentage of cor-
rect choices was calculated for each noise level; no detect-
able difference in noise levels is expected to result in a 50%
correct rate, while a large difference in noise levels would
give a 100% correct rate. Results of percent correct were
plotted versus dose level for the group average and for each
individual to determine the dose level at which the JND rate
was 75%.

Five radiologists with a mean clinical experience of
11.4 years �range: 7–17 years� participated in the study.

Each received an orientation session to the observer task,
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consisting of viewing one image slice that was simulated
with varying noise levels, with the four different noise levels
presented side-by-side for inspection.

III. RESULTS

III.A. Simulation parameters

III.A.1. Statistical properties of sinogram data

The �2 tests supported the hypothesis that sinogram data
has Gaussian distributions. In the air scan experiments, the
computed p values for all individual detector channels
�Ndet=10 752=16*672� appeared uniformly distributed over
the region from 0 to 1 �Fig. 6�, and use of Fisher’s method
analysis indicated that they satisfied the Gaussian hypothesis
at the 0.05 significance level, with pX values of 0.298, 0.475,
0.130, and 0.119 for 500, 300, 150, and 50 mAs , respec-
tively. Similar results were obtained for central-region detec-
tors �Ndet=5616=351*16� of the 35.4-cm-diameter cylinder
phantom scans, for the same four current levels: for the �2

FIG. 5. Presentation image for two cadaver head slices used in JND study
�simulated images were prepared from a 500-mAs cadaver head scan�. Im-
age on the right is simulated at 50 mAs current level, left image is simu-
lated at 60 mAs current level, corresponding to 20% difference in dose
level and a 10% difference in standard deviation.

FIG. 6. Plot of p values computed from chi-square test for one row of air
scan data at 300 effective mAs. Minimum measured p value is 5.2728*10−4.
Fisher’s method analysis indicated the p values are uniformly distributed

with a pX value of 0.54.
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tests, Fisher’s method indicated agreement with pX values of
0.612, 0.821, 0.722, and 0.401 for 500, 300, 150, and
50 mAs , respectively. Combining the pX values from all ob-
jects and current levels by Fisher’s method gives a p value
=0.54, indicating that the detector measurements were nor-
mally distributed.

III.A.2. Bowtie filter profile

Bowtie filter profiles were calculated from variance mea-
surements for an open gantry scan �Fig. 7�b��; a plot of the
fitted polynomial for the body bowtie filter is shown in Fig.
7�a�. In this case, the unbiased rmsRE between the polyno-
mial fit and the measured inverse variance, averaged over all
detectors, was less than 1%, indicating an excellent estima-
tion of the flux profile. �From the discussion in Appendix A
3, the noise variance in the measured signal generates a bias

FIG. 7. �a� Plot of reciprocal of variance �proportional to incident flux on
object� determined by air scan �points�, with its corresponding fitted curve
�line�. �b� Bowtie filter profile obtained by normalizing fitted variance curve,
shown for body �solid� and head �dotted� protocols.
floor in rmsRE estimated to be about 3%, so unbiased esti-
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mate of agreement was better than 1%.� The rmsRE among
the bowtie profiles obtained with four different currents was
1.3% �0.9% �standard deviation�, with a maximum indi-
vidual difference of less than 2.8%. Note that the ratio of the
flux at the isocenter compared with the edge of the fan beam
varied by a factor of 8.

III.A.3. Incident flux

To determine the intrascanner variation of the scaling fac-
tor K, a series of controlled scans at four different current
settings on one scanner resulted in a mean value of 3288
with a standard deviation of 4.5% characterizing the scan-to-
scan fluctuations. From the relationship Q=KcmAs, this K
implies a range of fluxes at the isocenter between 69 000 and
674 000 from the minimum �50 mA, 0.5 s rotation, 0.75 mm
collimation� to maximum �500 mA, 0.5 s rotation, 0.75 mm
collimation� currents, respectively. To measure the interscan-
ner variation, K was also computed from air sections in sev-
enteen clinical scans for three different scanners, which re-
sulted in individual standard deviations of 4.2%, 4.4%, and
4.4%, indicative of the intrascanner variability. Computing
the interscanner variation in K between the three scanners
resulted in a standard deviation of 14.5%, indicating that
noise calibration of individual scanners is required to achieve
simulation noise accuracies of approximately 5%.

The effect of tube-current modulation on flux was dem-
onstrated by prediction of the variance of the air region of
the sinogram for a skull object, shown in Fig. 8�a�. The sto-
chastic bias in the rmsRE was predicted �Appendix A 4� to
be 14.9% for tube current on and 15.0% for tube current off.
The measured rmsRE agreed to within 1.3% �0.4% for tube
current on and 1.5% �0.7% for tube current off. A similar
measurement was performed for a clinical patient scan,
where the rmsRE between predicted and measured K was
found to be 2.2% �Fig. 8�b��.

III.A.4. Electronic system noise

System noise N0 was calculated from fits of the variance
model �Eqs. �1� and �2�� to measured scans of a highly at-
tenuating cylinder. N0 was found to have a linear dependence
on increasing tube current, N0=0.7841*cmAs+22.46. �Such
dependence might occur if the analog electronics chain con-
tained an adjustable gain stage, selected for particular mA
settings in a protocol, to scale the signal range, followed by
a fixed noise source.� N0 varies from 40 to 200 NEQ over the
range of currents, indicating that system noise contributes
less than 0.1% to the total variance in the direct beam and
only becomes appreciable for maximum log attenuations
greater than 10, such as for large patients �diameter �40 cm�
or in the presence of metal prostheses.

III.A.5. Evaluation of simulation model components

Analyzing the variance in a cylinder scan reveals the
magnitude of contribution of various model components. A
plot of variance versus detector position �Fig. 9� shows that

the bowtie profile is necessary to match noise levels away
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from the isocenter, while including N0 is necessary to gener-
ate accurate noise in regions of high attenuation. Without
these components, large errors were seen, e.g., 50% at the
isocenter and 90% in the periphery.

The visual effects of noise components in clinical images
can be seen in Fig. 10, where it is observed that in a thoracic
scan it is not possible to match noise in the center and edges
of the chest �leading to errors in noise higher than 44%�
without including the bowtie profile and system noise.

III.B. Simulation validation

III.B.1. Quantitative analysis in sinogram domain

In the cylinder scans, the variance as a function of a de-
tector position was measured for original and simulated
scans; the rmsRE between the two was computed, and it was
corrected for the bias of stochastic noise. The rmsRE was

FIG. 8. Inverse of measured variance in air region outside objects scanned
with tube-current modulation enabled. Line represents scaled tube current,
open markers are the simulated and solid markers are real scans. �a� Skull
scan with tube modulation on for 250 mAs �lower� and both simulated and
original 50 mAs �upper�, �b� a patient body scan.
5.2% �1.0% �standard deviation� for 50 mAs simulations,



184 Massoumzadeh et al.: Validation of CT dose-reduction simulation 184
6.5% �3.1% for 150 mAs simulations, and 5.8% for the
300 mAs simulation. The overall rmsRE was 5.6% �1.6%.
The maximum rmsRE was less than 9% for all individual
cases.

III.B.2. Quantitative analysis in image domain

Over the 660 ROIs in the cylinder phantom images that
were compared, the rmsRE between the standard deviation
of the simulated and original images was 5.7% �2.1%
�three sets of 50 mAs simulations, 330 ROI�, 4.2% �1.2%

FIG. 9. The effect of various components on noise. Conditions are the same
as Fig. 2, with solid line representing complete noise model fit to experi-
mental data �dots�. The dotted lines present the model with and without
inclusion of bowtie filter profile and system noise. For uniform flux with no
additive system noise, the model profile would be a constant for all detec-
tors. The bowtie profile contributes rising noise away from the isocenter,
while system noise increases noise primarily in the center of the cylinder.

FIG. 10. Simulated images created by including a bowtie filter �left� and w
appearance of noise levels in indicated regions. The percentage difference be

50.9% in ROI No. 3 �tissue-periphery�, 44.6% in ROI No. 4 �tissue-periphery�, a
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�two sets of 150 mAs simulations, 220 ROI�, and
2.4% �0.6% �one set of 300 mAs simulation, 110 ROI�,
with an overall mean rmsRE of 4.1% �1.6% and a maxi-
mum individual error of 9.3% �only for one of the ROIs at
50 mAs �. The rmsRE averages for the 1302 ROIs of cadaver
head images were 4.7% �50 mAs �, 0.5% �150 mAs �, and
5.3% �300 mAs � for interior regions, and 2.8% �50 mAs �,
1.2% �150 mAs �, and 0.9% �300 mAs � for exterior regions
�see Table I�.

III.B.3. Image domain observer studies

The 4AFC test data were analyzed to test the equivalence
of simulated and real images in observer viewing. The dis-
tributions of frequencies for image selections were non-
normal �p�0.05, Table II�. After arcsine transformation,
however, the data were normally distributed �p�0.05� and
differences were tested for statistical significance with a re-
peated measures analysis of variance. Individual observers
varied in their abilities of selecting original images, ranging
from a frequency of 17.5% to 40% �Table II�. There was no
significant difference between the selection of simulated or
original images, indicating that the selection was random to
within experimental error �p=0.86�.

III.C. Just noticeable difference

Data from the 2AFC test were analyzed to determine the
sensitivity of observers to changes in noise level. The fre-
quency for correctly identifying the lower noise image is
plotted versus fractional change in current level for indi-
vidual observers and the mean of all observers. The JND
point �75%� corresponds to approximately a 25% increase in
current level, as seen in Fig. 11. Individual observer’s JND
varied between a 20% and 40% increase in current level.
Note that a fractional increase in current level gives rise to a

ut one �right�, with noise levels matched in the center of the image. Note
n two simulations is 1.8% in ROI No. 1 �center�, 2.8% in ROI No. 2 �lung�,
itho
twee
nd 28.3% ROI No. 5 �air-periphery�.
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square-root increase in �HU, e.g., 25% more current results in
a 12% decrease in �HU. Results reported in this article are
consistent with observer studies involving photographic
images,37 where the JND for an “average” photograph was
found to correspond to a 15% increase in rms granularity.
This JND serves as a target benchmark for accuracy levels in
simulations, i.e., images with noise matched to within this
tolerance will appear equivalent.

IV. DISCUSSION

These experiments demonstrated that tube-current reduc-
tion simulation can be a useful tool for generating realistic
images to be used in studying image quality as a function of
radiation dose in CT examinations. Compared to simulations
in the image domain,7,38 methods based in the sinogram do-
main are straightforward and accurate. Detailed descriptions
of the simulation methods were presented, including a gen-
eral noise model; experimental techniques for determining
parameters used in the simulation process; estimates of
achievable accuracies in simulations; and criteria for simula-

TABLE I. Comparison of simulation accuracy for cada
relative errors of tissue and air regions are listed. Or

50 1

Tissue Original or simulated
50 mAs

35.8�4.6 37.1�4.

Original or simulated
150 mAs

NA 21.1

Original or simulated
300 mAs

NA N

Air Original or simulated
50 mAs

19.2�1.9 19.9�2

Original or simulated
150 mAs

NA 12.9

Original or simulated
300 mAs

NA N

TABLE II. 4AFC study results. 40 sets of four-up ima
source currents� were presented as shown in Fig. 4. P
the simulations are indistinguishable from originals,

Simulated
150–50 mAs

Simulated
300–50 mAs

# images
presented

22 30

Observer 1 2 �0.09�a 6 �0.20�
Observer 2 7 �0.32� 3 �0.10�
Observer 3 3 �0.14� 8 �0.27�
Observer 4 5 �0.23� 16 �0.53�
Observer 5 4 �0.18� 4�0.13�
Observer 6 8 �0.36� 4 �0.13�
Mean
probability

0.22�0.1b 0.23�0.16

aNumber of picks and relative frequency �for example
�2 of 22� of the time�.
b
Means�standard deviations.

Medical Physics, Vol. 36, No. 1, January 2009
tion accuracy. To perform accurate noise synthesis, noise
models must include varying fluxes, due to bowtie filters and
tube-current modulation, and electronic noise sources; other-
wise, fairly large errors �50%–90%� in simulated noise level
can occur throughout an image. General experimental tech-
niques, which could be extended to other scanner geom-
etries, were presented for the convenience of determining
model parameters, such as bowtie filter profile, flux level
scaling, and system noise.

The statistical properties of sinogram measurements dem-
onstrated the validity of using a Gaussian random noise gen-
erator for simulations, as a normal distribution was found to
be appropriate for clinically relevant protocols. A recent re-
port on sinogram statistics from the researchers at SUNY
Stony Brook13,39 presented a p value analysis of detector
measurements. Their results indicated more disagreement
from a normal population compared to the results presented
here, which may be due to their differing experimental tech-
niques: they computed statistics from repeated scans in the
sinogram domain and used phantoms with complex anatomi-

ead shown in Fig. 3�b�. ROI standard deviations and
l measurements are bold.

300 500

.77% � 37.6�4.4 �−5.16% � 37.6�4.0 �−5.03% �

7 21.2�2.6 �−0.61% � 21.1�2.7 �−0.36% �

15.8�2.1 15.0�1.8 �5.28%�

48% � 19.5�1.9 �−1.73% � 19.6�2.1 �−3.77% �

7 13.0�1.6 �−1.10% � 12.7�1.5 �1.32%�

10.5�1.3 10.4�1.2 �0.88%�

one original, and three simulated selected from four
tage of selection for each image source indicates that
all selections being effectively random �25%�.

Simulated
500–50 mAs

Simulated
500–50 mAs

Original
50 mAs

34 34 40

11 �0.32� 5 �0.15� 16 �0.40�
14 �0.41� 9 �0.26� 7 �0.18�
4 �0.12� 16 �0.47� 9 �0.23�
5 �0.15� 7 �0.21� 7 �0.18�
13 �0.38� 10 �0.29� 9 �0.23�
12 �0.35� 4 �0.12� 12 �0.30�

0.29�0.13 0.25�0.13 0.25�0.09

erver 1 picked “Simulated 150–50 mAs ” image 9%
ver h
igina

50

5 �−3

�2.

A

�−2.

�1.

A
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cal structures. Also, it is difficult to interpret the statistical
significance of the metrics that they reported �fraction of de-
tectors with p values less than 0.05, which varied from 6% to
9% of the total number of detectors�.

When simulating flux levels lower than the clinical con-
ditions examined here, Gaussian noise properties ultimately
become compound Poisson.18 Under those conditions, the
signals should be converted into NEQ, and Poisson random
number generators can be used.40 The range of validity for a
Gaussian process can be estimated using model parameters
presented in this article, which were applied to an individual
patient and scan protocol. Clinically, departure from Gauss-
ian behavior might occur with large patients or in the pres-
ence of prosthetic metal implants. For instance, an abdomen
scan of a patient with a 40 cm diameter might have maxi-
mum attenuations on the order of 8 natural logarithm units,
which for a 500 mAs scan would give minimum flux counts
on the order of 220 �=670 000*e−8�. In this case, a 10	 dose
reduction �to 22 NEQ� could be accurately simulated with
Gaussian random noise generators.

There are no reports of the comparison of simulated and
real sinogram noise in the literature. In the image domain,
several groups have reported on observer studies that com-
pare real and simulated CT images, claiming very good re-
sults, but there is less information on quantitative testing.
Mayo et al.12 compared simulations in 27 patients at two
current levels and found “no significant difference �minimum
P�0.13�” in the noise levels measured in aortas, although
not enough information was provided to determine noise
characteristics. Frush et al.11 measured real and simulated
noise in a 25 cm phantom at four current levels, reporting no
statistically significant difference, with agreement on the or-
der of a few percent. Mackenzie, et al.41 recently reported

FIG. 11. Plot of fraction of low-dose images correctly identified vs the
amount of additional current in one of the image pair. Data for five indi-
vidual observers are presented with dotted lines, and solid line represent
mean of all observers. The JND point �75% correct� for the mean of all
observers is approximately 25% added current, while the JNDs for indi-
vidual observers vary between 20% and 40% added current.
measurements with a correlation coefficient between real and
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simulated noise of 0.99, although their graphs of data seemed
to show noise discrepancies on the order of 10%. �Note that
if the simulated versus real measurements presented in this
article are plotted against each other, Fig. 12, a very high
correlation coefficient is found �r=0.999�, even though the
rmsRE analysis indicates a 5% mismatch.�

The techniques described produced accuracies in noise
simulation on the order of �5% for individual scanners.
�Variations in parameters were on the order of 15% between
different machines, indicating that parameter calibration for
individual scanners must be done.� Measurements showed
the matching of noise statistics in the sinogram domain be-
tween original and simulated data to within 5.6%, which
propagates into the image domain. More importantly, ob-
server studies indicate that the simulated images are realistic,
with no detectable difference between simulated and original
images. �Individuals participating in the observer studies
commented that it was very difficult to choose between origi-
nal and simulated images.� The JND studies indicate that
observers can reliably detect changes in noise levels corre-
sponding to 25% changes in tube current. This level of noise
sensitivity is consistent with studies performed with human
observers on photographic film, indicating that accuracies in
simulation on the order of �10% would result in images that
could not be reliably differentiated from original images.

Finally, it should be noted that the methods presented here
are intended to simulate techniques that lower dose by de-
creasing the tube current, without changing other protocol
parameters that affect patient dose, such as kVp, pitch, col-
limator size, or rotation time. All these parameters directly
affect signal properties and have more complicated effects on
images than just changing noise statistics. Also, note that for
simulations of modest dose reductions, the magnitude of the
added synthetic noise may be comparable or less than the

FIG. 12. Plot of real vs simulated image-domain noise �standard deviation in
HU� for cadaver head �31 slices as shown in Fig. 3� and cylinder phantom
�11 slices as shown in Fig. 4�, with a total of more than 2000 ROI. The
correlation factor of all data points is r=0.999 28; with r=0.998 49 for cyl-
inder measurements, and r=0.9988 for cadaver head, respectively.
existing original noise, which would cause the noise patterns
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in images created from one sinogram slice in multiple simu-
lations not to be statistically independent. Thus, a single
simulation image would represent realistic noise appearance
but the use of multiple simulations from one base image in
an experiment would require caution.

Also, the method requires access to sinogram data and
knowledge of sinogram formats. Archiving of sinogram data
is becoming more available on multirow detector CT scan-
ners, and hence, availability of data files is more common.
While reverse engineering of data structures is somewhat
possible, documentation from vendors is preferred. �Such in-
formation was provided to our group under a research agree-
ment with Siemens.� Several research groups, in addition to
our own, have recently reported working with the raw
data.10,13–17 The techniques that have been presented in this
article are general and useful on any scanner geometry. In
addition to the results reported on 16-row scanner systems,
comparable outcomes were obtained in experiments con-
ducted on single-row helical scanners �Siemens Plus 4� and
four-row scanners �Siemens Volume Zoom�. For example,
the older generation CT scanner �Siemens Plus 4� with much
higher system noise was also accurately modeled with the
developed techniques.

In summary, simulation tools, such as described in this
article, have applications in several areas of improving CT
acquisition. Because they can generate realistic low-dose
clinical images, they can be used in determining the effects
of image noise on observer performance for research, in ob-
taining the specification of protocols to achieve ALARA ob-
jectives, and in guiding the design of scanner system com-
ponents. Simulation can be particularly valuable as a training
device, allowing radiologists to explore the impact of lower
doses and become comfortable with lower-dose protocols. In
observer study experiments conducted for this research, it
was noted that readers’ confidence in their ability to diagnose
with low-dose images increased after spending time accli-
mating to images with lower dose levels. It would be prudent
to conduct further research to take advantage of this capabil-
ity.
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APPENDIX A: CHARACTERIZATION OF NOISE

This research required the characterization of noise in CT
images and raw data. Previously,18 methods were developed
to measure statistics �i.e., probability density functions and
higher order moments� of sinogram signal fluctuations, but
such methods require careful control of experimental condi-
tions and extensive analysis. In this research, for the simple
evaluation of signal variance, more convenient and rapid

methods were developed and are described. The basic ingre-
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dients of the approach are choice of the domain in which to
represent the signals, mathematical operations on data to ex-
tract stochastic components, estimates of the accuracy of the
variance measurements, and a method to quantify the simi-
larity of two random processes.

1. Mean-variance relationships

Sinogram data can be represented in several different do-
mains, and the relationship between the mean and variance
are different in each.42 Data files consist of the natural loga-
rithm of scaled measurements,Am=log�S0 /Sm�, from which
the fundamental linear measurement signal can be extracted
Slinear=S0e−Am. Here, S0 is the mean signal in the absence of
any object, known by calibration, and it is proportional to the
x-ray flux �, S0=��. In the linear flux domain, substituting
S0 in Eq. �2� results in a variance that is proportional to the
mean, �linear

2 =�Slinear. �As shown by Whiting et al.,18 � is a
slowly varying function of the x-ray spectrum and changes
on the order of + /−3% across the range of clinical condi-
tions. In this study, it is assumed to be a constant for all
measurements.� For the varying incident flux across detector

position d or gantry angle g, �S̄�d ,g�= p�d�mA�g�S̄0�, and the
variance remains linear with the mean, �linear

2 �d ,g�
=�S̄linear�d ,g�.

It is often convenient to work with transmission ratios,
i.e., the data are ratios of measured flux with an object
present to the expected flux without the object. Transmit-
tance values range from 0 to slightly larger than one �due to

random excess fluctuations�, with mean T̄=e−Ā= S̄linear /S0. In
this case, the variance can be computed as �T

2

���T /�Slinear�2�linear
2 = �1 /S0�2�Slinear=�T̄ /S0= T̄ /�; thus vari-

ance remains linear with the mean transmittance and be-
comes inversely proportional to the flux level. In particular,

when T̄=1, �T
2 is the inverse of the x-ray flux. In the case

where the flux is varying, the mean transmittance remains
independent of flux nonuniformity, while the transmittance
variance is of the form �T

2�d ,g�=�T�d ,g� /S0p�d�mA�g�
=T�d ,g� /�p�d�mA�g�=T�d ,g� / p�d�Q0�g�, showing an in-
verse dependence on the flux nonuniformities and providing
a method to measure the bowtie profile p�d� when no object

is present �T̄=1�.
For linear reconstruction techniques �filtered backprojec-

tion�, data are kept in log attenuation form. Here, the vari-
ance can be approximated as �A

2 ���A /�Slinear�2�linear
2

=�Slinear /Slinear
2=� /S0e−A=eĀ /�, resulting in an exponential

relationship between the mean and variance. Similarly, if the
flux distribution varies as a function of detector position �due
to bowtie filter� or gantry angle �due to tube current modu-
lation�, the mean is not affected and the variance is inversely
related to variations of p�d� and mA�g�: �A

2

=eĀ /�p�d�mA�g�.
Finally, the behavior of signal variance can often be con-

veniently displayed by presenting “relative transmission”

variance: �v
2 ��T

2 / T̄. This is because for simple Poisson

noise with uniform flux, the variance is proportional to the
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mean, so any deviation from this relationship �system noise,
bowtie filter� shows up as an excess noise that is scaled rela-
tive to simple Poisson noise �see Fig. 9�.

These relationships are helpful in experimentally estab-
lishing parameters, such as bowtie profiles or flux levels, for
individual scanners.

2. Detrending

A fundamental challenge in measuring random signals is
rejection of deterministic or systematic components, which
typically contain low frequency energy.43 For instance, in
empty gantry scans, there are slow base line drifts due to
x-ray tube fluctuations, or linear streaks due to nonuniform
attenuators on the gantry shroud, either of which can contain
appreciable signal energy. One way to suppress or detrend
these errors is through differentiation of the signal.31 Differ-
entiation removes low frequency and enhances high frequen-
cies, so stochastic components can be extracted from mea-
surements on smooth objects, such as air �a constant
baseline� or the interior of symmetric cylinder phantoms. A
cross-gradient operation CG was effective in this regard.
This was implemented in MATLAB, using the gradient func-
tion �gradient�Fi���Fi+1−Fi−1� /2�, as CG=�2F /�g�d
=gradient�gradient�F����. To relate the statistical properties
of this detrended data to those of the original signals, note
that �F1−F2

2 =�F1

2 +�F2

2 and that the coefficient of 0.5 for both
terms in the gradient is squared in the variance. Therefore,
assuming that the variance of each term is approximately
equal, �F1−F2

2 ���F
2 +�F

2� /4=�F
2 /2, the cross gradient will

have a computed variance that is one-fourth of the underly-
ing original signal �F

2 =4�CG
2 .

3. Precision of variance measurements

During the course of these experiments, results were fre-
quently reported as variances of measurements or as the rm-
sRE between models and measurements. One question that
arises is: “What is the expected precision of the reported
quantity in a relative sense?” In other words, “What is the
variance of the variance relative to the magnitude of the vari-
ance?” Saviane and Silver44 derive an expression for the
variance of the variance, which is unbiased for a “large”
number of measurements n, as

Var��2� = E���2�2� − �E��2��2 =
�n − 1�2

n3 ��4 −
n − 3

n − 1
�2

2� ,

where �i is the ith central moment. They show that for
Gaussian distributions, with �4=3�4, this expression reverts
to Var��2�=2�4 /n for large n. Likewise, for Poisson distri-
butions, �4=3�2+� and �2=�, so Var��2�= �n−1�2 /n3�3�2

+�− �n−3� / �n−1��2��2+1 /�� /n�2=2�4 /n. In both cases,
the rms of the relative variance error becomes independent of
the magnitude of the variance and depends on the number of
measurements �Var��2� / ��2�2=2 /n�. In the case of measur-
ing the variance for a detector over one revolution �e.g., Ng

=1160�, one would expect relative errors in the variance to
�
be on the order of 2 /1160=0.04. Because the relative error
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of the variance is independent of the magnitude of the vari-
ance, one can use it to compare the noise properties of dif-
ferent detectors, even though each may have large differ-
ences in absolute variance due to the bowtie filter.

4. rms relative error

In this article, a rms relative error �rmsRE
=�	i��mi−si� /mi�2, where m and s refer to the measured or
simulated data point i, is calculated for several quantitative
analyses of the simulation process. This is very useful tool,
but it is a biased estimator for the agreement of simulation
with measurements, because even identical random pro-
cesses will have nonzero rmsRE when repeated measure-
ments are compared, due to the stochastic fluctuations at
each point. The magnitude of this bias can be estimated with
an approach similar to van Kempen and Vliet.45 Performing

a Taylor series expansion for the squared relative error R̂
= ��ŝ− m̂� / m̂�2 about its mean values

R�m,s� = R�m̄, s̄� + Rm�m̄, s̄��m̂ − m̄� + Rs�m̄, s̄��ŝ − s̄� . . .

+ 1
2Rmm�m̄, s̄��m̂ − m̄�2 + 1

2Rss�m̄, s̄��ŝ − s̄�2

+ Rms�m̄, s̄��m̂ − m̄��ŝ − s̄�

and taking the expectation of the expansion gives
E�R�m ,s��=R�m̄ , s̄�+Rmm�m̄ , s̄��m

2 +Rss�m̄ , s̄��s
2, assuming

no correlation between the measured and simulated noise,
and no terms higher than second order in the expansion. This
indicates that even in the case where the random processes
are matched �m̄= s̄ ,�s

2=�m
2 �, there will be a base line contri-

bution given by Rmm�m̄ , s̄��m
2 +Rss�m̄ , s̄��s

2=2�s
2 / s̄2

+2�m
2 �3s̄2 / m̄4−2s̄ / m̄3�=4�s

2 / s̄2. For example, in comparing
the rmsRE for the variances of a simulated and measured
sinogram, from Appendix A 3, the variance of the variance is
2�4 /Ng, so the base line error of the relative error would be
4�2�4 /Ng� /�4=8 /1160, predicting an rms bias of 8.3%. The
computed rmsRE can be corrected for bias by subtracting off
this base line in quadrature.
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