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Treatment plans optimized for intensity modulated proton therapy �IMPT� may be very sensitive to
setup errors and range uncertainties. If these errors are not accounted for during treatment planning,
the dose distribution realized in the patient may by strongly degraded compared to the planned dose
distribution. The authors implemented the probabilistic approach to incorporate uncertainties di-
rectly into the optimization of an intensity modulated treatment plan. Following this approach, the
dose distribution depends on a set of random variables which parameterize the uncertainty, as does
the objective function used to optimize the treatment plan. The authors optimize the expected value
of the objective function. They investigate IMPT treatment planning regarding range uncertainties
and setup errors. They demonstrate that incorporating these uncertainties into the optimization
yields qualitatively different treatment plans compared to conventional plans which do not account
for uncertainty. The sensitivity of an IMPT plan depends on the dose contributions of individual
beam directions. Roughly speaking, steep dose gradients in beam direction make treatment plans
sensitive to range errors. Steep lateral dose gradients make plans sensitive to setup errors. More
robust treatment plans are obtained by redistributing dose among different beam directions. This
can be achieved by the probabilistic approach. In contrast, the safety margin approach as widely
applied in photon therapy fails in IMPT and is neither suitable for handling range variations nor
setup errors. © 2009 American Association of Physicists in Medicine. �DOI: 10.1118/1.3021139�
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I. INTRODUCTION

Intensity modulated proton therapy �IMPT� may deliver
highly conformal and homogeneous dose distributions to
geometrically complex tumors while sparing adjacent critical
structures. This is mainly facilitated by the finite range of the
proton beam which allows for “intensity modulation in
depth.” However, the range of a proton beam in the patient,
i.e., the location of the Bragg peak with respect to anatomical
structures, is uncertain. This uncertainty of the proton range
in tissue arises from multiple sources including:

• uncertainty in CT Hounsfield units and the conversion
to stopping power,1–3

• artifacts in the CT image due to metal implants,4 and
• geometric changes of the patient, e.g., weight loss or

weight gain.
IMPT treatment plans that are optimized without account-

ing for uncertainty in the proton range may highly degrade if
the actual range differs from the assumed range as demon-
strated previously.5 In addition to range uncertainties, setup
errors may lead to severe degradation of dose distributions.

This is mainly due to two effects:
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• the misalignment of dose contributions from different
beam directions,6 and

• the misalignment of density heterogeneities �e.g., metal
implants�.7

A shift of the patient may lead to a shift of the dose
contributions of individual beams relative to each other. As a
consequence, they may not add up to a homogeneous dose in
the clinical target volume �CTV� as desired. In addition, the
radiological density along the path of a pencil beam may
change if, for example, a high density structure like a metal
implant moves into the path of the pencil beam. This effect
will even alter the dose deposition of a single field.

In photon therapy, setup errors and organ motion are typi-
cally dealt with by safety margins. In a typical scenario, a
CTV is to be irradiated with a homogeneous dose. The CTV
is expanded to a planning target volume �PTV� which
roughly covers the entire region where the CTV may be lo-
cated and the PTV is then irratiated with the prescribed dose.
The underlying assumption in this approach is the validity of
the so-called “static dose cloud approximation.” In the
framework of this approximation, motion of the tumor has
negligible impact on the dose distribution in space. The tu-
mor accumulates dose while moving through the dose cloud

without affecting the cloud. In proton therapy, the static dose
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cloud approximation turns out to be insufficient, leading to
failure of the PTV concept. As a consequence, more sophis-
ticated methods to handle uncertainty have to be imple-
mented.

In passive scattering based proton therapy, motion is typi-
cally incorporated into treatment planning by widening of
the aperture and compensator smearing.8 However, this ap-
proach has limitations in the context of the patch-field
technique9 which is to be applied for geometrically complex
cases. Kang et al.10 and Engelsman et al.11 suggest treatment
planning strategies for moving lung tumors for passive scat-
tering based proton therapy. Until this day, the Paul Scherrer
Institute in Switzerland is the only facility worldwide to ap-
ply IMPT clinically and work on incorporating uncertainty in
IMPT planning is scarce. The need for assessing the robust-
ness of IMPT plans has been pointed out though,6,12,13 and
some methods to reduce adverse dosimetric effects of poten-
tial errors have been suggested. Lomax et al. suggested to
steer the treatment plan by manually restricting the possible
locations of Bragg peaks for each beam direction,12 or to
penalize beam spots which pass through density
heterogeneities.7 Pflugfelder et al.14 suggested a quantitative
measure to characterize tissue heterogeneities in the entrance
region of a beam spot, which can be used to penalize beam
spots that pass through particularly inhomogeneous regions
in the optimization.

In a recent article,5 we suggested two methods to include
range uncertainties in IMPT optimization: first, a probabilis-
tic approach which optimizes the average treatment plan
quality, and second, a robust formulation which optimizes
the worst case treatment plan. These approaches were dem-
onstrated for a simple, stylized geometry. A modification of
the worst case optimization was recently applied to a clinical
case by Pflugfelder et al.15 In this article, we further investi-
gate the “probabilistic approach” to handle range and setup
errors in IMPT. We investigate the combined effect of range
uncertainty and setup errors for a clinical paraspinal case. It
is demonstrated that accounting for uncertainty in IMPT op-
timization yields qualitatively different treatment plans
which are substantially more robust against errors compared
to conventional IMPT optimization. We restrict ourselves to
systematic range and setup errors. We do not consider ran-
dom setup errors, rotation, internal organ deformation, in-
trafractional motion or limitations in the accuracy of the dose
calculation engine.

The method to account for setup errors proposed here is
also applicable to IMRT optimization in photon therapy and
this has been subject to previous publications.16 However,
the consequences of setup errors in photon therapy are typi-
cally smaller than in proton therapy. In addition, stronger
approximations can be justified. See Appendix C 1 e for
some remarks on this issue.

The remainder of this article is organized as follows: in
Sec. II, we formulate the general concept of probabilistic
treatment planning. In Sec. III, we document the clinical case
under investigation and the assumptions made for treatment
planning. Section IV demonstrates the results of a planning

study. In Sec. V, we address the aspect of trading off plan
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robustness against plan quality for the nominal case. Appen-
dix A discusses some of the motivation behind details of the
range uncertainty model. In Appendices C and D we present
technical details regarding the approximation of dose distri-
butions for a setup or range error during the optimization.

II. THE GENERAL CONCEPT

The general idea of the probabilistic approach is that the
delivered dose depends on a set of random variables which
parameterize the uncertainty to be accounted for. In this ar-
ticle, we have two types of random variables: first, a setup
error in three dimensions which describes rigid shift of the
patient with respect to the isocenter; and second, a random
variable for each beamlet which describes the proton range
in the patient �i.e., the location of the Bragg peak with re-
spect to the anatomy�. The set of random variables is as-
signed a probability distribution.

II.A. The uncertainty model

We assume that the dose distribution of each pencil beam
j is characterized by its range � j. The range of each pencil
beam is considered to be a random variable, i.e., the “true”
range � j is given by

� j = �̄ j + � j� j , �1�

where �̄ j is the nominal range to be determined from patient
data. The parameter � j characterizes the magnitude of the
uncertainty and � j is the random variable. We assume that the
vector of beamlet ranges � is distributed according to a mul-
tivariate Gaussian distribution, i.e.,

P��� =
1

��2��N det C�

exp�−
1

2
�TC�

−1�� , �2�

where N is the number of pencil beams. The diagonal ele-
ments of the covariance matrix C� are equal to one since the
magnitude of uncertainty is described by the parameters � j.
In addition, we have to make assumptions regarding the cor-
relation of two beamlets. In this article, we assume that the
range shifts � j and �k of two beamlets are statistically inde-
pendent if the beamlets j and k belong to different beam
directions ��C�� jk=0�, and that their range shifts are corre-
lated otherwise ��C�� jk=1�.

We further assume a Gaussian distributed systematic
setup error �s which corresponds to a rigid shift of the pa-
tient:

P��s� =
1

��2��3 det Cs

exp�−
1

2
�sTCs

−1�s� . �3�

Range and setup errors are assumed to be statistically in-
dependent. It should be noted that those changes of the range
in tissue of a pencil beam that are a deterministic conse-
quence of a setup error, are not considered a range error. The
corresponding change of the dose distribution is attributed to
the setup error. Further discussion on the assumptions made

here is provided in Appendix A.
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II.B. The optimization problem

In order to account for the uncertainty in the optimization,
we propose to minimize, with respect to the fluence map w,
the expected value of the objective E �where the expectation
is taken over the ranges � and the setup error �s�,

minimize
w

�E�w�	 ª
 
 E�w;�,�s�P���P��s�d�d�s �4�

subject to

wj � 0 �j = 1, . . . ,N� , �5�

where the integrals represent a multidimensional integration
over the ranges of all beamlets and a three-dimensional inte-
gration over the setup error. The objective function E is typi-
cally a function of the dose distribution, i.e., E�D�w ;� ,�s��,
where the dose distribution depends on the realized setup
error and the realized beamlet ranges.

II.C. A multicriteria point-of-view

The expected value of the objective function can be inter-
preted in a multicriteria framework. Assuming that we dis-
cretize the possible realizations of ranges and setup errors,
the integrals in Eq. �4� are replaced by a sum over all pos-
sible scenarios. A scenario refers to a combination of range
and setup realization. Hence, the objective is a weighted sum
of objectives for the individual scenarios, where the weight
of an objective is given by the probability that the corre-
sponding scenario occurs. If we do not account for uncer-
tainty, we assign a weight of one to the nominal scenario
�i.e., no range deviation, no setup error�, and the weight zero
to all other scenarios. If we include uncertainty, we trade-off
objectives for different scenarios, that is we improve the plan
quality for the case that there is a range or setup error. In this
picture, it becomes evident that the gain in robustness is
generally associated with some price. Plan quality for the
nominal scenario will deteriorate. However, the loss in plan
quality for the nominal scenario may be small compared to
the improvement in plan quality for the case that an error
occurs.

III. SPECIFICATIONS

III.A. Clinical case

We illustrate results for a paraspinal tumor, which is
shown in Fig. 1. The tumor entirely surrounds the spinal cord
which is to be spared. Additional organs at risk are the
esophagus, the lungs and the remaining unclassified tissue.
The patient has metal implants due to surgery prior to radio-
therapy, which cause artefacts in the planning CT image and

contribute to the range uncertainty.
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III.B. IMPT technique

We choose three beam direction: a posterior beam at 0°
and two oblique beams at �45°. IMPT treatment plans for
the 3D spot scanning technique according to the classifica-
tion by Lomax17 are optimized. We precalculate dose distri-
butions of pencil beams placed on a regular grid of 5 mm
resolution in both lateral directions and at preselected energy
layers which correspond to 5.0 mm difference in water
equivalent range. We use a previously published pencil beam
algorithm18 which uses a subpencil-beam decomposition ap-
proach to account for lateral density heterogeneities. As the
level of lateral heterogeneities is very high for this case, a
high number of subpencil-beams �121 per pencil beam� is to
be applied.19 We assume a 5 mm sigma of the parallel
Gaussian pencil beam at patient surface.

III.C. Objective function

We apply a quadratic objective function to optimize a
treatment plan

E = �
n

�n

�Vn� �
i�Vn

�Di − Di
pres�2, �6�

where Di
pres=68.4 Gy is the prescribed dose to the CTV and

Di
pres=0 Gy is the desired dose to all critical structures. �Vn�

is the number of voxels in Vn, which is the set of voxels
belonging to the volume of interest with index n. The penalty
factors �n that weight the objectives for different organs are
chosen in such a way that for the conventional IMPT plan
the maximum dose to the spinal cord and the esophagus is
about 50 Gy. All other structures play only a minor role and
their penalty factors are chosen small enough so that CTV
coverage was not substantially compromised by their objec-
tives. All treatment plans in this article are optimized with
the same set of penalty factors. The penalty factors are sum-
marized in Table I.

III.D. Quantification of the uncertainty

For this study, we assume a range uncertainty of
� j =5 mm for all pencil beams and a systematic setup error
of 2.5 mm which is uncorrelated in all three spatial dimen-
sions �i.e., the diagonal elements of Cs in Eq. �3� are

2

FIG. 1. Paraspinal case: The thick contours correspond to the CTV, the
spinal cord, and the esophagus.
�2.5 mm� and all nondiagonal elements are zero�.
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We make generic assumptions on the amount of range
uncertainty due to the lack of measured data to support more
sophisticated models. Regarding the various potential
sources of range uncertainty including uncertainty in stop-
ping power, metal implants, CT artifacts due to implants, or
weight loss/gain, 5 mm uncertainty is expected to be worth
accounting for. Future research may aim at deriving more
precise uncertainty models for specific tumor sites and plan-
ning protocols, based on future studies that put tighter
bounds on the actual magnitude of the range error. Further
discussion on aspects of the range uncertainty model is pro-
vided in Appendix A.

A numerical value for a range error refers to an error in
water equivalent range. In order to simulate the dosimetric
effect of a 5 mm range overshoot, we substitute the dose
distribution of a pencil beam by a pencil beam with higher
primary proton energy �where the difference in primary pro-
ton energy corresponds to 5 mm water equivalent range�.
This effectively models a change of 5 mm in radiological
path length in the plateau region of the pencil beam, which
could occur for various reasons �that are not explicitely mod-
eled here�. Typically, there may be one CT scan of the patient
that is used for treatment planning. The nominal range �̄ j in
Eq. �1� is then given by beamlet range calculated based on
that one planning CT scan.

(b)(a)

FIG. 2. Sensitivity analysis of a conventional treatment plan: �a� dose distr
realized for a 3.5 mm setup error anteriorly, �c� color scale for cumulative do
of the prescribed dose.

TABLE I. Summary of weighting factors, sampling rates, and number of
voxels for all volumes of interest.

Penalty �n Sampling rate pn No. voxels �Vn�

CTV 200 0.1 14 466
Spinal cord 6 1.0 815
Esophagus 1 1.0 1538
Left lung 10 0.05 57 217

Right lung 10 0.05 72 557
Heart 10 0.05 35 916

Unclassified tissue 10 0.05 713 827
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III.E. Approximation of dose distributions for range
and setup errors

In order to evaluate the objective function �4�, we have to
calculate the dose distribution for a given setup error and a
given range deviation. Practically, it may often be unrealistic
to perform an online dose calculation from scratch, espe-
cially if sophisticated and accurate dose calculation methods
are to be applied. Therefore, the dose distribution for a range
or setup error has to be approximated. In Appendix C we
describe multiple options to do this. For the results discussed
in Secs. IV and V, we use an approach that approximates the
dose distribution of a beamlet in a shifted patient by using
neighboring beamlets and virtual beamlets as described in
detail in Appendices C 1 c and C 2 b.

III.F. Solving the optimization problem

To solve the optimization problem, we apply a stochastic
gradient descent algorithm. In order to calculate the gradient
of the objective function exactly, one has to perform a sum-
mation over all voxels and all scenarios �setup errors and
range shift combinations�, which is too time consuming. In
order to make the optimization problem tractable, we esti-
mate the gradient of the objective function by using voxel
sampling and scenario sampling. Only a subset of the voxels
and a subset of the scenarios are used to provide an estimate
of the gradient. A projection method is applied to handle the
non-negativity constraint for the beamlet weights.

To obtain the results shown in this article, we applied the
voxel sampling rates pn shown in Table I. In each optimiza-
tion step, we generated ten scenarios based on the probability
distributions in Eqs. �2� and �3�. For each scenario a different
set of voxels is drawn randomly. The objective function
value and its gradient with respect to the beamlet weights are
estimated by averaging over the ten scenarios. Specifically,

(c)

55−60
50−55
45−50
40−45
35−40
30−35
25−30
20−25
15−20
10−15
5−1020−40

40−60
60−70
70−80

90−95
95−105
105−110
110−120
>120

80−90

>60

n that results from a 3.5 mm setup error posteriorly, �b� dose distribution
tributions �left� and dose contributions of individual beams �right� in percent
ibutio
se dis
the estimate of the objective is given by
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Ê = �
k=1

10 �
n

�n

�Vn�pn
�

i�Vn

�ik�Di��sk,�k� − Di
pres�2� .

Here, �ik� �0,1� is a binary random variable with probabil-
ity distribution P��ik=1�= pn and P��ik=0�=1− pn, where n
is the index to the volume of interest that voxel i belongs to.
�sk and �k are random variables for setup and range errors,
that obey the probability distributions in Eqs. �3� and �2�,
respectively. A previous publication20 discusses the perfor-
mance of the algorithm in the context of voxel sampling
alone and presents an algorithm to automatically tune the
voxel sampling rates. A generalization of this method to the
combination of voxel and scenario sampling is subject of
ongoing research.

Stochastic gradient descent has been implemented into
our in-house IMRT/IMPT optimization software previously
reported on.21 The software is implemented in C		 accord-
ing to principles of object oriented programming. Stochastic
gradient descent can be used to optimize IMRT/IMPT in the
context of optimizing the expected value of an objective
function which depends on uncertain parameters. Due to the
modular structure of the software, the concept can be applied
to various types of uncertainty. Those include systematic
setup and range errors as demonstrated in this article. Other
applications that have been implemented are random setup
errors and variations in the breathing pattern for 4D optimi-
zation for lung and liver tumors.

III.G. Size of the problem

For the paraspinal case presented here, the total number of
beamlets is 12 775. The total number of voxels is 896 336
�see Table I� and the total number of nonzero elements in the
dose contribution matrix �see Appendix C� is 38 659 890.
For the plan that incorporates both range and setup errors,
the total number of virtual beamlets is 221 337 �see Appen-
dices C 1 c and C 2 b�. Improving the resolution of the
beamlet grid from 5 to 2.5 mm requires eight times as many
beamlets. In addition, beamlets have to be added at the pe-
riphery. The total number of nonzero elements in the dose
contribution matrix is 826 775 673—thus requiring approxi-
mately 6.6 Gbytes of memory, if each entry is stored as a
4-byte-float for the dose value and a 4-byte-int for the voxel
index.

IV. RESULTS OF PROBABILISTIC TREATMENT
PLANNING

In this section, we analyze treatment plans obtained by
applying the probabilistic approach to the paraspinal case in
Fig. 1. We compare four 3D spot scanning IMPT treatment
plans:

• a “conventional” IMPT plan that does not account for
any uncertainty,

• a plan that accounts for range uncertainty only,
• a plan that accounts for setup errors only, and
• a plan that accounts for both range uncertainty and
setup errors.
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IV.A. Sensitivity of conventional treatment plans

Figures 5�a� and 4�a�–4�c� shows a conventional IMPT
treatment plan, which is optimized without taking uncer-
tainty into account. Figure 5�a� shows the cumulative dose of
all three beams for the nominal range and the nominal setup
position, and Figs. 4�a�–4�c� show the corresponding dose
contributions of the beams at 0° and �45°. If no error oc-
curs, a very homogeneous dose distribution can be delivered
to the CTV and a good sparing of the spinal cord can be
achieved. If we perform a sensitivity analysis of the plan, we
observe that the dose distribution in Fig. 5�a� is highly de-
graded. Figure 5�b� shows the resulting dose distribution for
an overshoot of 5 mm in water equivalent range �i.e., the
Bragg peak positions of all beamlets are shifted further into
the patient�. This sensitivity can be explained by analyzing
the dose contributions of individual beam directions. Figures
4�b� and 4�c� show the dose contributions of the beams at 0°
and 45° for no setup or range error. The optimization assigns
a high weight to Bragg peaks placed in front of the spinal
cord. This allows for the best dose sparing of the critical
structure as the steep distal falloff of the Bragg peak is uti-
lized. As a consequence, a very high dose is delivered to the
spinal cord if the range of a pencil beam is larger than ex-
pected. Generally, dose gradients in beam direction make the
plan very sensitive to range variations.

Figures 2 and 5�c� illustrate that the treatment plan is also
sensitive to setup errors. Figure 2�a� shows the resulting dose
distribution for a 3.5 mm setup error posteriorly. The rigid
shift of the patient has no impact on the dose delivered by
the beam at 0°. However, the oblique beams at �45° hit the
patient surface at a different position. This is illustrated sche-
matically in Fig. 3. Their dose contributions are shifted rela-
tive to each other and consequently do not add up to a ho-
mogeneous dose distribution in the CTV. In this case, the
oblique beams at �45° are shifted apart and cause cold spots
around the spinal cord. For a patient shift of 3.5 mm anteri-
orly, the dose contributions of the oblique beams at �45° are
shifted towards each other and, among other effects, over-
dose the spinal cord and cause a hot spot anterior to the
spinal cord �Fig. 2�b��. Figure 5�c� shows the resulting dose
distribution for a setup shift of 2.5 mm rightwards. For a
radiologically homogeneous patient, a shift of the patient
would mainly cause a shift of the cumulative dose distribu-
tion. Since the shift is approximately parallel to the patient
surface, it affects all beams in the same way and does not

patient surface

shifted patient surface

A
∆ s

FIG. 3. Illustration of the effect of misaligned beams. In this schematic
example, three pencil beams hit the patient surface at point A. For a setup
shift �s, the three beams hit the patient surface at different points, and
hence, yield a different dose distribution.
lead to a misalignment of their dose contributions. However,
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the resulting dose distribution is also strongly influenced by
the misalignment of density inhomogeneities. This particu-
larly applies to the metal implants present in this case. As a
consequence, underdosage of the tumor does not only occur
at the boundary of the CTV, but also in regions deeper within
the CTV.

Although this section analyzes a treatment plan that does
not apply a margin to the CTV, it is evident that the PTV
concept cannot solve the problem sufficiently. A PTV margin
around the CTV could only reduce the underdosage of the
CTV at the boundary due to geometric shifts of the dose
distribution. It cannot account for dose inhomogeneity in the
CTV and overdosage of the spinal cord due to misalignments
of beams and density heterogeneities. Defining a PTV has no
influence on the occurrence of steep dose gradients �within
the dose distribution of a single beam� inside the CTV, as
would be necessary to improve the robustness of a treatment
plan. In addition, the dose distribution around the spinal cord
cannot be controlled by a PTV approach since a margin ex-
tension of the CTV at the transition to the spinal cord would
simply eliminate the structure to be spared.

IV.B. Accounting for range uncertainty

Figures 5�d� and 4�d�–4�f� shows the treatment plan that
was optimized for a Gaussian range uncertainty of 5 mm
standard deviation. The treatment plan is qualitatively differ-
ent from the conventional plan. As apparent in Figs.
4�d�–4�f�, the dose contributions of individual beams are
more homogeneous in beam direction, steep dose gradients
are avoided. Consequently, a shift of these dose distributions
in beam direction has little impact on the dose distribution in
the CTV. Instead of the distal falloff, the lateral falloff of the
pencil beam is used to avoid the spinal cord. Therefore, the
spinal cord is protected from being overdosed in the case of
a range overshoot. Figure 5�e� shows the dose distribution
that is realized for a 5 mm range overshoot. As apparent, the
sparing of the spinal cord is preserved and the dose in the
CTV remains widely homogeneous. The robustness against
range errors can be achieved without noticably compromis-
ing dose homogeneity in the CTV for the nominal case �Fig.
5�d��. A plan optimized for range uncertainty may still be
sensitive to setup errors as apparent in Fig. 5�f�, which shows
the dose distribution for a 2.5 mm setup error rightwards.

IV.C. Accounting for setup errors

A treatment plan optimized for systematic setup errors
only is substantially different from a conventional treatment
plan or a plan optimized for range uncertainty �Figs.
4�g�–4�i��. In this case, the dose distribution in the CTV is
sensitive to dose gradients in the direction parallel to the
patient surface. In order to make the plan robust against
setup errors, dose gradients in the left-right direction have to
be avoided. This is reflected in Figs. 4�g�–4�i�. Figure 5�i�
demonstrates the robustness of the treatment plan for 2.5 mm
setup error rightwards. Dose coverage and homogeneity in
the CTV is well preserved. As expected, a plan optimized for

setup errors alone may still be sensitive to range errors. Fig-
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ure 5�h� shows the overdosage of the spinal cord for a 5 mm
range overshoot. The reason for this can be understood from
Fig. 4�h� which shows the dose contribution of the beam at
0°. The distal edge of Bragg peaks is placed directly in front
of the spinal cord. This does not cause problems regarding
setup errors because for no rigid shift of the patient this dose
can be shifted into the spinal cord.

IV.D. Incorporating both range and setup uncertainty

A treatment plan that is robust against both setup and
range errors has to combine the requirements of both types
of uncertainty. This is possible to some degree. As apparent
in Figs. 4�j�–4�l�, the dose contributions of individual beams
are relatively smooth in both the left-right direction and the
beam direction in order to ensure a widely homogeneous
dose in the CTV. Regarding range uncertainty, using the lat-
eral falloff of the Bragg peak is better than using the distal
falloff. However, regarding setup uncertainty, the distal fall-
off may be more favorable. In this respect not all require-
ments can be met by a single treatment plan. Figures 5�k�
and 5�l� show widely homogeneous dose distributions in the
CTV and reasonable sparing of the spinal cord for a 5 mm
range overshoot and a 2.5 mm setup error rightwards, re-
spectively. For the nominal case, one can still obtain a ho-
mogeneous dose in the CTV �Fig. 5�j��.

IV.E. Summary

Conventional IMPT plans are sensitive to setup and range
errors due to steep dose gradients in the dose distribution of
a single field. Incorporating uncertainty into IMPT optimiza-
tion yields substantially more robust treatment plans by re-
distributing dose among different fields and by avoiding un-
favorable in-field dose gradients. Plans optimized for range
uncertainty specifically avoid dose gradients in beam direc-
tion, plans optimized for setup errors avoid dose gradients in
the left-right direction �for the patient geometry investigated
here�. A plan optimized for both types of uncertainty tries to
avoid �or smoothen� gradients in all directions. The discus-
sion in this section is focused on the spinal cord and the
CTV. A similar analysis can be performed for the esophagus.
It supports the above findings.

IV.F. Remarks

In this article, we present a detailed case study for generic
assumptions on the range uncertainty, i.e., 5 mm for each
beamlet. Future research may aim at deriving more precise
uncertainty models for specific tumor sites and planning pro-
tocols, in order to optimize the tradeoff between robustness
and nominal plan quality �see Sec. V�.

Particularly, the range uncertainty model requires several
assumptions which are not well supported by available mea-
sured data �see also Appendix A�. Generally, the optimal
plan depends on the uncertainty model and parameters
therein. However, the lack of precise knowledge of the range
uncertainty does not question the usefulness of the proposed

methods per se. More robust plans are obtained mainly by
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reducing unfavorable dose gradients. This is achieved by
many uncertainty models for a wide range of parameter val-
ues. Compared to conventional plans that do not account for
uncertainty at all, the robustness of plans can be expected to
improve even if the uncertainty model is an idealization of

(d) (e)

(g) (h)

(j) (k)

(a) (b)

FIG. 4. Dose contributions of the individual beams for four treatment pl
uncertainties alone, �g�–�i� IMPT plan optimized for setup errors alone and �j
The color scale in Fig. 2�c� applies.
the unknown reality.
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IV.G. Computation time

Optimization of the conventional plan took 10 min �on a
Dell Precision 690 workstation with 16 GB RAM�. Optimi-
zation of the plan that incorporates range and setup errors
plan took 4 h. The plans that account for only range uncer-

(f)

(i)

(l)

(c)

�a�–�c� conventional IMPT plan, �d�–�f� IMPT plan optimized for range
IMPT plan optimized while accounting for both setup and range uncertainty.
ans:
�–�l�
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tainty and only setup errors required intermediate computa-
tion times of 1 h and 2 h, respectively. See Sec. III G regard-
ing the size of the optimization problem.

For all treatment plans, the optimization was run for 20 h.
The computation times stated above refer to the intermediate
results that show almost no difference in the dose distribu-

(d) (e)

(g) (h)

(j) (k)

(a) (b)

FIG. 5. Sensitivity analysis of the four treatment plans: �a�–�c� conventiona
IMPT plan optimized for setup errors alone, �j�–�l� IMPT plan optimized wh
nominal dose distribution ��a�, �d�, �g�, �j��, the dose distribution resulting fr
and a systematic setup error of 2.5 mm rightwards ��c�, �f�, �i�, �l��. The co
tions of individual beams compared to the result after 20 h.
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Those numbers are meant to be rough guidelines and we
did not aim at optimal computational performance. We ex-
pect to achieve substantial further speed up by various ap-
proaches. Those include a modified implementation, tuned
sampling rates for voxels, and scenarios as mentioned in Sec.
III F, using fewer scenarios, and also by stopping the opti-

(f)

(i)

(l)

(c)

T plan, �d�–�f� IMPT plan optimized for range uncertainties alone, �g�–�i�
ccounting for both setup and range uncertainty; the three columns show the
systematic overshoot of 5 mm in water equivalent range ��b�, �e�, �h�, �k��,
ale in Fig. 2�c� applies.
l IMP
ile a
om a
lor sc
mization after fewer iterations. Acceptable treatment plans
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that show the characteristic features of the final results were
obtained for much shorter computation times. The values for
computation time refer to the optimization alone and do not
include the calculation of the dose contribution matrix.

V. TRADING OFF ROBUSTNESS AND NOMINAL
PLAN QUALITY

As pointed out in Sec. II C, the probabilistic approach
inherently leads to a multicriteria optimization problem. In
order to achieve robustness, one will in general have to com-
promise plan quality for the nominal case to some extent.
This can be seen in Fig. 6 which shows the DVHs of the
nominal dose distributions for the four treatment plans in
Figs. 4�a�, 4�d�, 4�g�, and 4�j�. The conventional plan yields
the best sparing of the spinal cord and the best CTV cover-
age for the nominal scenario, because it is optimized specifi-
cally for this one scenario.

The plan optimized for range uncertainties takes scenarios
for under- and overshoot into account via additional terms in
the objective function. It thereby improves plan quality for
the case that a range deviation occurs and compromises plan
quality for the nominal case. In the case of range uncertainty,
the physical reason of the price associated with robustness is
evident: in order to ensure sparing of the spinal cord for the
case of range overshoot, one has to utilize the lateral falloff
of the Bragg peak to shape the dose distribution at the
boundary of spinal cord and OAR. For typical beam sizes
�5 mm sigma at patient surface was used in this study�, the
lateral falloff of the Bragg peak is more shallow compared to
the distal falloff. Hence, for the nominal case, CTV coverage
or dose burden of the spinal cord are compromised.

On the other hand, probabilistic treatment plans are sub-
stantially more robust against errors. Figure 7 shows the
DVHs of the dose distributions for a 5 mm range overshoot.
For the conventional plan, the maximum dose in the spinal
cord exceeds the prescribed dose to the tumor. In contrast,
the probabilistic plan that accounts for range uncertainty pre-
serves a good sparing of the spinal cord.

Accounting for a setup error in all directions also compro-
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FIG. 6. DVH comparison of the four treatment plans for the nominal case,
that is no range or setup error occurs. DVHs for the CTV and the spinal cord
are shown.
mises the dose distribution for the nominal case �Fig. 6�. This
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can be understood by considering a setup error in left-right
direction. For the patient geometry and the beam arrange-
ment as chosen here, it is not possible to deliver the dose in
such a way that the dose distribution is insensitive to patient
shifts in the left-right direction. No matter how the dose is
distributed among the beams, a setup error in the left-right
direction will shift the spinal cord into the adjacent high dose
region. By carefully regarding the isodose lines around the
spinal cord in Fig. 5�g�, it can be observed that the probabi-
listic treatment plan handles this situation by reducing the
dose gradient between spinal cord and the CTV. This pre-
vents very high maximum doses in the spinal cord for the
case that a setup error occurs, but compromises the plan for
nominal case.

On the other hand, the plan optimized for setup errors
yields a much better CTV coverage for the case that a setup
error occurs. This is apparent in Fig. 5�i� and in the DVH
comparison in Fig. 8. Whereas the conventional plan and the
plan that only accounts for range uncertainty show severe
underdosage of the CTV, this is substantially reduced for the
plans that incorporate setup errors in the optimization.

In summary, treatment planning for IMPT does not only
involve a trade-off between objectives for different organs. It
also involves a trade-off between robustness and plan quality
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FIG. 7. DVH comparison of the four treatment plans for an overshoot of
5 mm in water equivalent range. DVHs for the CTV and the spinal cord are
shown.
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FIG. 8. DVH comparison of the four treatment plans for a setup error of

2.5 mm rightwards. DVHs for the CTV and the spinal cord are shown.
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for the nominal case. Improving robustness is clearly desir-
able as long as it does not substantially compromise plan
quality for the nominal case. Compromising nominal plan
quality to achieve robustness against very large errors that
are extremely unlikely to occur is undesirable. Quantifying
the uncertainty for a given clinical protocol helps to set lim-
its on the amount of robustness needed, but it does not per se
determine a specific trade-off between nominal plan quality
and robustness. This may remain the responsibility of the
treatment planner.

As a consequence, the aspect of robustness should be re-
flected in dose reporting protocols. Reporting only the dose
for the nominal case neglects essential aspects of a treatment
plan. The nominal scenario is only one possible realization
and may not describe the quality of a treatment plan well.

A large variety of surrogates can be considered for visu-
alization of plan quality and robustness in the presence of
uncertainty, for the purpose of both plan evaluation and re-
porting. Those include dose distributions for specific realiza-
tions of range and setup errors, the standard deviation distri-
butions as a measure of the uncertainty of the dose in each
voxel,5 worst case dose distributions and maximum error
distribution,7 probability distributions for EUD, TCP, and
NTCP values, or the probability that the dose in a voxel is
within a dose interval of interest.16

VI. CONCLUSIONS

In this article, we show that conventional IMPT plans,
which are optimized without accounting for range and setup
accuracy, may be very sensitive to errors. Degradation of the
dose distribution is mainly due to a shift of the dose contri-
butions of individual beams relative to each other and by
misaligned density heterogeneities which alter the dose
deposition of a single field for a setup error. Therefore, the
problem cannot be solved sufficiently by a margin approach
�Sec. IV A�.

The probabilistic approach is applied to incorporate setup
errors and range uncertainty into the optimization of an
IMPT treatment plan. It is shown that robustness of a plan
against errors is achieved by redistributing the dose contri-
butions among different beam directions. In order to achieve
robustness against range errors, dose gradients in beam di-
rection in the dose distribution of a single field have to be
avoided. Specifically, placing the distal falloff of a Bragg
peak directly in front of an OAR is avoided. In order to
achieve robustness against setup errors, lateral gradients
within a field have to be avoided. Treatment plans that are
optimized for range errors only may be qualitatively different
from treatment plans optimized for setup errors only as both
types of uncertainty require different features of a treatment
plan to achieve robustness. A plan that is optimized for both
range and setup errors combines the requirements for robust-
ness against setup and range errors as far as possible.

Methods to directly incorporate uncertainty into inverse

planning are of particular importance in IMPT as the safety
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margin concept �as typically applied in photon therapy� is
neither suitable for handling range uncertainty nor setup
errors.
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APPENDIX A: MOTIVATION OF THE UNCERTAINTY
MODEL

The characterization of the setup uncertainty is relatively
concise. It only requires six independent parameters in the
covariance matrix Cs in Eq. �3�. The model of range uncer-
tainty in turn is more complex. In the formulation of Sec.
II A, we may specify the amount of uncertainty � j for each
beamlet, and in addition, correlations between the range shift
of beamlets. For the time being, there will not be sufficient
experimental data to specify these parameters. Therefore, the
model of uncertainty is partly based on heuristic assumption,
some of which are discussed in more detail below.

1. Considering systematic errors

Considering range uncertainty as a systematic error �in the
sense that the same range error is realized in every fraction�
is a simplification. Whereas range errors due to imperfec-
tions of the planning CT are systematic, errors due to weight
loss or weight gain are not constant over time. Hence, in
different fractions, the range error realization may be differ-
ent. Treating range uncertainty purely as a systematic error is
a conservative approach as this method aims at a high quality
dose distribution for every realization of the error—
independent of the error realization in other fractions. Incor-
porating a more detailed model for variations of the range
uncertainty during the course of treatment could theoretically
improve the plan—but only if this model was correct, which
is difficult to ensure.

2. The role of the shape of the probability distribution

We choose a Gaussian distribution for range and setup
error. This is mostly due to lack of better knowledge. �To
some extent, this can be formalized in information theory by
Jaynes principle of the unbiased guess:22 the Gaussian distri-
bution minimizes the Shannon information under the as-
sumption that the random variable is characterized by mean
and standard deviation.� However, in the context of system-
atic errors, the exact shape of the probability distribution is

not very critical. This can be understood by interpreting the
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objective function in a multicriteria context �Sec. II C�: the
probability distribution only determines the trade-off be-
tween plan quality for different scenarios. Not knowing the
probability distribution accurately only means that we might
not choose the best trade-off between plan quality for differ-
ent scenarios. But if we have a plan that is reasonably good
for all realistic scenarios, then the realization of a favorable
cumulative dose distribution at the end of the treatment does
not depend on the correctness of the shape of the probability
distribution. �Note that this is different for incorporating ran-
dom errors23 or respiratory motion in IMRT, where the ex-
pected cumulative dose distribution is approximately given
by a convolution of the nominal dose with the probability
distribution.�

3. Beamlet dependent range uncertainties

In this work, we assumed the same range uncertainty � j

for each beamlet. The concept and our implementation allow
for beamlet dependent range uncertainty. However, this
would require more detailed assumptions on the cause of
range uncertainty and will be tumor site specific. A potential
improvement for paraspinal cases could be attained by as-
suming larger range uncertainty for beamlets that pass di-
rectly through metal implants.

For beamlet dependent range uncertainties, the range un-
certainty � j for a beamlet j would be a function of the setup
error �s. In this case, it could be assumed that a fixed range
uncertainty � is associated with every virtual beamlet �see
Appendix C 1 c� as a virtual beamlet passes through a de-
fined region of tissue. The dependence of the range uncer-
tainty of the real beamlet on the setup error would therefore
not represent a problem for solving the optimization prob-
lem. The setup error and the range shift of a virtual beamlet
could be considered statistically independent.

4. The correlation of beamlet range shifts

We have to make assumptions about the correlation of
range variations of different beamlets. In many cases �al-
though not always�, it may be reasonable to assume that
beamlets at the same lateral position �i.e., they differ only in
the primary proton energy� are correlated. This is because
they are affected by the same tissue for most parts. Beamlets
at different lateral positions can in general have different
range errors. If CT artifacts due to metal implants were the
primary source of range uncertainty, different beamlets
would be affected by different artifacts and would have dif-
ferent range errors. If, on the other hand, weight loss or
errors in the conversion of Hounsfield units to stopping
power were the primary source of range uncertainty, there
would be a stronger correlation between the range errors of
beamlets. In this case, beamlets would tend to all overshoot
or all undershoot. Hence, further specification of the correla-
tion model would require more explicit assumptions on the
origin of range uncertainty. This was avoided here. For this
patient, we analyzed the impact of the correlation model,

which is reported on in Appendix B.
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APPENDIX B: THE IMPACT OF THE BEAMLET
CORRELATION MODEL ON THE TREATMENT PLAN

For this patient, we investigate the impact of the beamlet
correlation model for the range errors on the treatment plan.
Different beamlet correlation models correspond to specifi-
cations of the nondiagonal elements of �C�� jk in Eq. �2�. We
consider three models:

• Model 1: all beamlets are correlated: �C�� jk=1 for all
beamlets j and k.

• Model 2: beamlets within one beam direction are corre-
lated as described in Sec. II A. This is the correlation
model used throughout the article.

• Model 3: beamlets are correlated ��C�� jk=1� if they cor-
respond to the same lateral position in the same beam
direction, and uncorrelated otherwise ��C�� jk=0�. Cor-
related beamlets differ only in their primary proton
energy.

We optimize treatment plans assuming a range uncertainty
of � j =5 mm for all beamlets and no setup error. The plans
turn out to be qualitatively similar, i.e., dose gradients in
beam direction are reduced compared to the conventional
plan. �The dose contributions of individual beams are not
shown here as they provide little insight.� An intuitive expla-
nation is that the robustness of the treatment plan benefits
from the reduction of steep dose gradients in beam direction,
independent of the details of the correlation model.

In order to compare the robustness of the treatment plans
with respect to the three range uncertainty models defined
above, we calculate the standard deviation of the dose in
each voxel as a measure of the dose uncertainty. The stan-
dard deviation in voxel i is given by the square root of the
variance �Di

2	− �Di	2, where �Di	 is the expectation of the
dose in voxel i taken over all range error realizations. Prac-
tically, the standard deviation was calculated via Monte
Carlo integration by generating 1000 random scenarios.

Figure 9 shows the standard deviation calculated using
correlation model 2 for three treatment plans: �a� the plan
optimized using correlation model 2 shown in Figs. 4�d�–4�f�
�b� the plan optimized for correlation model 3, and �c� the
conventional plan shown in Figs. 4�a�–4�c�. The dose uncer-
tainty �with respect to correlation model 2� is smallest for the
plan that was optimized incorporating that model. The dose
uncertainty for the plan optimized for correlation model 3
�Fig. 9�b�� is larger because the corresponding plan was op-
timized for correlation model 3, but is now evaluated with
respect to model 2. The plan does not protect as well against
errors where all beamlets of a beam direction over-or under-
shoot simultaneously because these scenarios are less likely
for correlation model 3. Nonetheless, it is still more robust
than the conventional plan which shows a much larger dose
uncertainty all over the CTV and especially around the spinal
cord �Fig. 9�c��.

The standard-deviation-volume histogram �SDVH�, i.e.,
the fraction of the volume featuring a dose uncertainty of
more than a certain number of Gy, provides a more quanti-

tative comparison of the plans in terms of dose uncertainty.



160 Unkelbach et al.: Optimizing IMPT plans under uncertainty 160
We consider the conventional plan and three plans optimized
for range uncertainty using the models 1–3. Figure 10 shows
the SDVH recalculated according to correlation model 2,
confirming the discussion about Fig. 9. Figure 11 shows the
SDVH of the same plans recalculated according to correla-
tion model 3. The dose uncertainty is similar for the three
plans that incorporate some range uncertainty model into the
optimization, but is substantially larger for the conventional
plan.

These three correlation models can be considered as ide-
alized extreme cases. Equation �2� is more general and does
also allow for mixtures of these extreme cases �0
 �C�� jk


1�, which is more realistic. However, all treatment plans
that account for some range uncertainty model are more ro-
bust than the conventional plan, independent of correlation
model the plan is evaluated for.

APPENDIX C: APPROXIMATING DOSE
DISTRIBUTIONS

In order to evaluate the objective function, we have to
calculate the dose distribution for a given setup error and a
given range deviation. Practically, it may often be unrealistic
to perform an online dose calculation from scratch, espe-
cially if sophisticated and accurate dose calculation methods
are to be applied or the number of scenarios is large. There-
fore, the dose distribution for a setup or range error has to be
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approximated. We assume that we precalculate the dose dis-
tributions of individual pencil beams assuming that the
nominal range is realized and the patient is in its nominal
position. The dose at a point r= �xy ,z� in the patient is then
given by

D�r� = �
j=1

N

wjd�r,b j� , �C1�

where d�r ,b� denotes the dose contribution of a beamlet
characterized by b to the point r in the patient. The vector
b= �x ,y ,e� contains the x and y coordinate of the beamlet
position in a beams-eye-view coordinate system and e de-
notes the primary proton energy. The matrix with elements
dij =d�ri ,b j�, where ri is the position of the voxel i, is re-
ferred to as the dose contribution matrix.

1. Setup errors

In order to incorporate setup errors into the optimization,
we need to efficiently calculate d�r ,b ��s�, the dose distribu-
tion of a beamlet for a setup error �s. This can be performed
using different approximations.
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a. The static dose cloud approximation

In the static dose cloud approximation, as often applied in
photon therapy, we approximate the dose contribution to a
patient who is shifted by �s according to

d�r,b��s� � d�r + �s,b� . �C2�

Usually, we do not have a precalculated dose value for the
point r+�s. Therefore, we approximate the dose value using
the precalculated dose to the nearest voxel. Alternatively, tri-
linear interpolation can be used. This approximation does
neither account for the fact that the dose distribution is
shifted with the patient for a setup error in beam direction,
nor for potential misalignments of tissue heterogeneities. For
IMPT optimization, this approximation turns out to be insuf-
ficient �results not shown in this article�.

b. An improved static dose cloud approximation

The static dose cloud approximation can be improved if
we account for the effect that the dose cloud may be shifted
within the patient. If the patient moves, the pencil beam will
hit the patient surface at a different position as illustrated in
Fig. 12. For the patient in nominal position, the pencil beam
hits the patient surface at point A. If the patient is shifted by
�s, the pencil beam hits the patient at point B, which is
shifted relative to A by the vector �c which we have to
compute. It turns out that

�c = ��s · en

eb · en
�eb − �s , �C3�

where eb is a unit vector in beam direction and en is a unit
normal vector on the patient surface which is assumed to be
flat in the vicinity of point A. We can now approximate the
dose distribution d�r ,b ��s� by

d�r,b��s� � d�r − �c,b� . �C4�

This approach reproduces some required features. For the
special case that the setup shift �s is parallel to the beam
direction, the dose distribution in the patient would not
change. If the setup shift is parallel to the patient surface, the
correction vector �c is equal to −�s. However, this approxi-
mation would only be accurate for a patient without tissue
inhomogeneities. It does, for example, not account for the
problem that a dense structure like a titanium rod may move

∆ s

∆ cA B

A

beam direction

patient surface

shifted patient surface

FIG. 12. Illustration of the improved static dose cloud approximation: For a
setup error �s, the entrance point of the pencil beam is shifted by �c on the
patient surface.
into the path of the beamlet.
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c. Approximating dose contributions based on
virtual beamlets

In Secs. C.1.a and C.1.b we approximate dose distribu-
tions by applying an effective shift to a voxel. Alternatively,
we can apply a shift to the beamlet grid as illustrated in Fig.
13. We look at the setup shift �s in the beams-eye-view
coordinate system and project it onto a plane perpendicular
to the beam direction. For a parallel beam, we have

d�r,b��s� = d�r,b + �b� , �C5�

with �b= ��x ,�y ,0�. This is not an approximation but holds
exactly. However, we usually will not have a precalculated
dose distribution for a pencil beam at position b+�b. There-
fore, we approximate d�r ,b+�b� by taking the precalculated
pencil beam that is closest to b+�b.

In this article, lateral distance of two beamlets is 5 mm in
both x and y direction. In order to model setup errors reason-
ably accurate, we have to precalculate the dose distributions
of additional, virtual beamlets, which are not delivered and
not associated with a weight to be optimized. They are only
used to approximate dose distributions in a shifted patient. In
this work, we additionally place virtual beamlets on a finer
grid with 2.5 mm resolution.

d. Discussion

The virtual beamlet approach has the potential to approxi-
mate the dose distribution in a shifted patient most accu-
rately. There are, however, some disadvantages and limita-
tions. First, the approach requires that virtual beamlets are
placed at a sufficiently small distance and that the corre-
sponding dose distributions are assessible during the optimi-
zation. This increases the memory requirements of the com-
puter and limits the clinical cases that are computationally
tractable on regular hardware. Second, it can only be applied
to rigid shifts of the patient. It cannot be generalized to
model internal deformations. For the method in Appendices
C 1 a and C 1 b, this would to some extent be possible. It is
therefore worthwhile to investigate the potential of the
improved static dose cloud approximation described in
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∆ x

FIG. 13. Illustration of dose approximation using virtual beamlets: The dose
distribution of the “real” beamlet marked by the central dot is approximated
by the virtual beamlet marked by the dot at the lower left.
Appendix C 1 b.
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e. Applicability to IMRT with photons

The methods in Appendices C 1 a–C 1 c are also appli-
cable to IMRT optimization in photon therapy. See also
Beckham et al.24 for dose convolution versus fluence convo-
lution to account for random errors. Although, the principal
limitations of the static dose cloud method �Appendix C 1 a�
are apparent, deviations from the static dose cloud approxi-
mation are relatively small in photon IMRT �see, e.g., Ref.
25�. Therefore, the expected benefit of using the more ad-
vanced methods of Appendices C 1 b and C 1 c is moderate
in IMRT, whereas it is essential in IMPT. This is partly due
to the larger number of �roughly equally spaced� beams used
in IMRT and less severe dose gradients in the dose contribu-
tions of these beams.

2. Range errors

For range errors, we can also approximate dose distribu-
tions by either applying shifts to voxels or shifts to beamlets.

a. Voxel shift based approximation method

In order to approximate the dose distribution d�r ,b ��� of
a beamlet for a range overshoot �, we can assume

d�r,b��� � d�r − �eb,b� , �C6�

where we can approximate d�r−�eb ,b� by trilinear interpo-

FIG. 14. Treatment plan optimized for a Gaussian setup error of 2.5 mm wh
cloud approximation �Appendix C 1 b�: �a�–�c� dose contributions of individ
2.5 mm setup error rightwards predicted by the improved static dose clou
predicted by the virtual bixel approximation method. The color scale in Fig
lation of the voxel doses next to the point r−�eb or by the
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dose in the nearest voxel. In this formulation, the range error
� represents a geometrical shift of the pencil beam dose dis-
tribution in beam direction. This has some limitations in the
presence of density heterogeneities. For example, we do not
model the effect that a pencil beam that overshoots into lung
tissue propagates further into the patient than it would in soft
tissue.

b. Virtual bixel method

Alternatively, we can interpret the range error as an error
in water equivalent range. The range shift � corresponds to a
change �e in primary proton energy. We then have

d�r,b��� � d�r,b + �b� , �C7�

where �b= �0,0 ,�e�. In this work, we place real beamlets at
energy layers of 5 mm water equivalent range difference. In
addition, we place virtual beamlets on energy layers at
2.5 mm water equivalent range difference.

APPENDIX D: THE IMPACT OF THE DOSE
APPROXIMATION TECHNIQUE ON THE
TREATMENT PLAN

Figure 14 shows a treatment plan that is optimized for a
Gaussian setup error of 2.5 mm in all dimensions by using
the improved static dose cloud approximation to approximate

proximating dose distributions for setup errors by the improved static dose
eams, �d� dose distribution for the nominal case, �e� dose distribution for a
roximation, and �f� dose distribution for a 2.5 mm setup error rightwards
applies.
ile ap
ual b

d app
. 2�c�
the dose distribution in a shifted patient. For comparison, the
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plan optimized using the virtual bixel approximation is
shown in Figs. 4�g�–4�i� and 5�g�–5�i�. By comparing the
dose contributions of the individual beam directions, it can
be noted that both plans are similar. The treatment plan using
the improved static dose cloud approximation reproduces im-
portant features to achieve robustness against setup errors,
i.e., the avoidance of steep dose gradient in the left-right
direction. Figure 14�e� shows the dose distribution for a
2.5 mm setup error rightwards as predicted by the improved
static dose cloud approximation. According to this approxi-
mation, good CTV coverage is preserved. However, substan-
tial underdosage of the anterior part of the CTV is observed
if the dose distribution for a 2.5 mm setup error is recalcu-
lated with the virtual bixel model which accounts for mis-
aligned density heterogeneities. In conclusion, the improved
static dose cloud approximation yields adequate results for
cases without major density heterogeneities �not shown
here�, but has limitations in the presence of metal implants.
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