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Large field of view cone-beam computed tomography �CBCT� is being achieved using circular
source and detector trajectories. These circular trajectories are known to collect insufficient data for
accurate image reconstruction. Although various descriptions of the missing information exist, the
manifestation of this lack of data in reconstructed images is generally nonintuitive. One model
predicts that the missing information corresponds to a shift-variant cone of missing frequency
components. This description implies that artifacts depend on the imaging geometry, as well as the
frequency content of the imaged object. In particular, objects with a large proportion of energy
distributed over frequency bands that coincide with the missing cone will be most compromised.
These predictions were experimentally verified by imaging small, localized objects �acrylic spheres,
stacked disks� at varying positions in the object space and observing the frequency spectrums of the
reconstructions. Measurements of the internal angle of the missing cone agreed well with theory,
indicating a right circular cone for points on the rotation axis, and an oblique, circular cone
elsewhere. In the former case, the largest internal angle with respect to the vertical axis corresponds
to the �half� cone angle of the CBCT system �typically �5° –7.5° in IGRT�. Object recovery was
also found to be strongly dependent on the distribution of the object’s frequency spectrum relative
to the missing cone, as expected. The observed artifacts were also reproducible via removal of local
frequency components, further supporting the theoretical model. Larger objects with differing in-
ternal structures �cellular polyurethane, solid acrylic� were also imaged and interpreted with respect
to the previous results. Finally, small animal data obtained using a clinical CBCT scanner were
observed for evidence of the missing cone. This study provides insight into the influence of incom-
plete data collection on the appearance of objects imaged in large field of view CBCT. © 2009
American Association of Physicists in Medicine. �DOI: 10.1118/1.3062875�

Key words: cone-beam CT, mini-disk, cone-beam artifacts, Feldkamp artifacts
I. INTRODUCTION

Flat-panel imaging technology has rapidly advanced the de-
velopment of cone-beam computed tomography �CBCT� to
its now widespread clinical use in image-guided radiation
therapy �IGRT�, as well as its growing application in other
areas, such as four-dimensional CT, and dedicated breast
computed tomography. CBCT is an attractive alternative to
traditional CT because of its ability to acquire a full volu-

metric scan with only one rotation about the target. Current
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methods for CBCT in image-guidance applications typically
employ a circular source and detector trajectory during the
acquisition of radiographs. The acquired projection data are
then reconstructed into a three-dimensional �3D� image via a
feasible reconstruction method, such as the Feldkamp
filtered-backprojection �FBP� algorithm.1 However, a circu-
lar trajectory fails to collect sufficient information for accu-
rate 3D reconstruction since Tuy’s condition is violated.2,3
Although theoretically, exact methods exist for alternative
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trajectories �e.g. saddle, helical�, a circular trajectory is per-
haps the most adaptable to image-guided applications �e.g.,
on a linear accelerator for IGRT�. The resulting image arti-
facts are commonly referred to as cone-beam �CB� artifacts.

The information obtained using a circular trajectory has
been described in a number of different ways in the litera-
ture. Grangeat4 represented the missing data in the Radon
domain, showing that ideal cone-beam data from a circular
trajectory fill a torus instead of a sphere in the Radon trans-
form. Others have described CB artifacts using the point
spread function �PSF�, generally basing their derivations on
filtered-backprojection algorithms.5–8 Others still have pre-
sented Fourier based descriptions relating CB artifacts to
missing spatial frequency components.9–12 Such analytical
descriptions of the missing information have also led to vari-
ous attempts to reduce the CB artifacts. One approach aims
to correct for the missing data via Radon space
interpolation.13–15 However, Radon-based correction meth-
ods tend to be less time effective than standard backprojec-
tion algorithms, and to perform poorly with axially truncated
data. Yang et al.,16 more recently, proposed a shift-variant,
filtered-backprojection method that includes estimated infor-
mation outside of the Radon torus, potentially providing a
more feasible implementation. Analytical forms for the PSF
also make deconvolution an attractive method for artifact
correction, as proposed by Peyrin et al.6 However, the shift-
variance of the PSF complicates correction by deconvolution
without simplifying assumptions.6,7 Other methods suggested
for the reduction of CB artifacts include projection weighting
schemes,17 shift-variant filtering,18 and iterative, empirical
methods.19,20 A comparison of the merits of several methods
for artifact reduction when using a large cone-beam angle
has been published.21 Despite these varied attempts to reduce
CB artifacts, all such methods are only approximate and ac-
curate reconstruction is not possible in general �without
strong a priori knowledge�.

Given that artifacts are inherent to the circular CBCT ge-
ometry, it is desirable to understand their impact on clinical
images. The Fourier description of artifacts resulting from a
shift-variant cone of missing frequency components is of
particular interest as it has a direct link to the resolution
capabilities of the imaging system.22 This description implies
that artifacts will depend not only on object position, but also
on the frequency content of the object itself, suggesting that
an object’s shape, texture, and orientation are also necessary
parameters in the prediction of artifacts. Examination of this
consequence provides insight into the varying observations
of image quality that have been reported in the literature. For
example, whereas planar disks �i.e., in the Defrise Phantom�
have been shown to degrade rapidly at modest cone-beam
angles, highly detailed images of complex bony and soft-
tissue anatomy have been achieved under similar imaging
geometries.23 Although measurements have been made on
real CB systems in terms of the PSF24 and the modulation
transfer function,25 no experimental validation of the precise
frequency undersampling predicted by theory in real world

data is known in the literature, which has motivated the
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present work. Moreover, precise characterization of the shift-
variant, missing cone of frequency components appears to be
absent in the literature.

This paper characterizes and then experimentally vali-
dates the theoretical prediction of a shift-variant cone of
missing frequency components. This validation is achieved
by imaging a phantom of small, localized acrylic spheres and
examining the corresponding local Fourier transforms. The
implied dependence of artifact on the object’s frequency
spectrum is then investigated by imaging a miniature disk
phantom under varying orientations. Manifestation of arti-
facts on a larger scale is explored via comparisons of recon-
structions of large disk phantoms with differing internal
structures and discussed with respect to previous results. Fi-
nally, a CBCT image of a live rabbit specimen, acquired
using a clinical scanner, is observed for evidence of the pre-
dicted missing cone of frequency components. This study
provides insight into the influence of incomplete data collec-
tion on the appearance of objects imaged in large field of
view CBCT.

II. THEORY

In this section, the available plane integrals in the object
space are considered and shown to be equivalent to a conical
region of missing local spatial frequency components in the
Fourier domain. This cone has sometimes been referred to as
the empty cone in papers on ectomography,9 whereas else-
where has simply been referred to as the unsampled,10

unmeasured,26 or missing cone27,28 of frequency components.
In this paper the latter term is adopted, and the region will be
referred to as the “missing cone” herein. The meaning of
“local” in “local spatial frequency components” will be made
clear later in the text.

II.A. Background and notation

The link between plane integrals in the object space and
the Fourier domain can be made via the 3D Radon transform.
This transform takes an object defined by some density func-
tion f�x� and transforms it into a set of plane integrals

r��,s� =� �
P��,s�

f�x�dP

= �
−�

� �
−�

� �
−�

�

f�x���� · x − s�dx , �1�

where planes P�� ,s�= �x :x·�=s� have unit normal vector �
with distance s from the origin, and x is an arbitrary position
vector as seen in Fig. 1. One version of the Fourier slice
theorem29 states that the linear Fourier transform,

R��,�� = �
−�

�

r��,s�e−2�is�ds , �2�

of r�� ,s� with respect to s is equivalent to the line through

the 3D Fourier transform
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F�k� = �
−�

� �
−�

� �
−�

�

f�x�e−2�i�x·k�dx , �3�

that intersects the origin of the Fourier domain and has ori-
entation in the direction �, such that F�k�=R�� ,�� when k
=��. �Note that traditionally the Radon transform is denoted
with a capital R, whereas in the previous equations this no-
tation is reserved to denote its Fourier transform pair as per
Eq. �2�.� Complete knowledge of an object’s plane integrals
is therefore equivalent to knowledge of its 3D Fourier trans-
form. This theorem is exploited by filtered-backprojection
methods to recover the original object.30–32 If the set of plane
integrals is known, one can also use the inverse Radon
transform33 to reconstruct the object,

f�x� = −
1

8�2 � � �2

�s2 	r��,s�	s=x·�d� . �4�

In CBCT, plane integrals are not measured directly. Linear
integrals of the object’s attenuation coefficient values are
measured along ideal, straight x-ray paths from the source to
the detector.30,32 These line integrals can be parametrized as

g��,�� = �
0

�

f����� + t��dt , �5�

where � parametrizes the CB source position ����, and the
unit vector � indicates the direction of the emanating ray. It
can be seen that any plane that intersects the source trajec-
tory will contain a fan-beam of rays originating at the source.
Integrating over the line integrals in such a plane will result
in an approximate plane integral through the object,

r̃��,�� =� � g��,����� · ��d� . �6�

If the lines were parallel instead of diverging, then r̃�� ,��
would be the true plane integral r�� ,s� instead of an esti-
mate. An important relationship between the approximate
plane integral and the true plane integral can be found via
derivatives of the appropriate terms. Various mathematical
descriptions of this relationship can be found in

2,4,34,35

,sPγ γ

s

Vector Plane Notation

,sPγ γ

s

Vector Plane Notation
FIG. 1. Vector representation of planes used in the Radon inversion formula.
references amongst others. Defining
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r���,s� =
�

�s
r��,s� , �7�

and

r̃���,�� =� � g��,������ · ��d� , �8�

where �� is the derivative of the Dirac delta function, the
relationship is simply

r̃���,�� = 
− 1

2�
�r���,s� , �9�

which is generally referred to as Grangeat’s result, as
Grangeat4 provided a particularly clear geometrical interpre-
tation. Tuy2 made the observation that if all planes passing
through the object intersect the source trajectory then all
plane integral derivatives, r��� ,s�, are obtainable and the
object can be fully recovered using the Radon inversion for-
mula �Eq. �4��. This condition on the source trajectory is
generally known as Tuy’s condition. When this condition is
not met there will be incomplete information for stable solu-
tion of the inverse problem.3 In the case of a circular trajec-
tory, Tuy’s condition is satisfied only for the special case
where points lie within the plane containing the source,
herein referred to as the ‘source plane’. For points above or
below the source plane a subset of planes will exist that do
not intersect the source trajectory and Tuy’s condition is vio-
lated. Examples of measurable and non-measurable planes
are shown in Fig. 2 for clarity.

II.B. Description of the missing cone

The missing plane integrals can be visualized in the Fou-
rier domain as a shift-variant cone of local, spatial frequency
components. The Fourier description is considered local be-
cause it is derived by considering a very small object within
the local neighborhood of point xo, which is sufficiently
small and distant from the source that the divergence of the
rays can be ignored. Rays intersecting the local neighbor-
hood of xo can therefore be grouped into parallel planes, and
the corresponding plane integrals can be measured directly.
The planes that are not measurable at point xo �and by as-
sumption in the local neighborhood of xo� can then be iden-
tified from the CB geometry. Figure 3 illustrates the case for

Source Trajectory Source Trajectory

(a) (b)
z
y

x

z
y

x

z
y

x

z
y

x

FIG. 2. �a� Illustration of planes that intersect the source trajectory. �b� Most
obvious example of a plane that does not intersect the source trajectory is a
plane parallel to it.
planes with normal vectors restricted to the y–z plane for
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simplification, and with point xo located at �0,R ,zo�. It fol-
lows from the Fourier slice theorem that the localized object
will have undetermined lines in the Fourier domain corre-
sponding to the nonmeasured planes. For example, the
sample plane shown in Fig. 3�a� will have a line missing
along the corresponding normal direction in the Fourier
space as shown in Fig. 3�b�. The complete set of missing
planes corresponds to a conical region of missing frequency
components �see Fig. 3�b��. This missing cone is an oblique,
circular cone with its boundary and interior defined by the
set of normal vectors to the missing planes. Proof that the
cone is a circular, oblique cone is provided in the Appendix.
A unique cone is associated with each point in space �i.e., the
cone is shift variant�, as a unique set of plane integrals will
be missing at any given location, with the exception being on
the source plane. The missing cone can be defined in the
Fourier domain as

Cxo
= �k:�a1kz�2 � kx

2 + �ky − a2kz�2� , �10�

where a1=zo	 / �	2-R2�, a2=zoR / �	2-R2�, and 	 is the radius
of the circular trajectory. Note that for points on the rotation
axis, Cxo

is symmetrical about the vertical axis �i.e., is a right
circular cone�. Alternatively, the missing cone can be defined
in terms of the angle, 
���, measured from the vertical axis
to the boundary of the cone as a function of transverse angle,
�. Noting that 
��� is equivalent to the angle, ����, it can
be defined as


��� = tan−1
 zo

�	2 − 2	R cos��� + R2� ,

with minimum and maximum values


1 = tan−1
 zo

	 + R
� �11�

and


2 = tan−1
 zo

	 − R
� , �12�

respectively. Note that when R=0, and zo is at the limit of the

v(180o) v(0o)

zone of
missing
plane
integrals

xo η2
η1

R

non-measured
plane

αα

η2
η1

kykx

kz
y

z

x

(b)(a) rotation axis

ko

ρ
v(180o) v(0o)

zone of
missing
plane
integrals

xo η2
η1

R

non-measured
plane

αα

η2
η1

kykx

kz
y

z

x

(b)(a) rotation axis

ko

ρ

FIG. 3. �a� Schematic representation of missing plane information at point
xo. Shaded area indicates the region of missing planes with normal vectors
restricted to the y–z plane for simplicity. An example of a nonmeasurable
plane is indicated by the dashed line. �b� Missing plane information results
in unmeasured lines of spatial frequencies that fill a cone in the local Fourier
domain as illustrated where ko corresponds to the DC �zeroth frequency�
component. The minimum, 
1 and maximum, 
2, internal angles of the
missing cone are shown in �a� as they relate to the x-ray cone angle, �, at
source position ����, where � is the transverse angle in degrees, measured
counterclockwise from the x axis.
field of view allowed by the detector, the internal angle of
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Cxo
is just the �half� cone angle of the CBCT system. Al-

though the aforementioned descriptions have restricted xo to
the y–z plane, arbitrary xo can be considered by implement-
ing a rotation of coordinates.

As no information is known about the missing frequency
components, they are usually either explicitly or implicitly
set to zero by the reconstruction algorithm provided no ad-
ditional constraints are introduced. Assuming the measure-
ments are otherwise noiseless, and that the reconstruction
algorithm optimally handles the measured data, the model
for the reconstructed image of objects localized near xo is

f̃xo
�x − xo�

 �
−�

� �
−�

� �
−�

�

Fxo
�k�Txo

�k�e2�i�k·x�dkx dky dkz, �13�

where

Fxo
��� = �

−�

� �
−�

� �
−�

�

f�x − xo�e−2�i�k·x�dx dy dz �14�

and

Txo
�k� = �0 if k � Cxo

1 otherwise
� , �15�

where the symbol Txo
refers to the transfer function, which

only passes frequency information outside the oblique, cir-
cular cone, Cxo

. Note that this transfer function can then be
thought of as a zero pass filter affecting all frequency com-
ponents �low and high� that coincide with the cone Cxo

. Al-
though the object of interest is localized near xo, the artifacts
associated with the zeroed frequency components may ex-
tend to regions far removed from xo. The nonlocalized case
can be considered by decomposing the object into smaller
subregions and analyzing the artifacts that arise indepen-
dently for each of these subregions. In this nonlocalized case
�and in the limit as the subregion approaches infinitesimal
size�, the reconstruction model becomes

fr�x� = �
−�

� �
−�

� �
−�

�

f̃xo
�x − xo�dxo dyo dzo. �16�

For localized objects, the predicted missing cone, Cxo
should

be observable in the object’s Fourier transform. Artifacts re-
sulting from the missing frequency components will in gen-
eral depend on the frequency content of the object itself, and
therefore on factors, such as its shape, texture, and orienta-
tion. In particular, reconstructions of objects that have a large
proportion of energy distributed over frequency bands corre-
sponding to Cxo

will be most compromised. Further, the size
of Cxo

increases with distance from the source plane, imply-
ing that artifacts should become more severe with distance
above or below this plane, whereas accurate reconstructions
should be possible on the source plane itself as Cxo

vanishes
on this plane. It should be noted that the missing frequency
data are inherent to the acquisition geometry and are there-

fore independent of the reconstruction algorithm. It is also



504 Bartolac et al.: Fourier description and validation of CB artifacts 504
important to note that the set of recovered frequency compo-
nents have been described assuming a continuous source
along a circular trajectory �i.e., using infinite projections� and
an idealized detector. This situation is not the case in prac-
tice, as projections are sampled at a finite number of intervals
along the circular trajectory and the detector has finite reso-
lution. However, it is assumed that the sampling in the fol-
lowing experiments is sufficient and will not introduce new
artifacts. Conditions for sufficient sampling in terms of pro-
jection number and detector pixel sampling have been
published.12,36

III. METHODS

III.A. Apparatus

An amorphous silicon flat panel detector �Paxscan 4030A,
Varian, Palo Alto, CA� with 194 m pixel pitch, and a
600 kHU x-ray tube �Rad-94, Varian, Palo Alto, CA� were
used in a CBCT laboratory design for the disk and acrylic
sphere experiments described in the following subsections.

Flat Panel
Detector

X-Ray Tube

Rotation Stage

FIG. 4. Photograph of test bench used in acquiring projection data. Phantom
shown is for illustrative purposes only �not used in these experiments�.

TABLE I. Imaging and reconstruction parameters.

Imaging parameters Acrylic sphere

Source to axis distance �cm� 60
Source to detector �cm�

distance
96

X-ray exposure mode Pulsed radiographic Pul
kVp 100
mA 80
ms 4

Filter: 4 mm Al+0.1 mm
Cu

2 m

Rotation/projection
�deg.�

1.125

No. of projections 320
Frame rate �Frames/s� 1

Voxel size �m3� 121�121�121 12
Medical Physics, Vol. 36, No. 2, February 2009
The main components of the equipment can be seen in
Fig. 4. In the test arrangement, the source and detector re-
mained stationary, whereas the object rotated on the rota-
tional stage under computer control. The axis of rotation is
coincident with the z axis. Repeat scans involving vertical
object displacements were achieved by moving the source
and detector on precision, computer controlled, vertical lin-
ear rails. Details of the experimental equipment and perfor-
mance capabilities have been reported elsewhere.36 CBCT
images of a live rabbit specimen were also acquired using a
clinical scanner �Elekta Synergy, Elekta, Stockholm�. Table I
lists imaging parameters used for each study described here.

III.B. Acrylic sphere phantom

In order to identify Cxo
in localized regions of space, a

phantom was constructed using a set of 3.2 mm diameter
acrylic spheres. Spheres were chosen because of their 3D
symmetry in the object space and therefore in the frequency
domain. This property greatly simplifies the identification of
missing frequency components in the Fourier transform. The
spheres were housed in polystyrene foam in order to provide
a uniform background of near air density, and were aligned
at 1 cm intervals. This phantom was positioned vertically
such that the first sphere lay on the source plane, whereas the
remaining spheres were at increasing z distances. The
spheres were imaged coincident with the rotation axis, as
well as at an offset, R, in the y direction, in order to observe
both the symmetrical and oblique, circular missing cones
within the local Fourier space of these subvolumes. Relevant
parameters involved in object setup are seen in Fig. 3�a�.
Figure 3�b� shows the relationship of maximum and mini-
mum internal angles of the missing cone in frequency space
to the real space imaging geometry for an oblique, circular
cone.

III.C. Missing cone measurements

The theoretical predictions of the size of Cxo
were tested

using the acrylic sphere data. All images were reconstructed

i-disks Large disks Rabbit

00 100 100
55 160 154

diographic Pulsed fluoroscopic Pulsed radiographic
20 120 120
00 40 80
5 7.5 10
l+0.1 mm
u

2 mm Al+0.1 mm
Cu

F1 aluminum bowtie
filter

125 1.2 0.55

20 300 650
1 1 5.5
25�125 120�120�120 750�750�750
Min

1
1

sed ra
1
1

m A
C

1.

3

5�1
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using the Feldkamp FBP algorithm. Reconstruction subvol-
umes of 256�256�80 voxels were analyzed �see Table I
for voxel size�, where each subvolume was centered about a
single sphere. This dimension was chosen to retain most in-
formation in the x and y directions, where the majority of the
artifact is expected, simultaneously restricting influence of
artifacts from spheres above or below the one examined.
Before Fourier transforming the data, a background subtrac-
tion was made by subtracting the average polystyrene foam
value. Each subvolume was then multiplied by a cylindrical,
Hann window function, W�i , j ,n�, such that

fwin�i, j,n� = W�i, j,n�fr�i, j,n�

= Wh�i + 1, j + 1�Wv�n + 1�fr�i, j,n� , �17�

where fwin�i , j ,n� is the value of the reconstruction volume at
index �i , j ,n�, fr�i , j ,n� is the value of the original recon-
struction volume, Wh�i , j� is a circular Hann window degen-
erate in n, defined as

Wh�i + 1, j + 1� =
1

2

1 − cos
2�

�i2 + j2�1/2

Nh
�� ,

i = 0, . . . ,Nh, j = 0, . . . ,Nh, Nh = 255, �18�

and Wv�n� is a linear Hann window degenerate in i and j
defined as

Wv�n + 1� =
1

2

1 − cos
2�

n

Nv
�� ,

n = 0, . . . ,Nv Nv = 79. �19�

A cylindrical Hann window was preferred over a spherical
window in order to better accommodate the shorter z dimen-
sion of the subvolume. Surface plots of central vertical and
horizontal cross sections of W�i , j ,n� are seen in Fig. 5. The
windowing was performed in order to guarantee a smooth
transition to zero mean values at the boundaries of the vol-
ume and therefore reduce spectral leakage in the Fourier
domain.37 The data were then zero padded to a volume of
256�256�256 voxels and transformed using the fast Fou-

FIG. 5. Surface plots of the function applied to reduce spectral broadening e
avoid sharp discontinuities between the zero padding and the volume edge
rier Transform �FFT�. All measurements were made in the
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Fourier domain, considering only the absolute magnitudes of
the frequency components. Working with the magnitude was
adequate for identification of the missing frequency compo-
nents and avoided the necessity of accurate registration of
the subvolumes that would be required if the phase compo-
nents were to be considered. Various methods are possible
for verifying the size of Cxo

in the experimental data. The
chosen method is similar to evaluating an edge spread func-
tion at the missing cone boundary. Numerical surface inte-
grals were evaluated over conical surfaces that ranged in size
from less than to larger than the expected size of Cxo

. The
conical integration surfaces had the same oblique angle and
orientation as that of Cxo

such that at least one surface inte-
gral was expected to coincide with its boundary. The result
of each integral was normalized with the corresponding re-
sult for the sphere that was centered on the source plane.
Surface integrals within Cxo

would ideally be expected to
yield a null value, whereas, values outside it would be ex-
pected to have a normalized value of 1 �as frequency com-
ponents in this region should ideally be the same for all
spheres�. A plot of the integral values as a function of maxi-
mum internal angle, 
2�, of the integration surface would be
expected to have a maximum derivative at precisely the
boundary of the missing cone �i.e., when 
2�=
2�. This
method was tested using simulated oblique, circular cones of
zeros of comparable size created within a volume of ones.
The results indicated that the algorithm could accurately re-
turn the internal angle of the simulated cones with negligible
error.

An implicit assumption made in the analysis is that the
image of the sphere centered on the source plane will be a
“true” reconstruction, whereas images of the spheres above
or below the source plane will exhibit a well-defined region
of missing frequency components in the Fourier domain.
This assumption is compromised by several factors. First, the
missing cone is shift-variant and does not have constant size
over the volume of a given sphere. However, the spheres
were chosen to be small enough to allow for the assumption
of shift-invariance to good approximation. Another factor is

in the power spectral density estimation by FFT. The function is applied to
o statistical fluctuations.
ffects
due t
that the CB artifacts introduced may spread to regions well
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beyond the subvolume examined. Although truncation of the
artifacts should introduce inaccuracies in the Fourier trans-
form, the impact is expected to be minimal as the majority of
the object’s energy is contained within the given subvolume.
Further, the effects of spectral leakage that would be intro-
duced by truncating the artifacts are reduced by the window
function described previously. Note that the separability of
the window function implies separate convolution kernels in
the Fourier domain. The effect of these convolutions is ex-
pected to have negligible impact to the location of the maxi-
mum gradient at the missing cone boundary and is therefore
not expected to compromise the analyses presented. Finally,
the surface integrals performed excluded regions near the DC
component where the boundary of the missing cone is not
well defined due to the discrete sampling of the data.

III.D. Mini-disk phantom

A mini-disk phantom was constructed using three mylar
disks 10.2 mm in diameter, 0.21 mm thick, and spaced by
approximately 2.0 mm of polystyrene foam. A schematic
representation of the experimental setup illustrating the key
parameters involved is seen in Fig. 6. The mini-disk phantom
was housed in a polystyrene foam casing and mounted to a
rotational microstage, which was used to vary the degree of
inclination of the disks, �, with respect to the source plane
�see Fig. 6�. The disks were centered on the rotation axis and
imaged at varying distances above the source plane. As the
majority of the energy of the disks lies in frequency bands
perpendicular to the plane of the disks, changing the param-
eter � changes the distribution of the frequency spectrum of

η1z
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kx=0

FIG. 7. �a� Sagittal view through the center of acrylic sphere imaged at R=8
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FIG. 6. Schematic representation of mini-disk experiment. The z axis corre-
sponds to the axis of rotation. The size of the disks is greatly exaggerated in
the illustration for purposes of clarity �see the text for details�.
in �a� at kx=0 shows a measurable skew in the null cone as 
1 is not equal to 


Medical Physics, Vol. 36, No. 2, February 2009
the phantom with respect to the kz axis in an obvious way,
and allows for a method of probing the frequency response at
localized regions of image space. The imaging geometry
used in this experiment �see Table I� was chosen to agree
with conventional geometries used in IGRT, observing a
maximum �half� cone angle of 5.5° �where a typical range is
approximately 5°–7.5°�. Reconstruction size of the disk
phantom was 200�200�100 voxels. Background �foam�
subtraction and zero padding to equal dimension were per-
formed prior to calculation of the FFTs.

III.E. Large disk phantom

Two distinct large disk phantoms were imaged, one of
solid acrylic and the other of cellular polyurethane. The latter
material has an internal structure similar to that of trabecular
bone. Both disks were 125 mm in diameter, and 1 cm thick.
The disk phantoms were imaged parallel and at a displace-
ment of 5 cm above the source plane. The data were ana-
lyzed to observe the recovery of internal cellular details at z
displacements where planar features with horizontal orienta-
tion are expected to be severely distorted.

III.F. Rabbit scan

A live, anesthetized rabbit was imaged using a clinical
Elekta Synergy unit �Elekta, Stockholm�. The rabbit was un-
der free breathing throughout the scan. The dimension of the
subvolume chosen for analysis was 64�64�64 voxels. This
subvolume was chosen to contain soft tissue, bony anatomy,
and air. Reconstructions were made using Elekta XVI soft-
ware. Additional reconstruction parameters are found in
Table I. This data were analyzed in order to determine if the
missing cone is observable in a more anatomically relevant
object under clinical settings.

III.G. Exclusion of Other Possible Physical Effects

In order to be convinced that the artifacts seen are due
primarily to loss of frequency content and not due to other
physical effects, the artifacts should be reproducible by the
theoretical removal of local frequency components. Using
the mini-disk phantom centered on the source plane as the

η2 ky=0

z=7 cm �windowed�. �b� Central slice of logarithm of FFT of acrylic sphere
cm,
2. �c� Central slice of logarithm of FFT at ky =0.
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reference image, and using the assumption of shift-
invariance, the filtering can be carried out in the frequency
domain,

f filt�x� = F−1�F�k� · T�k�� , �20�

where f filt�x� is the filtered image, F−1 indicates the inverse
Fourier transform, and T�k� is a volume of ones with a cone
of zeros equivalent to that predicted by theory. This multipli-
cation in the Fourier domain is equivalent to the convolution
in the spatial domain of the object function with the theoret-
ical PSF, F−1�T�k��.

IV. RESULTS AND ANALYSIS

Figure 7�a� shows a sagittal view of a sphere recon-
structed with an 8 cm offset from the rotation axis, and a
height of 7 cm above the source plane. Note that the noise in
the image tends to obscure any noticeable artifact. However,
sectional views through the logarithm of the 3D FFT, as seen
in Figs. 7�b� and 7�c�, show the absence of frequency infor-
mation within a conical region of space indicating that arti-
facts are present in the data. Figure 8�a� shows a sample plot

2 3 4 5 6 7

0

1

2

3

4

5

6

7

8

η
(ο
)

Z (cm)

Gaussian
Polynomial
Theory
Residuals (Gauss)
Residuals (Poly)

(a)

FIG. 9. �a� Experimentally determined missing cone angle plotted for sphe

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

C
SI

η2' (
ο )

CSI (normalized)
CSI smoothed

(a)

FIG. 8. �a� Results of surface integrals �normalized� taken over various size
Derivative of �a� with corresponding Gaussian and polynomial fits to the pe
peak fits to derivative data. �b� Experimentally determined 
2 values for spheres

Medical Physics, Vol. 36, No. 2, February 2009
of the normalized surface integrals, CSI, as a function of
internal angle, 
2�, for the same data set. The shape of the
curve is as expected, and increases steadily with increasing

2� coming to a maximum value near 1. The solid line repre-
sents the data after application of an adjacent mean filter.
This filter is expected to provide a smoother first derivative
without shifting the location of the peak. Note that the values
CSI never approach zero for small 
2�; this characteristic may
be partly explained by the presence of noise in the data,
partial truncation of the artifacts and spectral leakage not
completely eliminated by the window function. A nearest-
neighbor approximation to the first derivative of the
smoothed curve is shown in Fig. 8�b�. A Gaussian peak func-
tion was found to fit this smoothed data adequately with a
near unity adjusted R-squared value as well as a small
reduced-�-square value �displayed on the given plots�. A
third order polynomial was also fit to the peak over a reduced
range for additional validation. The location of the peak pro-
vides an estimate of 
2 of the missing cone of frequency
components. Angles 
2 and 
1 determined using this method
are drawn in Fig. 7�b�. Experimentally determined values of
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2 are also plotted as a function of z for R=0 and 8 cm in
Figs. 9�a� and 9�b� respectively. Theoretical values are
shown as solid lines, and indicate that very good agreement
exists between experiment and theory. Figure 10 shows the
mean value of 20 slices through the center of the reconstruc-
tion on the rotation axis in order to demonstrate the increas-
ing artifact at increased distances z by reducing the influence
of noise.

Sagittal reconstruction slices of the mini-disk phantom are
provided for varying displacements and angular orientations
in Fig. 11. Coronal views are also shown for the largest z
displacement. Note that in the case of the horizontal disk, the
artifacts are symmetric about the rotation axis, and the sag-
ittal view represents any sectional view through the center of
the phantom �i.e., the artifacts extend throughout the axial
view�. In all cases, image recovery of the phantom near the
source plane appears well defined, whereas off the source
plane the level of artifact evident is varied. Clearly, increas-
ing � resulted in higher fidelity of the disk lamina for regions
that are far removed from the source plane. In particular,
tilting the disks resulted in less edge distortion, greater fidel-
ity of intensity values and a general reduction of streaking
artifacts. Figure 12 demonstrates this result in terms of a
frequency domain representation. The missing cone of fre-

0 cm

2 cm

4 cm

6 cm

z

FIG. 10. Sagittal slice through acrylic spheres imaged on the rotation axis.
Twenty slices were averaged to better illustrate the CB artifacts relative to
background noise. Increased artifacts �shading, streaking� are manifested at
increasing z distances.
quency components predicted by theory is evident for the
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disk parallel to and above the source plane. Conversely, with
greater �, the disk maintains more of its frequency content as
the majority of its frequency spectrum lies outside the miss-
ing cone. Note that artifacts are not completely eliminated by
tilting the disk, because the missing cone still affects some
portion of its frequency components. This effect is expected
as all real finite objects have some frequency content in all
directions, and explains the persistence of CB artifacts.

Figure 13�a� illustrates the process used to reproduce the
artifact as indicated by Eq. �20�. The frequency components
removed were equivalent to that of a cone with a uniform
internal angle of 4.9° corresponding to the situation of the
mini-disk phantom imaged on the rotation axis and 8.6 cm
above the source plane. The same characteristics �i.e., loss of
edge resolution, decreased intensity, streaking� are evident
between the simulated and experimental data as seen in Fig.
13�b�. The similarity was verified via the two-dimensional
correlation coefficient of central slices, which increased from
0.73 before the convolution step to 0.95 afterwards �where 1
indicates the same image�. Five central slices were averaged
before calculation of the correlation coefficient in order to
reduce the influence of noise in the images. It should be
observed that a small, but nonnegligible disagreement can be
seen in the intensity values between the simulated and ex-
perimental data, as seen in the difference image in Fig. 13�b�
and the vertical profile of the images in Fig. 13�c�; this dis-
crepancy may be attributed to the use of a binary discrete
filter in the filtering process, which may have introduced a
slight over filtration of frequency components.

Figure 14 shows the result of imaging disks with differing
internal structures on and off the source plane. The acrylic
disk is obviously distorted when further from the source
plane, characteristic of having high magnitude frequency

8.6 cm

8.6 cm

7.4 cm

6.1 cm

4.9 cm

3.6 cm

2.5 cm

1.2 cm

0 cm

0o 2.4o 3.5o 5.1o 6.4o

Coronal Views

Sagittal Views

FIG. 11. Sagittal views of mini-disk phantom imaged at varying heights and
degrees of orientation. Increase in angular displacement maintains better
resolution of disk edge at increased distance from the source plane. Coronal
slices for the case where z=8.6 cm are also displayed above the sagittal
images.
components on or near the vertical axis; it is worth noting
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that this effect is very similar to the effect seen in the mini-
disk phantom but on a larger scale. The cellular structure
shows similar blurring, contrast differences and streaking ar-
tifacts, but also shows recovery of many internal cellular
details under this moderate cone-beam angle ��2.9° �. The
difference images confirm these observations, showing simi-
lar characteristics for both types of disks but also showing
good cancellation of internal cellular details in the case of
the cellular phantom.

Figure 15 shows a central section of the Fourier transform
of the subvolume of the rabbit data after windowing with a
spherical Hann window. A clear region of decreased energy

(a)

(b)

FIG. 12. Sagittal views of central disk in mini-disk phantom imaged on and
above central plane with �a� 0° tilt and �b� 6.4° of tilt. Sagittal slices of the
Fourier transforms are seen to the right. Missing energy is evident in the
case where the disk is positioned at 0° and is 8.6 cm off the source plane. By
tilting the disk most of its energy now lies out of the range of the missing
cone, resulting in a more well defined image. Images are zero padded above
and below each disk.
is observable over a conical region within the Fourier trans-
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form. The boundaries of the missing cone that would be
expected at the center of the subvolume are overlain on the
central section of the FFT for comparison, and indicates fair
agreement with observation. Note that nonzero frequency
content within the region of the predicted missing cone is
expected for a number of reasons. Mainly, the approximation
of shift-invariance is poor in this case. In addition, artifacts
originating at points near the boundaries of the subvolume
are severely truncated, whereas artifacts originating at points
outside of the subvolume extend to regions within it, as per
Eq. �16�.

V. DISCUSSION

Results from the acrylic sphere experiments agreed well
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(b)
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FIG. 13. �a� Process of artifact simulation by convolution via multiplication
in the Fourier domain. The disks imaged on source plane were fast Fourier
transformed �FFT� and then multiplied by a function of ones with conical
section of zeros resulting in a set of missing frequencies predicted by theory
for z=8.6 cm. The filtered Fourier transform was then inverse Fourier trans-
formed �IFFT� showing the simulated artifact. The resulting disks are com-
pared to the disks imaged experimentally at the same z location in �b�
showing clear similarity. The difference image and central profile in �c�
show small but nonnegligible intensity differences that may be due in part to
slight over filtration of frequency components by use of a binary filter.
Images are shown at the same scale.
with theoretical predictions, giving strong evidence that CB
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artifacts can be well described by a shift variant cone of
missing frequency components in the local Fourier domain.
As the missing cone increases in size with distance from the
source plane, increased artifact is observed in all reconstruc-
tions with increased z distance. However, imaged disks
showed better recovery as the angle of inclination with re-
spect to the source plane is increased. This effect can be
explained in terms of the placement of signal energy of the
disks with respect to the missing cone of frequency compo-
nents predicted by theory. These results support that the re-
moval of a subset of frequency components will have various
effects that depend not only on the imaging geometry, but
also on the object being imaged, and in particular the fre-
quency content it presents to the imaging system. From an-
other perspective, as the lines of absent frequency compo-
nents represent changes in the real object along those
directions, it is expected that the resolution of surfaces nor-
mal to these directions will be the most degraded.

The difference between the effect on planar versus cellu-
lar features was illustrated in the images of acrylic and cel-
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FIG. 14. �a� Sagittal reconstruction of cellular disk imaged on and off of the
source plane. �b� Solid acrylic disk of same dimension as disk in �a� and
imaged under equivalent conditions. Difference images between cross sec-
tions at different heights are shown below the disk cross sections.
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FIG. 15. �a� Subvolume of rabbit data showing several slices and isosurface
of the rabbit spine. �b� Saggital of 3D Fourier transform of volume shown in

�a�. Volume in �a� is shown prior to use of spherical Hann window.
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lular disks, showing that whereas the boundary of the acrylic
disk was lost even at modest cone angles, internal cellular
details of the polyurethane disks were apparent at the same
imaging location. Using the above-mentioned rationalization,
spherical features may appear less degraded in general as the
likely affected surfaces are more limited in extent �namely
the upper and bottom-most surfaces�. This effect aids in ex-
plaining why CBCT using a circular trajectory may be in
widespread use despite well-documented inability to recover
accurate information. It should be clear, however, that al-
though spherical, cellular, or curved features may appear to
maintain overall higher fidelity in reconstructions than planar
features �that are near parallel to the source plane�, CB arti-
facts will be present in all cases, unless approximations are
made, or strong a priori knowledge is present. The cumula-
tive effects of the CB artifacts may be of consequence in
terms of introducing contrast reduction, blurring or CT num-
ber inaccuracies. These effects are likely of more importance
in diagnostic CT than in IGRT, as without a priori knowl-
edge there is greater risk of failing to detect desired features.
The results of the cellular disk experiment indicate that a
more in depth study of these effects as a function of such
factors as object texture is recommended for future study.

The methods shown in this paper also showed utility for
identifying the presence of CB artifacts in clinical data. In
analysis of the rabbit image acquired using a clinical CBCT
scanner, no reference �or “ground truth”� data were available
for comparison, making it difficult to determine whether CB
artifacts were present. Further, even in the presence of accu-
rate reference data, CB artifacts may have very low contrast
to noise, or be dominated by other artifacts �e.g., scatter,
beam hardening� that obscure noticeable CB artifacts. Analy-
sis of the FFT of a small subvolume, however, confirmed
decreased energy in the region of the expected missing cone,
indicating that CB artifacts were present. This result suggests
that similar analyses may be used to test claims of CB arti-
fact reduction in real data. In addition, the reconstruction
fidelity of any localized feature can also be predicted inde-
pendently of other artifacts using the convolution method
posed in this paper if a reference image �e.g., a CT prior� is
known. The method can be modified to examine a larger
object by piecewise convolution: the larger volume can be
divided into sub-volumes, each filtered by a unique transfer
function defined by the presented theory and the results
added.

VI. CONCLUSIONS

The results of these experiments support the theoretical
predictions of a shift-variant cone of missing frequency com-
ponents in the Fourier domain when using a circular source
and detector geometry in CBCT. This missing cone was suc-
cessfully identified and measured in the Fourier transform of
an acrylic sphere phantom. Recovery of the mini-disk phan-
tom was seen to be strongly dependent on the relative energy
distribution of the imaged object with respect to the region of
missing frequency components predicted by theory. Image

reconstruction of large disk phantoms with varying internal
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structure illustrated the complexity of the observed effect
when considering its dependence on the total frequency con-
tent of the imaged object. Analysis of the rabbit data indi-
cated that the results are relevant to clinical scanners.
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APPENDIX: PROOF OF THE SHAPE
OF THE MISSING CONE

As before, xo is considered in the y–z plane at �0,R ,zo�
for simplification. Arbitrary xo can be considered by a rota-
tion of coordinates. Consider first, cone A, formed by con-
necting the source trajectory to xo using straight lines, as
shown in Fig. 16. For the sample tangent plane P, a normal
line can be constructed containing xo and intersecting the
source plane at n, as shown in Fig. 17. Likewise, for each
plane tangent to the surface of cone A, a corresponding nor-
mal line can be defined. The set of all normal lines con-
structed in this way forms a distinct cone, B, as shown in
Fig. 18. This cone is similar, in the strict mathematical sense,
to the missing cone in the Fourier domain. Cone B will be
shown here to have a circular aperture in the source plane.
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FIG. 16. Illustration of the construction of cone A by connecting xo to the
circular trajectory using straight lines
FIG. 17. Relationship of the normal line to tangent plane P.
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Proof: The vector �����–po �Fig. 17� defines the aperture
of cone A in the source plane, which by definition is circular.
Using the law of cosines, the magnitude of this vector can be
determined to be �Fig. 19�

ps���� = R cos���� + �	2 − R2 sin2���� . �A1�

Similarly, the aperture of cone B in the source plane is de-
fined by vector n����–po, which has magnitude ns����.
From the similar triangles in Fig. 17, ns���+180� is seen to
be inversely proportional to ps����,

ns��� + 180� =
zo

2

ps����
. �A2�

Using Eqs. �A1� and �A2� the ratio of ns���� to ps���� can be
formulated as follows:

ns����
ps����

=
zo

2

ps��� + 180�ps����
=

zo
2

c
, c � �	2 − R2� � 0

�A3�

and is seen to be constant for all ��. Therefore, the aperture
of cone B in the source plane must be circular. As similar
cones are defined for arbitrary horizontal plane, the aperture
of cone B must be circular in all horizontal planes. The ra-
dius of the aperture in the source plane must be half the sum
of the maximum and minimum magnitude of ns����, and can
be defined as
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FIG. 18. Illustration of the construction of cone B as a function of normal
lines to tangent planes to cone A.
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FIG. 19. Aperture of cones A and B in the plane of the circular trajectory.
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d = 
 tan�
1� + tan�
2�
2

�zo, �A4�

where 
1 and 
2 are the minimum and maximum angles of
cone B, with respect to the vertical axis, obtained directly
from the CB geometry. The axis of cone B, lies in the y–z
plane and has angle � to the vertical axis, defined by

� = tan−1
 tan�
2� − tan�
1�
2

� . �A5�

a�Author to whom correspondence should be addressed. Electronic mail:
steve.bartolac@rmp.uhn.on.ca; Telephone: 416-946-4501 �x 4049�; Fax:
416-946-6529.

1L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam
algorithm,” J. Opt. Soc. Am. A 1, 612–619 �1984�.

2H. K. Tuy, “An inversion formula for cone-beam reconstruction,” SIAM
J. Appl. Math. 43�3�, 547–552 �1983�.

3D. Finch, “Cone beam reconstruction with sources on a curve,” SIAM J.
Appl. Math. 43�4�, 546–552 �1985�.

4P. Grangeat, “Analyse d’un système d’imagerie 3D par reconstruction a
partir de radiographies X en géometrie conique,” Ph.D. thesis, École Na-
tionale Supérieure des Télécommunications, Paris, France, 1987.

5X.-H. Yan and R. M. Leahy, “Derivation and analysis of a filtered back-
projection algorithm for cone-beam projection data,” IEEE Trans. Med.
Imaging 10�3�, 462–472 �1991�.

6F. Peyrin, R. Goutte, and M. Amiel, “Analysis of a cone beam x-ray
tomographic system for different scanning modes,” J. Opt. Soc. Am. A
9�9�, 1554–1563 �1992�.

7A. V. Bronnikov, “Cone-beam reconstruction by backprojection and fil-
tering,” J. Opt. Soc. Am. A Opt. Image Sci. Vis 17�11�, 1993–2000
�2000�.

8K. C. Tam, G. Lauritsch, and K. Sourbelle, “Filtering point spread func-
tion in backprojection cone-beam CT and its applications in long object
imaging,” Phys. Med. Biol. 47�15�, 2685–2703 �2002�.

9S. Dale and P. Edholm, “Inherent limitations in ectomography,” IEEE
Trans. Med. Imaging 7�3�, 165–172 �1988�.

10G. Lauritsch and W. Haerer, “A theoretical framework for filtered back-
projection,” Proc. SPIE 3338�1�, 1127–1137 �1998�.

11J. T. Dobbins, III and D. J. Godfrey, “Digital x-ray tomosynthesis: Cur-
rent state of the art and clinical potential,” Phys. Med. Biol. 48�19�, R65–
106 �2003�.

12J. Brokish and Y. Bresler, “Sampling requirements for circular cone beam
tomography,” IEEE Nucl. Sci. Symp. Conf. Rec. 5, 2882–2884 �2006�.

13P. Rizo, P. Grangeat, P. Sire, P. Lemasson, and P. Melenec, “Comparison
of two three-dimensional x-ray cone-beam-reconstruction algorithms with
circular source trajectories,” J. Opt. Soc. Am. A 8�10�, 1639–1648 �1991�.

14H. Hu, “An improved cone-beam reconstruction algorithm for the circular
orbit,” Scanning 18�8�, 572–581 �1996�.

15S. W. Lee, G. Cho, and G. Wang, “Artifacts associated with implementa-
tion of the Grangeat formula,” Med. Phys. 29�12�, 2871–2880 �2002�.

16H. Yang, M. Li, K. Koizumi, and H. Kudo, “FBP-type cone-beam recon-
struction algorithm with Radon space interpolation capabilities for axially
truncated data from a circular orbit,” Med. Imaging Technol. 24�3�, 201–
208 �2006�.

17
X. Tang, J. Hsieh, A. Hagiwara, R. A. Nilsen, J. B. Thibault, and E.

Medical Physics, Vol. 36, No. 2, February 2009
Drapkin, “A three-dimensional weighted cone beam filtered backprojec-
tion �CB-FBP� algorithm for image reconstruction in volumetric CT un-
der a circular source trajectory,” Phys. Med. Biol. 50�16�, 3889–3905
�2005�.

18L. Yu, X. Pan, and C. A. Pelizzari, “Image reconstruction with a shift-
variant filtration in circular cone-beam CT,” Int. J. Imaging Syst. Technol.
14�5�, 213–221 �2004�.

19T. M. Benson and J. Gregor, “Three-dimensional focus of attention for
iterative cone-beam micro-CT reconstruction,” Phys. Med. Biol. 51�18�,
4533–4546 �2006�.

20K. Zeng, Z. Chen, L. Zhang, and G. Wang, “An error-reduction-based
algorithm for cone-beam computed tomography,” Med. Phys. 31�12�,
3206–3212 �2004�.

21S. Valton, P. Berard, J. Riendeau, C. Thibaudeau, R. Lecomte, D. Sappey-
Marinier, and F. Peyrin, “Comparison of analytical and algebraic 2D to-
mographic reconstruction approaches for irregularly sampled microCT
data,” Conf. Proc. IEEE Eng Med. Biol. Soc. 1, 2916–2919 �2007�.

22R. Clackdoyle and F. Noo, “Cone-beam tomography from 12 pinhole
vertices,” IEEE Nucl. Sci. Symp. Conf. Rec. 4, 1874–1876 �2001�.

23D. A. Jaffray and J. H. Siewerdsen, “Cone-beam computed tomography
with a flat-panel imager: Initial performance characterization,” Med.
Phys. 27�6�, 1311–1323 �2000�.

24Z. Chen and R. Ning, “Supergridded cone-beam reconstruction and its
application to point-spread function calculation,” Appl. Opt. 44�22�,
4615–4624 �2005�.

25A. L. Kwan, J. M. Boone, K. Yang, and S. Y. Huang, “Evaluation of the
spatial resolution characteristics of a cone-beam breast CT scanner,” Med.
Phys. 34�1�, 275–281 �2007�.

26S. R. Mazin and N. J. Pelc, “A Fourier rebinning algorithm for cone beam
CT,” Proc. SPIE 6913, 691323-1–691323-12 �2008�.

27J. Hsieh, “A practical cone beam artifact correction algorithm,” IEEE
Nucl. Sci. Symp. Conf. Rec. 2, 15/71–15/74 �2000�.

28Z. J. Cao and M. W. Tsui, “A fully three-dimensional reconstruction al-
gorithm with the nonstationary filter for improved single-orbit cone beam
SPECT,” IEEE Trans. Med. Imaging 40�3�, 280–288 �1993�.

29F. Natterer, The Mathematics of Computerized Tomography �Wiley, New
York, 1986�.

30J. Hsieh, Computed Tomography: Principles, Design and Recent Ad-
vances �SPIE, Bellingham, WA, 2003�, p. 87.

31B. D. Smith, “Image reconstruction from cone beam projections: Neces-
sary and sufficient conditions and reconstruction methods,” IEEE Trans.
Med. Imaging 4, 14–23 �1985�.

32A. C. Kak and M. Slaney, Principles of Computerized Tomographic Im-
aging �IEEE, New York, 1988�.

33S. R. Deans, The Radon Transform and Some of Its Applications �Wiley,
New York, 1983�.

34M. Defrise and R. Clack, “A cone-beam reconstruction algorithm using
shift-variant filtering and cone-beam backprojection,” IEEE Trans. Med.
Imaging 13�1�, 186–195 �1994�.

35H. Kudo and T. Saito, “Derivation and implementation of a cone-beam
reconstruction algorithm for nonplanar orbits,” IEEE Trans. Med. Imag-
ing 13�1�, 196–211 �1994�.

36G.-H. Chen, J. H. Siewerdsen, S. Leng, D. Moseley, B. E. Nett, J. Hsieh,
D. Jaffray, and C. A. Mistretta, “Guidance for cone-beam CT design:
Tradeoff between view sampling rate and completeness of scanning tra-
jectories,” Proc. SPIE 6142, 357–368 �2006�.

37F. J. Harris, “On the use of Windows for harmonic analysis with the

discrete Fourier transform,” Proc. IEEE 66�1�, 51–83 �1978�.

http://dx.doi.org/10.1364/JOSAA.1.000612
http://dx.doi.org/10.1137/0143035
http://dx.doi.org/10.1137/0143035
http://dx.doi.org/10.1109/42.97597
http://dx.doi.org/10.1109/42.97597
http://dx.doi.org/10.1088/0031-9155/47/15/310
http://dx.doi.org/10.1117/12.310839
http://dx.doi.org/10.1088/0031-9155/48/19/R01
http://dx.doi.org/10.1118/1.1522748
http://dx.doi.org/10.1088/0031-9155/50/16/016
http://dx.doi.org/10.1002/ima.20026
http://dx.doi.org/10.1088/0031-9155/51/18/006
http://dx.doi.org/10.1118/1.1809792
http://dx.doi.org/10.1118/1.599009
http://dx.doi.org/10.1118/1.599009
http://dx.doi.org/10.1364/AO.44.004615
http://dx.doi.org/10.1118/1.2400830
http://dx.doi.org/10.1118/1.2400830
http://dx.doi.org/10.1117/12.769575
http://dx.doi.org/10.1109/42.276157
http://dx.doi.org/10.1109/42.276157
http://dx.doi.org/10.1109/42.276158
http://dx.doi.org/10.1109/42.276158
http://dx.doi.org/10.1109/PROC.1978.10837

