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Dual-energy �DE� imaging of the chest improves the conspicuity of subtle lung nodules through the
removal of overlying anatomical noise. Recent work has shown double-shot DE imaging �i.e.,
successive acquisition of low- and high-energy projections� to provide detective quantum effi-
ciency, spectral separation �and therefore contrast�, and radiation dose superior to single-shot DE
imaging configurations �e.g., with a CR cassette�. However, the temporal separation between high-
energy �HE� and low-energy �LE� image acquisition can result in motion artifacts in the DE images,
reducing image quality and diminishing diagnostic performance. This has motivated the develop-
ment of a deformable registration technique that aligns the HE image onto the LE image before DE
decomposition. The algorithm reported here operates in multiple passes at progressively smaller
scales and increasing resolution. The first pass addresses large-scale motion by means of mutual
information optimization, while successive passes �2–4� correct misregistration at finer scales by
means of normalized cross correlation. Evaluation of registration performance in 129 patients
imaged using an experimental DE imaging prototype demonstrated a statistically significant im-
provement in image alignment. Specific to the cardiac region, the registration algorithm was found
to outperform a simple cardiac-gating system designed to trigger both HE and LE exposures during
diastole. Modulation transfer function �MTF� analysis reveals additional advantages in DE image
quality in terms of noise reduction and edge enhancement. This algorithm could offer an important
tool in enhancing DE image quality and potentially improving diagnostic performance. © 2009
American Association of Physicists in Medicine. �DOI: 10.1118/1.3036981�
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I. INTRODUCTION

Dual-energy �DE� imaging removes overlapping anatomical
structures that might otherwise impede the detection and
characterization of subtle lung nodules in a chest
radiograph.1,2 By acquiring two projections at different ener-
gies and selectively decomposing distinct tissue components,
the “soft-tissue” image effectively removes bony anatomical
noise �e.g., ribs and clavicles�, thereby enhancing the sensi-
tivity in the detection of subtle lung nodules. The “bone”
image, on the other hand, can distinguish calcified structures,

thus potentially improving specificity in the characterization
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of benign lesions. Other applications of DE imaging abound,
including musculoskeletal imaging �e.g., differentiation of
fractures from bony metastases�, cardiac imaging �e.g., im-
aging of coronary calcium�, and interventional procedures
�e.g., stent visualization�.

“Double-shot” DE imaging �in which low- and high-
energy projections are acquired in successive exposures� has
been shown to offer improved detective quantum efficiency,3

increased spectral separation �resulting in higher contrast�,
and lower radiation dose compared to a “single-shot” tech-
nique �in which the two projections are acquired simulta-

neously by means of a detector sandwich�. However, an in-
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trinsic challenge to double-shot DE imaging is the
susceptibility to motion artifacts resulting from anatomical
misregistration between exposures.

The time delay between two projections may range from
hundreds of milliseconds4–6 to several seconds, depending
on system configuration. Even small delays can result in ap-
preciable motion artifacts in DE images—e.g., due to motion
of the heart. Initial implementation of the experimental pro-
totype DE imaging system used in this study has a fairly long
interexposure delay of 5 to 8 s. For such a long delay, ana-
tomical misregistation is unavoidable due to constant motion
of the heart, respiratory motion �even during breath-hold—
e.g., rebound of the diaphragm�, and gross patient motion
�e.g., patient relaxation, slouch, etc.�. The resulting motion
artifacts in DE images typically appear as bright or dark
streaks delineating anatomical edges, reducing overall image
quality and diminishing diagnostic performance. Example
motion artifacts are illustrated in Fig. 1.

Rigid 2D-to-2D registration is not sufficient to achieve the
necessary accuracy in image alignment at both global scales
�e.g., shoulders and ribcage� and local scales �e.g., heart and
vasculature�. A variety of deformable 2D-to-2D registration
algorithms have been proposed to register radiographs. To
align chest radiographs acquired at separate times for the
purpose of detecting interval change, Kano et al. developed
an algorithm that computes cross correlation-based local
matching of small regions of interest �ROIs� placed in the
lung.7 The local displacements were applied using a nonlin-
ear geometric warping technique. Ishida et al. added to this
method an initial global matching found through cross cor-
relation of two radiographs at low resolution8 and later ex-
tended the algorithm to include iterative steps.9 Armato
et al. employed the same algorithm in the subtraction of
temporally sequential DE soft-tissue images.10 Other appli-
cations involve registering ventilation-perfusion images with
digital chest radiography using contour detection and ana-
tomical landmarks.11,12 These techniques have demonstrated
radiographic registration suitable for visualizing change over
extended time scales �e.g., disease progression or treatment

(a) (b)

FIG. 1. Example motion artifacts in unregistered DE bone images. �a�
Zoomed-in view of the shoulder. �b� Zoomed-in view in the region of the
heart. The bright and dark edges result from anatomical misregistration be-
tween HE and LE exposures.
response�. They were not developed for purposes of DE im-
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aging, where the goal is subpixel level registration accuracy
between LE and HE images acquired in rapid succession
�within seconds�.

For double-shot DE imaging, therefore, our goal was to
develop a deformable 2D-to-2D registration algorithm that is
fully automated �no manual intervention�, computationally
simple �and therefore fast by means of future multithreaded
GPU implementations�, robust against differences in pixel
intensity between low-energy �LE� and high-energy �HE�
projections �unlike, for example, Demons-type algorithms�,
and accurate in registering motion across both large �centi-
meter� and small �millimeter� anatomical scales. To address
these challenges, a multiscale, multiresolution �MSMR� reg-
istration algorithm using a hybrid of mutual information
�MI� optimization and normalized cross correlation �NCC�
was developed to align HE and LE images prior to DE de-
composition. Metrics of MI �Refs. 13 and 14� and NCC �Ref.
15� are each commonly used similarity measures in 2D, 3D,
and 4D as well as single- and multimodal image
registration.16–21 We evaluated the performance of both simi-
larity measures and combined the two in a hybrid manner to
optimize performance and speed. A multiscale �i.e., ROIs of
various size considered in multiple passes� and multiresolu-
tion �i.e., variable pixel binning in each pass� approach
proved to resolve misregistration across varying scales,16

avoid local minima,17 and improve computational
efficiency.16,17,19,22

II. METHODS

II.A. Description of algorithm

In the following section, we present an algorithm that
operates on multiple scales and at multiple resolutions to
transform the HE image in iterative passes. In each pass, a
series of translation vectors is calculated by either MI or
NCC optimization. A spatial transformation inferred from
these vectors is then interpolated and applied to the HE im-
age in a pixel-wise manner. The transformed HE image and
original LE image constitute the inputs to the next pass,
where the process is repeated. The rationale for the multi-
scale, multiresolution pyramid is described in Sec. II A 1, the
choice of objective functions in Sec. II A 2, and image trans-
formation and interpolation techniques in Sec. II A 3.

II.A.1. Multiscale, multiresolution morphological
pyramid

The algorithm operates by a morphological pyramid in
which multiple iterations �passes� are performed at progres-
sively smaller scale �i.e., size of ROI� and finer resolution
�i.e., pixel size�. The MSMR approach offers advantages
�compared to a single-pass, full-resolution approach� in com-
putational efficiency, avoidance of local minima, and correct-
ing motion across various scales �discussed in Sec. IV A�.
The registration process is illustrated in Fig. 2. The LE image
is taken as the fixed image �also called the target or reference
image�, and the HE image is the moving image �also called

the source or transformed image�. In theory, either image
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may be selected as fixed or moving, but taking the HE image
as the latter offers an advantage to DE image quality, as
discussed in Sec. IV D.

In each pass �n�, both images are divided into a number of
ROIs of extent Ln. To allow transformations beyond the
range of Ln, the ROIs in the HE image include an additional
margin kn of approximately 1 /10 the size of Ln. Also in each
pass, the pixel sizes of both the target and moving images are
averaged over a given bin size �box mean over an area of
sidelength denoted bn�, resulting in an image of size 3000 /bn

in which pixels are the average values from nonoverlapping
bins. Both Ln and bn are in units of pixels in the original
image. In a morphological pyramid, Ln and bn reduce or
remain the same �but do not increase� at each pass. A number
of potential “paths” �i.e., selection series of Ln, bn� were
investigated as described in Appendix A, each presenting
tradeoffs in the susceptibility to local minima and correction
of small- or large-scale misregistration. The “diagonal” path
provided the best overall performance and was used for all
results below. For this nominal path, the original �3000
�3000 pixel� images were registered in a total of n=4
passes. Nonoverlapping square ROIs of size Ln=720, 384,
192, and 96 were laid regularly in the middle of the image,
leaving margins on the four sides to prevent transformations
beyond the image in case “outward” translation vectors were
calculated for the border ROIs. The respective pixel binning
in each pass was bn=16, 8, 4, and 2 �i.e., pixel size 2.29,
1.14, 0.57, 0.29 mm in passes 1–4, respectively�. As de-
scribed in Appendixes A and B, a full-resolution pass �n=5;
bn=1� was computationally intense and did not significantly
improve registration performance.

II.A.2. Objective function—A hybrid approach

At each pass, ROIs are registered according to optimiza-
tion of a given objective function—e.g., MI or NCC. The
former is a prevalent metric for registration used in many
applications16–21 in combination with a given optimization
technique �e.g., simplex search�.23,24 As discussed in Appen-
dix C, registration based on MI and a simplex search was
found to be fairly robust against local minima, although
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computationally slow. Registration by NCC, on the other
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hand, was fast, but may give poor performance for highly
correlated images16 �i.e., exhibiting multiple peaks in the
cross-correlation matrix�. The two basic metrics are summa-
rized below, motivating the implementation of a hybrid ap-
proach.

II.A.2.a. Mutual information optimization. Mutual infor-
mation �MI� is defined as13,14

MI�A,B� = H�A� + H�B� − H�A,B� , �1�

where H�A� is the entropy of image A given by

H�A� = − �
a

pA�a�ln�pA�a�� . �2�

Here, a represents pixel values in image A and pA�a� is the
marginal probability distribution of image A. For two jointly
distributed images A and B, the marginal probability distri-
bution of A is simply its probability distribution disregarding
information in B.

H�A ,B� is the joint entropy of image A and B given by,

H�A,B� = − �
a,b

pAB�a,b�ln�pAB�a,b�� , �3�

where pAB�a ,b� is the joint probability distribution of image
A and B which describes the probability that pairs of values
�a ,b� occur together. Misregistration results in dispersion of
the joint probability distribution, which leads to higher joint
entropy.21 Mutual information, presented as the difference
between the entropies of A and B and their joint entropy,
describes the shared information between two images.21,25

Both pA and pAB were calculated with images normalized to
64 gray levels. Larger and smaller numbers of gray levels
were investigated, with 64 selected as the smallest value for
which registration performance was stable. The optimal
alignment between two images is achieved when MI is maxi-
mized. Optima were computed using the MATLAB �vR2007a,
The Mathworks, Natick, MA� function fminsearch, in which
transformation vectors were varied until a maximum in MI �a
minimum in −MI� was obtained. The search technique was
based on the Nelder-Mead simplex algorithm23,24 modified
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registration.
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vectors, thus constraining the search space of the x- and
y-components within �kn /bn, where kn is the size of the
additional margins included in ROIs of the HE image, and bn

is the bin size, as defined in the previous section. Therefore,
the ROI can be transformed within but not beyond the addi-
tional margin of size kn. This prevents unrealistic translations
�e.g., caused by local minima or noisy regions with little
anatomical features, e.g., the abdomen�. The final transfor-
mation vector for the ROI is that which maximizes MI, rep-

resented as

in pass 1�. Computational efficiency was also essential in
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T�i, j� = min
x,y

�− MIi,j�LE,HE;x,y�� , �4�

where T�i , j� identifies the final transformation vector of the
�i , j�th ROI of the moving image, MI is the mutual informa-
tion between the �i , j�th ROI in the HE and LE images, and
x and y are displacements in the horizontal and vertical di-
rections, respectively.

II.A.2.b. Normalized cross correlation. The normalized
cross correlation �NCC� matrix between ROIs in the HE and

15,16,20
LE image was calculated as
NCC�u,v� =
��x,y����IHE�x,y� − IHE��ILE�x − u,y − v� − ILE�

���x,y����IHE�x,y� − IHE�2���x,y����ILE�x − u,y − v� − ILE�2
, �5�
where IHE and ILE are the mean of the HE and LE images in
the overlap region �x ,y���. Given HE and LE ROIs of size
Ln+kn and Ln, respectively, NCC is the �2Ln+kn−1�2 cross-
correlation matrix. Note that NCC is a matrix, not to be
confused with Pearson’s correlation coefficient. NCC was
calculated using the MATLAB function normxcorr2, with the
position of the maximum value of the NCC matrix giving the
displacement that maximizes correlation. Taking into account
the relative sizes of the images, the translation vector for a
given HE ROI is the difference between the location of the
NCC peak and the size of the LE image ROI,

T�i, j� = max
x,y

�NCC� − Ln. �6�

As described in Appendix C, both MI and NCC offered po-
tential objective functions: the former was computationally
slow but robust against local minima; the latter was consid-
erably faster �by a factor of �6� but did not perform as well
when the image data are are self-similar16—i.e., when sub-
regions of an image can be approximated using other subre-
gions of the same image. �Such self-similarity is more likely
to occur in large ROIs, with the ribs offering a good example
of a recurrent, self-similar pattern.� In the first pass �n=1� in
particular, MI outperformed NCC. However, in passes n
=2–4, the two performed equivalently. A hybrid approach
was therefore implemented. In the first pass, MI constituted
the objective function, where its resilience to local minima in
the presence of large sets of anatomical features was essen-
tial, but computational efficiency was not a major limitation
�since the images in pass n=1 involve few ROIs at large
scale and coarse pixel size�. In subsequent passes, registra-
tion was based upon NCC, where multiple peaks in the
cross-correlation matrix were not as prevalent and suscepti-
bility to local minima was not as severe �owing to smaller
ROIs and good initial conditions provided by MI registration
pass n=2–4 since the images involve many ROIs at small
scale and fine pixel size.

II.A.3. Image transformation and interpolation

The set of translation vectors, T�i , j�, computed for all
ROIs in each pass are not directly applied. Instead, a local-
weighted-mean transformation26 �LWM� was inferred from
the pairs of control points related by the ensemble of vectors
in a given pass. The LWM transformation was used to ac-
count for locally varying distortions, and was bilinearly in-
terpolated to a pixel-wise transformation that is applied to
the entire moving �HE� image. This in combination with
multiple passes at multiple scales effects a deformable trans-
formation.

II.B. Imaging system

As described in previous work,27,28 an experimental
prototype DE imaging system was developed based upon a
Kodak RVG-5100 digital radiography chest stand
�Carestream Health Inc., Rochester, NY�. Modifications in-
clude: �1� a high-performance flat-panel detector �FPD�
�3000�3000 pixels, 0.143 mm pixel pitch, CsI:Tl scintilla-
tor, Trixel Pixium-4600, Moirans, France�; �2� a computer-
controlled filter wheel for differential filter selection in low-
and high-kVp projections; �3� a cardiac-gated image acqui-
sition system; and �4� an acquisition workstation that con-
trols imaging technique, filter selection, and synchronization
of the source and FPD. A cardiac monitoring system was
implemented for purposes of retrospective analysis of the
gating system. The monitor recorded pulse oximetry and
x-ray trigger signals to determine whether a given x-ray ex-
posure was delivered synchronous to diastole or systole. Pre-
vious studies identified the optimal imaging techniques:29 an
LE beam at 60 kVp and an HE beam at 120 kVp �0.6 mm
Ag+2 mm Al added filtration�, with the radiation dose allo-

cated such that approximately 1 /3 of the total energy was
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imparted by the LE beam, and with total dose equivalent to
that of a conventional PA chest radiograph �e.g., 0.11 mGy
for average chest thickness�.

Postprocessing of images, including offset-gain correc-
tion, deformable registration, and DE image decomposition
was performed on a desktop PC �Dell Precision 380 work-
station with a single-core 3.0 GHz GPU, 2 GB RAM�. Initial
implementation of the algorithm was in MATLAB, which, al-
though known to be considerably slower than lower-level
executable code �e.g., C��, C#, etc.�, provided a suitable
prototyping platform. Image review was performed on dual-
head �1536�2048 pixels�, 8-bit gray-scale displays �AXIS
III, National Display Systems, Morgan Hill, CA�.

II.C. Performance evaluation in patient images

II.C.1. Clinical imaging trial

Image data were collected from a preclinical patient im-
aging trial conducted at the University Health Network �Tor-
onto, ON�. The trial consisted of 220 patients accrued under
informed consent. Exclusion criteria for the study included
diseases that would result in cardiac arrhythmia, inability to
maintain a breath-hold for �10 s, and anterior-posterior
chest thickness exceeding 28 cm.28,29 Patients were random-
ized to 5 arms varying in imaging technique, use of the car-
diac trigger, etc., among which 129 DE images were ac-
quired at optimal acquisition technique �kVplow, kVphigh,
filter selection, dose allocation, and cardiac-gated� as indi-
cated by previous work.29 The 129 images from the optimal
technique group were used in the evaluation of registration
performance below �Sec. III A�. An additional 21 DE images
were acquired without cardiac gating but with otherwise op-
timal techniques, and were used in the evaluation of the
cardiac-gating system in combination with the optimal tech-
nique group �Sec. III B�.

II.C.2. Deformable registration vs prospective
cardiac gating

Cardiac motion presents a significant source of misregis-
tration in DE imaging. This is certainly a concern for the
prototype described above, for which low-and high-energy
exposures are obtained on separate heartbeats. Similarly, this
is a concern even for considerably faster DE imaging sys-
tems �e.g., 200,6 150,30 or 35 ms �Ref. 31� exposure inter-
val�, since chance exposure during systole can still present
significant motion artifacts. The cardiac-gating system men-
tioned above aimed to deliver both exposures coincident
with diastole through the use of a pulse oximeter and a
model for heart-rate-dependent timing.28,32 The timing
model, designed to trigger at mid-diastole, accounts for the
dependence of diastolic period on heart rate by a variable
implemented delay that could support triggering at heart
rates up to 140 bpm. As currently implemented, x-ray expo-
sure was synchronous to mid-diastole of the same heartbeat
as the oximeter trigger for heart rate �65 bpm, and to mid-
diastole in the subsequent heartbeat for heart rate �65 bpm.
The simple oximeter-based gating system has been shown to

32
provide significant reduction in cardiac motion artifact. In
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the current article, we evaluated the extent to which deform-
able image registration further mitigates cardiac motion arti-
facts or outperforms prospective gating altogether.

Of the 150 cases, 137 had timing information available
for retrospective analysis. There were 109 cases involving
both low- and high-energy exposures delivered synchronous
to diastole �as determined by the cardiac monitoring system
described in Sec. II B�. The remaining 28 cases involved one
or both exposures acquired during systole. The quality of
registration was evaluated in an image subregion about the
heart as shown in Fig. 3 for the following cases:

�i� �Systole trigger/no registration�—unsuccessful cardiac
gating, without image registration �hypothesized as the
worst case�, average heart rate= �78.3�10.8� bpm;

�ii� �Diastole trigger/no registration�—successful cardiac
gating, without image registration �corresponding to a
“hardware-only” approach�; average heart rate
= �77.5�15.2� bpm;

�iii� �Systole trigger/MSMR registration�—unsuccessful
cardiac gating, with image registration �examining the
extent to which image registration can overcome the
hypothetical worst case�, average heart rate
= �78.3�10.8� bpm;

�iv� �Diastole trigger/MSMR registration�—successful car-
diac gating with image registration �hypothesized as
the best case�, average heart rate= �77.5�15.2� bpm.
The cases were further pooled to examine:

�v� ��Systole or diastole� trigger/no registration�—
evaluating the degree of artifact to be expected in a
population of ungated DE images without registration,

Shoulder

Diaphragm

Ribs

Heart

Overall

FIG. 3. Example image illustrating the location of five subregions for regis-
tration performance evaluation—the overall image �excluding the collima-
tors� and four anatomical subregions chosen to more closely examine gross
patient motion, slouch, cardiac motion, and respiratory motion.
average heart rate= �77.7�14.4� bpm; and
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�vi� ��Systole or diastole� trigger/MSMR registration�—a
“software-only” approach in which a population of un-
gated DE images is operated upon by MSMR registra-
tion, average heart rate= �77.7�14.4� bpm.

We hypothesized that �i� and �iv� would present worst and
best cases, respectively, in terms of artifact magnitude. Fur-
ther, we quantified the extent to which worst case motion �iii�
could be resolved by deformable registration compared to
best case motion—e.g., comparing data from �iii� to �ii�. Fi-
nally, we compared the performance of a software-only ap-
proach �i.e., cases from �iii� or �vi� triggered in systole or
diastole with MSMR registration applied� to a hardware-only
approach �i.e., cases from �ii� involving successful diastole
gating, but no registration algorithm�.

II.C.3. Performance evaluation

Registration performance was quantified in terms of the
absolute value of MI �i.e., �MI� as in Eq. �1�� between the
moving �HE� image and the fixed �LE� image. Higher �MI�
corresponds to better image registration performance. Re-
sults were computed as the average �MI� over all cases within
a particular group, with error bars reflecting 2 standard de-
viations. Recognizing that adopting a figure of merit ��MI��
that is also an objective function in the registration algorithm
�MI in the first pass of the hybrid algorithm� creates a poten-
tial for bias in the evaluation, we evaluated other perfor-
mance metrics as well—e.g., sum of squared differences,
correlation coefficient and coefficient of variation in differ-
ence histograms. Each followed the same trends as �MI�, and
�MI� appeared to best reflect qualitative changes in image
quality; therefore, �MI� is used throughout.

Registration performance was evaluated considering the
overall image as well as the four subregions illustrated in
Fig. 3. The overall image region �2700�2700 pixels� con-
tained nearly the entire field of view, excluding collimator
edges. The shoulder subregion �1100�400 pixels� included
the left clavicle, the first and second ribs, and part of the left
lung apex. The ribs subregion �400�800 pixels� typically
contained the fifth to the eighth ribs, comprising the majority
of the right lung but excluding the vasculature adjacent to the
mediastinum. The heart subregion �400�500 pixels� and
diaphragm subregion �500�400 pixels� were selected to
evaluate cardiac and respiratory motion artifacts, respec-
tively. The size of the overall image and subregions was
fixed for all patients while the locations were manually se-
lected for each case.

A Student t-test was used to evaluate the statistical sig-
nificance of the difference measured in �MI� between two
image groups. A one-sided t-test was used when testing for a
directional alternative hypothesis �e.g., registered vs unregis-
tered, as in Secs. III A and III B�, whereas a two-sided t-test
was used for nondirectional alternative hypothesis �e.g., hy-
brid algorithm vs MI optimization-only algorithm, as in Ap-
pendix C�. For two groups comparing registration in the

same patients �Sec. III A and Appendix C�, a pairwise t-test
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was used. Otherwise, a two-sample heteroscedatic �unequal
variance� test was used �Sec. III B�. The t-test analysis was
computed in MICROSOFT EXCEL.

As a basis of comparison and aid to interpreting the �MI�
results, the approximate upper limit of �MI� was measured
using an anthropomorphic chest phantom �model 55-8PL,
Radiology Support Services, Long Beach, CA� imaged at the
same techniques as in the patient imaging study. The �MI� of
the resulting HE and LE images was calculated, illustrating
the ideal case in which the patient was perfectly still between
exposures, recognizing the potential variation associated
with differences in attenuation �pixel values� of materials in
the phantom and individual patients.

II.D. Effect of MSMR registration on spatial resolution

Measurements of the modulation transfer function �MTF�
were performed to determine the transfer function of the reg-
istration algorithm and its effect on spatial resolution in the
resulting DE images. The edge-spread measurement method
has been described in previous work.33 A Pb edge �2 mm
thick� was placed at a slight angle ��5° � to the FPD matrix
and imaged at the same LE and HE techniques as described
above. In addition, three HE images were acquired in which
the edge was manually perturbed from its original position:
slightly ��1 mm orthogonal to the edge�, modestly ��5 mm
orthogonal to the edge�, and grossly ��10 mm orthogonal to
and angulated with respect to the edge�. The MTF was ana-
lyzed from the LE image, the HE image, and the three reg-
istered HE images. In each case, the MTF was computed by
determining the oversampled edge spread function �ESF�,34

the derivative of which yielded the line spread function
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FIG. 4. Registration performance evaluated in terms of �MI� for registered
and unregistered images. In each case �overall image as well as various
subregions�, the algorithm gave statistically significant improvement
�p-value �0.001� in registration of the HE �moving� image with the LE
�fixed� image. Values represented by the � symbol represent those obtained

with the stationary anthropomorphic chest phantom.
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�LSF�. The absolute value of the fast Fourier transform
�FFT� of the area-normalized LSF yielded the MTF. The
MTF was reported as the average analyzed over 25 measure-
ments performed at different regions along the edge. Consid-
ering the MSMR algorithm as a linear image transfer pro-
cess, the MTF of the MSMR algorithm was estimated as the
quotient of the MTF for a registered image divided by that of
the original �unperturbed� image.

III. RESULTS

III.A. Registration performance

Figure 4 shows �MI� before and after registration averaged
over 129 patients for the overall image and the four anatomi-
cal subregions. �MI� is significantly improved following
MSMR registration in all cases �p�0.001�. Although the
increase in the population mean �MI� is fairly small, the small

(a) Soft Tissue Images

Unregistered
|MI|=2.25

Registered
|MI|=2.54

FIG. 5. Example images before and after MSMR registration: �a� soft-tissue
to the population mean in Fig. 4.

Registered
|MI| = 2.54

Unregistered
|MI| = 2.25

(a) Shoulder

Unregistere
|MI| = 1.4

(b) Ribs

Registered
|MI| = 2.41

Unregistered
|MI| = 2.27

(c) Heart

Unregistered
|MI| = 2.22

(d) Diaphragm
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p-values �computed from pairwise, one-tailed t-tests� demon-
strate a statistically significant improvement case by case. Of
the 129 cases, there were only four in which registration
degraded the overall �MI�. As a basis of comparison, the �MI�
values achieved with the stationary anthropomorphic chest
phantom were 2.47 �overall�, 2.77 �shoulder�, 2.12 �ribs�,
3.12 �heart�, and 2.69 �diaphragm�.

Representative cases comparing the overall images and
subregions before and after registration are shown in Figs. 5
and 6, respectively. The example images exhibit �MI� as close
as possible �within 0.05� to the mean values plotted in Fig. 4
�and are therefore representative of average performance�.
Figure 5 illustrates the improvement in overall image align-
ment. The motion artifacts, most markedly around the pa-
tient’s left ribcage and shoulder, are corrected in the regis-
tered image, leading to significant improvement in DE image
quality in both soft-tissue and bone images. Figure 6�a� il-

) Bone Images

nregistered
|MI|=2.25

Registered
|MI|=2.54

es and �b� bone images. Representative cases were selected with �MI� close

Registered
|MI| = 1.66

Registered
MI| = 2.46

FIG. 6. Example DE images in the
subregions of Fig. 3 before and after
MSMR registration. Representative
cases were selected with �MI� close to
the population mean in Fig. 4. Subre-
gions represent �a� shoulder, �b� ribs,
�c� heart, and �d� diaphragm.
(b

U
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d
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lustrates the shoulder region and reveals significant reduction
in bone edge artifacts about the clavicles arising from gross
patient motion/slouch. Note also the improved alignment of a
lead BB placed on the patient’s back. Similarly, the soft-
tissue images in Fig. 6�b� show the reduction of rib edges,
improving the conspicuity of underlying bronchial structures.
The bone image in Fig. 6�c� represents the typical magnitude
of cardiac motion artifact—a dark �or bright� streak along the
left ventricular wall that is significantly reduced following
deformable registration. Finally, the bone image in Fig. 6�d�
illustrates improvement in the respiratory motion artifact
along the dome of the diaphragm, which can undergo signifi-
cant motion �relaxation� even under conditions of breath-
hold.
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(v)
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FIG. 7. Registration performance associated with a cardiac-gating system in
comparison to and in combination with the MSMR registration algorithm.
The algorithm is found to improve registration beyond that achievable with
a simple gating system—even in the case of systole trigger. Abbreviations:
S–systole trigger group; D–diastole trigger group; S+D–pooling of systole
and diastole trigger groups; Reg–with registration; NoReg–without
registration.
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III.B. Deformable registration vs prospective cardiac
gating

The mean �MI� of the heart subregion with and without
registration is plotted in Fig. 7 for diastole trigger �N=109
cases�, systole trigger �N=28 cases�, and pooled �diastole
and systole, N=137 cases� groups. The registration algorithm
is seen to improve image alignment in all groups. As ex-
pected for cases without registration, diastole trigger �group
ii� improved �MI� compared to systole trigger �group i�, al-
though to a fairly small extent ��MI�systole=2.14, �MI�diastole

=2.22, p-value=0.153�, since the simple hardware gating
system allows exposure to trigger anywhere within the dias-
tolic phase �i.e., does not provide a trigger at precise sub-
phases as might be achieved with ECG�. Also as expected,
cases with diastole trigger and MSMR registration �group iv�
exhibit the best performance. Comparing group �iii� with
group �ii�, the results demonstrate that the algorithm alone
improves registration even in the worst case �systole trigger�
to a greater degree than the best case �diastole trigger�
achievable by the hardware gating system alone. Thus, the
software approach performs better �in the worst case� than
the hardware approach �in the best case� �p-value=0.046�.
Finally, the pooled cases �groups v and vi� demonstrate that,
in a population of systole or diastole trigger images �analo-
gous to ungated acquisition�, the algorithm imparts a signifi-
cant improvement in image alignment �p-value�0.001� and
gives registration superior to that of the hardware gating sys-
tem alone �group ii� �p-value�0.001�.

Example images of the heart subregion are shown in Fig.
8. Representative images are those with �MI� close to the
population mean in Fig. 7. As evident in the bright streak
artifact along the border of the heart, the images are qualita-
tively consistent with Fig. 7: worst performance for systole
trigger without registration �group i�; improved performance
with diastole trigger �group ii�; further improvement via
registration—even for systole trigger �group iii�; and best
overall performance for diastole trigger and registration
�group iv�.

III.C. Effect on spatial resolution

MTF results are summarized in Fig. 9. The MTF of the
LE and HE are approximately the same. For each of the
perturbed HE images, the registered image exhibits MTF that

|MI|=2.45

(iv) Diastole /
With Registration

FIG. 8. Example images in the heart
subregion corresponding to systole
and diastole triggers with and without
MSMR registration. Representative
cases were selected with �MI� close to
the population mean in Fig. 7.
n
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is reduced from that of the original �unperturbed� image as a
result of bilinear interpolation during image transformation.
The change in MTF for HEreg is approximately independent
of the degree of perturbation �slight, modest, or gross�. The
MTF for the registration algorithm �given by the quotient of
the mean registered MTF and the original MTF� is also
shown, suggesting a low-pass characteristic comparable to
that of the detector MTF. The small jump in the MTF at
3.1 mm−1 is believed to be associated with the registration
algorithm �likely due to “spurious” response of the bilinear
interpolation filter35 applied in the image transformation�.
The algorithm therefore imparts a characteristic blurring of
the transformed image. Note, however, that blurring of one
image in DE image decomposition is analogous to an un-
sharp mask, imparting edge enhancement and an improve-
ment in the MTF of the resulting DE image. Also, as dis-
cussed below, blurring of the HE image as a result of
registration is analogous to a noise-reduction technique30 in
which the HE image is purposely blurred to reduce image
noise.

IV. DISCUSSION AND CONCLUSIONS

An algorithm for registering two x-ray projections ac-
quired during DE imaging of the chest has been described
and characterized. The algorithm combines MI optimization
and NCC in multiple passes in which the HE image is reg-
istered at progressively smaller scales and higher resolutions.
Evaluation of registration performance in a cohort of 129
patients imaged at optimal DE techniques demonstrated a
statistically significant improvement in image alignment. For
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FIG. 9. MTF measurements based on LE, HE, and registered HE �HEreg�.
The transfer function of the registration algorithm is labeled MTFMSMR,
calculated as the quotient of MTFs for the registered �HEreg� and unregis-
tered �HE� cases.
the heart subregion in particular, registration outperformed a
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simple cardiac-gating system that triggers both projections
within the diastolic phase of the heart cycle. The blurring
effect of registration on the HE image appears to offer an
additional advantage in DE image quality in terms of edge
enhancement and reduced noise analogous to common noise
reduction techniques.36

An intrinsic limitation to DE image registration and the
work reported above lies in the fact that 2D transformations
cannot accurately describe 3D motion,37 thus making 2D
projection registration an estimate of the true 3D transforma-
tion. Also, as identified in other work,16,21,25 the inherent
limitations of MI and NCC as similarity measures might de-
teriorate registration performance. Investigation of the rel-
evance of these limitations in the context of DE image reg-
istration will be subjects of future research.

IV.A. Multiscale hybrid registration

An algorithm operating on multiple scales and resolutions
is seen to address the variable scales and types of motion in
different regions of the chest. Gross patient motion, e.g., shift
and slouch, exhibited most remarkably by large anatomical
structures such as the ribcage, clavicles, and skin lines, gen-
erally requires large scales and lower spatial resolution to
register. Motion on a finer scale, e.g., cardiac and diaphragm
motion, requires deformation over a smaller scale and higher
resolution. Even finer motion of vasculature and bronchioles
requires a further decrease in scale and an increase in reso-
lution to correct. Therefore, an inverse relationship exists
between the scale �i.e., spatial extent� over which deforma-
tions are computed and the spatial resolution �i.e., pixel size�
within the image at each iteration. By reducing or retaining
Ln and bn in each pass, the algorithm corrects large-scale
features first and then addresses motions on finer levels. Nu-
merous registration paths could be considered �i.e., combina-
tions of Ln and bn as in Appendix A�, but the diagonal path
with sequential halving of scale and doubling of spatial res-
olution �i.e., the “diagonal” path in Fig. 10� proved to be the
best choice in terms of registration performance. The MSMR
approach offers additional advantages in the optimization
process in computational efficiency �by reducing the search
space and speeding convergence� and avoidance of local
minima.

The multiscale algorithm also combines MI optimization
and NCC in a hybrid manner. As discussed in Appendix C,
MI effectively corrected large-scale motion and was robust
against local minima. Due to the small number of ROIs in
pass 1, MI optimization did not constitute a computational
burden. In passes 2–4, NCC gave a good performance in
correcting motions on a finer scale and significantly im-
proved computational efficiency. The hybrid method per-
formed equivalently to �nonhybrid� MI optimization alone
and gave considerable improvement in speed �by a factor of

�6�.
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IV.B. Deformable registration vs prospective cardiac
gating

The experimental prototype DE imaging system has a
relatively long interexposure delay of 5–8 s, which will be
improved in future implementations incorporating a faster
FPD. Other double-shot DE imaging systems achieve delays
as short as 200 ms �XQ/I Revolution, General Electric, Mil-
waukee, WI�. However, the problem of motion artifacts in
double-shot DE imaging systems can persist even with sub-
second delays. Patient drift and respiratory motion may be
minimized by acquisition in rapid succession and breath-hold
respectively, but cardiac motion remains a challenging
source of misregistration.

Cardiac-gating systems have been shown to reduce car-
diac artifacts in other DE imaging systems30,38 as well as in
the current prototype32 as assessed by human observers. This
is consistent with the higher �MI� achieved by the diastole
trigger group compared to the systole trigger group in Sec.
III B. Although the �MI� measurements exhibited a fairly
large p-value for these two groups, this is likely due to the
small size of the systole trigger group as well as evaluation
of �MI� over the entire subregion �rather than just the cardiac
edge�. Software registration, even in the worst case �i.e.,
group iii, systole trigger, registered�, was found to outper-
form successfully hardware-triggered cases �i.e., group ii, di-
astole trigger, unregistered�. The pooled data �group vi� give
a conservative estimate of how the software-only approach
performs in an ungated population of images, indicating su-
perior image alignment compared to that achievable by the
hardware gating system alone �group ii�. We note that the
pooled data comprise fewer systole cases than an ungated
group. It should also be recognized that other means of car-
diac gating �e.g., ECG� can potentially mitigate motion arti-
facts to a greater extent compared to the diastole trigger in
this study by distinguishing subphases within diastole. For
example, the ECG-gated DE system by Sabol et al. differen-
tiated R-R wave interval �100%� into 5% steps and could
trigger within the desired phase with 2% error.30 Even with
such accurate triggering, there is potential for artifacts result-
ing from cardiac, respiratory, or gross patient motion, and it
is likely that the combination of accurate hardware cardiac
gating and high-performance software registration would
represent the best possible case.

IV.C. Effect of registration on DE image quality

The interpolation process during registration is analogous
to a simple smoothing filter applied to the HE image. This
has two implications. First, noise in the HE image is reduced,
thereby reducing noise in the DE soft-tissue and bone im-
ages. Second, blurring of the HE image has the effect of an
unsharp mask, which results in edge enhancement in the DE
soft-tissue and bone images. �As with noise reduction algo-
rithms, such edge enhancement can be beneficial with re-
spect to structures of interest but may also introduce edge

artifacts.�
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IV.D. Future work

The registration algorithm reported and evaluated here in
the context of DE imaging could provide a generic means of
registering 2D images in single-modality and multimodality
imaging applications. To the extent that MI does not assume
a functional form or relationship between image intensities,
the approach is compatible with the registration of images
exhibiting different pixel intensities for common structures.
The HE and LE projections forming the basis of the current
study were acquired in fairly rapid succession �5–8 s� and
exhibit a modest �though certainly appreciable� degree of
motion ��1–10 mm�. Future studies will involve the evalu-
ation of the registration algorithm on images with smaller as
well as more severe motion artifacts, for example, faster ac-
quisition DE images in which cardiac motion is the primary
�or only� source of misregistration,6 and images acquired
over much longer time scales with correspondingly more se-
vere motion, as in temporal subtraction images acquired at
an average of 13 month intervals.10 The hybrid MSMR algo-
rithm will also be compared to other well-known registration
techniques, such as B-spline. The clinical significance of reg-
istration in DE imaging is currently being evaluated in hu-
man observer tests of diagnostic performance.
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APPENDIX A: SELECTION OF PATH

Figure 10 illustrates a variety of “morphological pyra-
mids.” Four values of ROI size �Ln� and pixel binning factor
�bn� were selected to divide the original image size �3000
�3000 pixels� with a margin into square ROIs, each ap-
proximately half the size of the last. A given combination of
ROI and bin size represents a point on a registration “path,”
where the path can consist of single or multiple points. For
multipoint paths, the “pyramid” aspect of a morphological
pyramid suggests that the path climbs from larger ROI to
smaller ROI and from larger bin size to smaller bin size, as
represented in Fig. 10 by arrows that only point up and/or
left. Thus, each step in the morphological pyramid represents
a smaller Ln and/or a smaller bn.

To examine the effect of Ln and bn on registration perfor-
mance, nine patients exhibiting varying degrees of motion
were investigated. The �MI� of unregistered images and im-
ages registered with the 14 different paths in Fig. 10 were
computed. Example results for two patients are summarized
in Fig. 11, with �a� corresponding to a case with large motion
artifacts and �b� representing a case with slight misregistra-
tion.

The path yielding the best �MI� is seen to vary from case
to case. For images exhibiting large motion artifacts, there is
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a strong dependence of registration performance on Ln. Reg-
istration paths consisting of only small ROI size �Ln=96,
paths 3, 4, 9, and 14� perform poorly, whereas paths with at
least one large ROI �Ln=720� significantly enhance the reg-
istration performance. For images with slight motion arti-
facts, there is no clear dependence of performance on Ln or
bn, but paths traversing different Ln and bn appear to perform
best overall. It is also interesting to note the marked perfor-
mance difference demonstrated by paths 5, 10, and 14 for
large and small motions, which suggests a possible direct
relationship between the degree of motion artifact and Ln

required for registration. The diagonal path �#11, marked in
black� was found to provide high performance �within −0.02
of the highest �MI� in eight out of the nine cases� regardless
of the severity of motion artifacts, and thus was the nominal
choice applied to the entire patient cohort.

APPENDIX B. CONVERGENCE OF ALGORITHM

To determine the number of passes required for registra-
tion, the behavior of the algorithm was analyzed in terms of
the mean ROI displacement �i.e., the amount of transforma-
tion applied to the image� and increment in �MI� �i.e., the
improvement in image alignment� in each pass. The two
quantities were computed as an average over all ROIs within

5 6 7 8 9 10 11 12 13 14
Path Number

FIG. 11. Registration performance of
the 14 registration paths shown in Fig.
10 compared to unregistered images
�path 0�. �a� Performance in the pres-
ence of large motion artifacts �judged
“large” by qualitative assessment of
slouch, respiratory motion, and/or car-
diac motion artifacts in the unregis-
tered DE images�. �b� Performance in
the presence of slight motion artifacts
�also assessed qualitatively�. The diag-
onal path �#11, marked in black� gen-
erally yielded the most robust perfor-
mance regardless of motion severity.

3 4 5

FIG. 12. �a� Mean ROI displacement
in each pass. �b� Change in �MI� in
each pass, calculated as the difference
in �MI� between the current pass and
the previous one �pass 1 with unregis-
tered image�. An exponential fit is su-
perimposed in each case.
4

Pass
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a particular pass. Figure 12 shows the average results over a
total of 129 patients, with error bars reflecting 2 standard
deviations. Exponential fits are superimposed to extrapolate
the curves to pass 5.

From Fig. 12, the algorithm is seen to converge following
pass 4. According to the morphological pyramid described in
Appendix A, a fifth pass consisting of L5=48 pixels and b5

=1 was considered. However, a fifth pass was found to result
in a small displacement �approximately 0.163 mm� and small
improvement in �MI� compared to the result of pass 4. DE
images resulting from images registered by four-pass and
five-pass algorithms were qualitatively indistinguishable.
Furthermore, the fifth pass involves full resolution and small
ROIs for which computation time became a severe limitation
�approximately 270 min�. Therefore, a total of four passes
was incorporated in the nominal algorithm.

APPENDIX C. RATIONALE FOR HYBRID

Two studies were conducted to evaluate the objective
functions, MI and NCC. The first specifically examined per-
formance in the first pass �n=1�. Twenty DE images were
randomly chosen from the clinical trial, each registered sepa-
rately using MI optimization or NCC in pass n=1. Recog-
nizing that comparison in terms of the objective function for
the MI optimization approach may bias the results in its fa-
vor, a variety of additional figures of merit was considered in
analyzing registration performance. These include the sum of
squared differences in LE and HE pixel values, coefficient of
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FIG. 13. Registration performance in terms of sum of squared differences
between LE and HE images, normalized by the number of pixels in respec-
tive subregions, after one pass �n=1� of MI optimization or NCC-based
registration. MI optimization provided statistically superior performance
compared to NCC. The p-values correspond to a paired t-test between 20
cases registered by MI and NCC.
variation and kurtosis of the difference histogram, and Pear-
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son’s correlation coefficient—all of which yielded fairly con-
sistent trends. The sum of squared differences between LE
and HE pixel values, normalized by the number of pixels in
the respective subregions, is plotted in Fig. 13. MI-based
registration was found to give superior performance demon-
strated by a lower sum of squared differences in the overall
image as well as the four anatomical subregions. In fact,
NCC was frequently observed to decrease registration accu-
racy �judged qualitatively from DE images and quantitatively
from deteriorated figures of merit� in the first pass, whereas
MI optimization consistently provided significant improve-
ment. Such behavior in pass n=1 is likely associated with
large ROIs that are susceptible to self-similarity and multiple
degrees of motion for which NCC is known to be subject to
local minima.16 MI optimization addressed this limitation as
it is less sensitive to the image intensity distributions and can
adequately correct motion over large scales. Therefore, MI
optimization was selected as the basis for the first pass �n
=1� to ensure good initial conditions for subsequent passes.
In addition, MI optimization in pass 1 did not impose serious

TABLE I. Time �minutes� taken for each pass using MI and NCC optimiza-
tion. NCC improves computational speed by a factor of �6. Measurements
were performed in MATLAB software implemented on a desktop PC �Dell
Precision 380; 3.00 GHz CPU; 2 GB RAM�. Future work will consider
GPU-based implementations for registration speed consistent with clinical
requirements.

n MI optimization NCC

Pass 1 10.7 2.2
Pass 2 34.0 6.7
Pass 3 154.8 29.1
Pass 4 643.0 115.3

Overall Shoulder Ribs Heart Diaphragm
1.0

1.5

2.0

2.5

3.0

|M
I|

0.006 0.134 0.4480.228 0.0997

MI Optimization Hybrid

p-value:

FIG. 14. Registration performance using MI optimization and the hybrid
algorithm. There is no statistically significant difference in performance be-

tween the two approaches.
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computational penalties �as shown in Table I�, owing to a
small number of ROIs and coarse pixel resolution �bn=16�.

The second study examined the performance of MSMR
registration based on MI optimization only �all passes� com-
pared to that of a hybrid approach in which MI optimization
was used in pass n=1, followed by NCC in passes 2–4. As
shown in Fig. 14, the MI-only and hybrid approaches yielded
indistinguishable registration performance in the four subre-
gions �p-values �0.05 in each subregion�. While there is
weak evidence for improved registration using MI only �p
=0.006� in the overall region, DE images resulting from the
MI-only and hybrid algorithms were qualitatively indistin-
guishable. As shown in Table I, the hybrid algorithm exhib-
ited a significant improvement in computation time �by a
factor of �6�. The advantage in time becomes more pro-
nounced in later passes as the number of ROIs increases.
These results motivated the selection of the hybrid algorithm
as the nominal choice for all cases considered in the current
work, with MI optimization employed in pass 1 and NCC in
subsequent passes.
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