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Abstract The functional integrity of the kidney depends on
normal development as well as on physiological cell
turnover. Apoptosis induction is essential for these mech-
anisms. Multiple mechanisms are unleashed during ob-
structive nephropathy, one of the most complex being
programmed cell death that leads to renal tubular atrophy
and tubular loss. This review will focus on the interaction
of nitric oxide and Hsp70 and on the regulation of renal
antiapoptotic and protective oxidative stress responses.
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Introduction

The incidence of chronic kidney disease continues to climb,
not only in the United States but also worldwide (Campese
and Park 2007). Inflammation of the tubulointerstitial
compartment leading to fibrosis is a major factor in the
progressive loss of renal function in patients with a wide
variety of kidney diseases. About 80% of total kidney
volume is composed of tubular epithelial cells and cells
within the interstitial space. Most of the nonepithelial cells
are associated with the rich vascular network of the kidney.

Unlike most forms of chronic renal disease that often take
months to establish fibrotic lesions, obstructive nephropa-
thy induced by complete, continuous ureteral obstruction is
an exceptionally aggressive form of tubulointerstitial
fibrosis (Yang and Liu 2003). It is a complex renal disorder
that begins with hydrodynamic and hemodynamic
responses, leading to cellular changes in all renal compart-
ments, and finally to interstitial fibrosis and tubular atrophy
(Chevalier 2006). Renal fibrogenesis initiates at a very
early stage after ureteral obstruction and progresses rapidly.
The incidence of unilateral ureteral obstruction is reported
as 1/1,000 in adults, and its incidence in children is of grave
concern. Congenital obstructive nephropathy is a major
cause of chronic renal failure in infancy (Chevalier 1999).
Programmed cell death leads to renal tubular atrophy and
tubular loss in neonatal unilateral ureteral obstruction
(UUO; Chevalier et al. 1996).

Moreover, the severity of the apoptotic response to
unilateral ureteral obstruction is far greater in the neonatal
than in the adult rat, a factor that may contribute to the
impaired growth of the obstructed kidney (Cachat et al.
2003). Rapid diagnosis and initiation of the treatment are
vital to preserve function and/or to slow down renal injury.

Lately, genetically modified animals have been increas-
ingly used to study the development of obstructive
nephropathy. These animals have shown the complexity
of apoptosis and tubulointerstitial fibrosis development
involving a large number of closely related molecules
functionally. In addition, the recent development of me-
chanical stretch in cultured epithelial cells that mimics renal
tubular distention has led to the discovery of unexpected
and contradictory roles of principal apoptosis modulating
factors (Bascands and Schanstra 2005).

Apoptosis represents an efficient cellular suicide path-
way with characteristics of death in individual cells,
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induced by both physiological and pathological stimuli with
phagocytosis by adjacent cells but without an inflammatory
response (Kerr et al. 1972).

At present, it is known that several renal pathologies are
a cause and/or consequence of alterations in the mechanism
of apoptosis regulation (Kasinath et al. 2006).

Many and varied mediators modulate the apoptotic
signs, favoring or inhibiting them. Because of the signifi-
cant role of apoptosis in the pathogenesis of renal cellular
injury resulting from urinary tract obstruction, factors
regulating the renal apoptotic response have been studied
(Chevalier 2006). Stretching of the renal tubular cells by
increased hydrostatic pressure provides a powerful mechan-
ical stimulus to apoptosis in the obstructed kidney (Nguyen
et al. 2000; Manucha et al. 2007). Ischemia is another
stimulus to apoptosis, and UUO induces a sharp reduction
in renal blood flow as well as impairment of autoregulation
of renal blood flow (Chevalier and Thornhill 1995).
Moreover, reactive oxygen species (ROS) are known to
reduce the threshold at which tissues undergo apoptosis
(Kayanoki et al. 1996), and reactive oxygen species are
significantly increased in the chronically obstructed kidney
(Kawada et al. 1999).

The neonatal obstructed kidney may be particularly
susceptible to the generation of reactive oxygen species
because endogenous renal antioxidant enzymes, including
superoxide dismutase, are suppressed in the neonate (Gupta
et al. 1999).

Among the modulators that have been recently studied, a
relationship has been observed between nitric oxide (NO;
Ito et al. 2005) and the chaperone protein Hsp70 (Vallés et
al. 2003). Lately, there has been special interest in the
interaction and regulation of these two apoptotic modulat-
ing factors in obstructive nephropathy.

NO as a bifunctional regulator of apoptosis

The ubiquitous distribution of the nitric oxide synthases and
the remarkable diffusibility and diverse chemical reactivity
of NO in biological systems make this molecule unique
among the regulators of apoptosis. NO could be considered
as a bifunctional regulator of apoptosis (Kim et al. 1999).
The cytotoxic capacity of NO has been confirmed in
numerous systems using diverse cell targets. NO cytotox-
icity produced by NOS2 as well as by NOS1 has been the
topic of intense study (Mannick et al. 1994).

The capacity of NO to induce apoptosis was first
appreciated by Albina et al. (1993), who showed that NO
caused apoptosis in macrophages. Since then, several cell
types have been shown to undergo apoptosis in response to
NO.

The proapoptotic effect seems to be independent of
cGMP accumulation, except in vascular smooth muscle
cells. Apoptosis by NO can be the result of DNA damage
with a previous p53 protoncogene induction that produces
cell cycle arrest by means of p21. Nevertheless, p53 can
help in the repair of injured cells by p27 induction with a
subsequent decrease in pRb phosphorylation (Freedman
and Folkman 2004). Caspases, a family of cysteine
proteases, are involved in apoptosis induction (Sola et al.
2004). The cellular redox state contributes to the complex-
ity of this system. Cytotoxicity as the result of the
interaction of NO with superoxide to yield peroxynitrite
(ONOO) inflicts cellular injury through oxidation of many
biological molecules. Furthermore, ONOO has also been
implicated in the inactivation of Mn and Fe superoxide
dismutase (Ischiropoulos et al. 1992).

Since 1994, however, information about NO and its
interference with the apoptotic machinery has appeared in
the literature. First for cGMP-dependent protein kinase
activation and later for caspases inhibition (Nagai-Kusuhara
et al. 2007); this mechanism was described in many tissue
types but still not verified in renal tissue. In addition to the
indirect inhibition of caspases activity, NO might modulate
caspase expression and activity in a direct way due to its
capacity for redox modifications by S-nitrosylation (Kim et
al. 1997).

For caspase 3, cysteine 163 is essential and susceptible
to redox modification by NO. The direct and/or indirect
NO-mediated inactivation of caspases has been shown to
reduce Bcl-2 cleavage and increase its concentration. Via
this indirect mechanism, therefore, NO may also prevent
cytochrome c release, inhibiting thereby activation of the
dangerous caspases (Kim et al. 1998).

NO, a multifunctional mediator, has been shown to be
antiapoptotic and antifibrotic in UUO (Hegarty et al. 2001).
Urinary nitric oxide metabolites increased after relief of
UUO compared with baseline. In vitro studies in stretched
epithelial cells and in vivo studies in obstructed kidney of
inducible nitric oxide synthase (iNOS) −/− mice have
provided support for an antiapoptotic role for NO (Miyajima
et al. 2001). Recently, using a nitric oxide biosynthetic
precursor (L-arginine), it was demonstrated that renal
damage, including apoptosis and fibrosis, was significantly
improved by L-arginine treatment, suggesting that increased
NO availability could be beneficial in the setting of UUO
relief (Ito et al. 2005).

We have demonstrated decreased endogenous NO and
lower iNOS expression at mRNA and protein levels in
obstruction, regulated by the mitochondrial signal pathway,
through the increased proapoptotic ratio Bax/Bcl-2 and
subsequent caspase 3 activity (Manucha and Vallés 2008;
Figs. 1 and 2). As a result, NO produces resistance to
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obstruction-induced cell death by the mitochondrial apo-
ptotic pathway.

Heat shock-induced cell protection from apoptosis
induction

Heat shock protein (HSP) Hsp70 has been reported to protect
various cells and tissues from ischemic damage. Acting as

molecular chaperones, HSPs play essential roles in mediating
protein folding, assembly, transport, and degradation
(reviewed in Balch et al. 2008; Hartl 1996; Morimoto et al.
1994). In cells exposed to hyperthermia, the induced
synthesis of these proteins helps to prevent protein denatur-
ation and aggregation and assists in the refolding or removal
of damaged proteins (Stokoe et al. 1992). Induction of HSPs
protects cells not only from damage due to heat but also
from damage due to oxidative injury and cytokine-mediated
cytotoxicity. Whether HSPs protect cells by blocking protein
denaturation in general or whether a specific heat-sensitive
target is protected is not known. The role of Hsp70 in
blocking the apoptotic process has also been examined. Two
decades ago, the participation of HSPs in apoptosis
modulation was established for the first time (Franceschi
1989). The apoptotic cascade initiation is in part regulated by
protein-protein interactions between death-promoting (Bax,
Bad, and Bcl-xs) and inhibiting (Bcl-2, Bcl-xL, and Mcl-1)
members of the Bcl-2 family (Nuñez and Clarke 1994; Reed
1994; Werner 1996).

Bcl-2-expressing cells resist apoptosis initiated by a
number of physiological and stressful conditions including
hyperthermia (Tsujimoto 1989). In prior heat stress in ATP-
depleted renal tubular cells, the interaction between Hsp70
and Bcl-2 may be responsible, at least in part, for the
protection afforded by Hsp70 against ATP depletion injury
(Wang et al. 1999).

Given its localization within mitochondria and its role in
preventing cytochrome c release, preservation of Bcl-2 by
Hsp70 could account for the protection of epithelial cells
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�Fig. 1 iNOS expression at mRNA, protein levels and endogenous NO
generation in kidney cortex after 5 and 14 days of UUO. A
Representative gel of iNOS mRNA in control and obstructed kidney
cortexes after 5 days of obstruction, and in control and obstructed
kidney for 14 days. Housekeeping gene β-actin expression is shown
in the line underneath, in the same order as the densitometry bars.
Graphical representation of iNOS/β-actin mRNA ratio showed an
increased expression of iNOS isoform in obstructed cortex (OC) vs
control cortex (CC) **p<0.01 after 5 days of obstruction. Decreased
iNOS expression from 14 days OC vs 5 days OC was demonstrated
**p<0.01. Results are means ± SEM of six independent observations.
B Representative western blot and densitometric analysis of iNOS
protein levels from kidney cortexes after 5 days of obstruction and
following 14 days of obstruction. Immunoblots were quantified for
iNOS expression. The relative amount of iNOS protein was
determined after normalization of the level of iNOS protein of the
appropriate control: 1 and was shown in histograms beneath the
corresponding blots. Sharp decreased in iNOS protein levels from
kidneys obstructed for 14 days compared to CC ***p<0.001. Slight
increase of iNOS protein levels in OC compared to CC after 5 days of
obstruction: *p<0.05. Results are means ± SEM of six separate
experiments. C Measurement of nitrite generated (nmol NO2

generated/100 μL homogenate). Homogenates of renal cortex from
obstructed 14 days vs CC, *p<0.05. Following 5 days of obstruction,
OC vs CC *p<0.05. (Manucha and Vallés 2008)
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(Borkan et al. 1993). Nevertheless, it has been proposed that
HSPs also act by means of a mechanism independent of Bcl-
2, intervening at several points to halt progression of the
apoptotic cascade (Strasser and Anderson 1995). Previous
studies have indicated that at least some of the antiapoptotic
activity of Hsp70 can be attributed to its ability to suppress
the activity of JUN-kinase (Kumar and Tatu 2003; Gabai et
al. 1997). Activation of stress-activated protein kinase
SAPK/c-Jun N-terminal kinase (JNK) has been strongly
inhibited in cells in which Hsp70 was induced to a high
level, indicating that Hsp70 blocks apoptosis by inhibiting
signaling events upstream of SAPK/JNK activation. Hsp70
also inhibits apoptosis events at some point downstream of
SAPK/JNK activation (caspase 3-mediated). Alternatively,
Hsp70 may act by preventing cell death by interfering with
the ability of cytochrome c and Apaf-1 to recruit pro-caspase
9. In this case, Hsp70 suppresses apoptosis by directly
associating with Apaf-1 and blocking the assembly of a
functional apoptosome (Beere et al. 2000).

Interaction between Nitric Oxide and Hsp70

A novel alternative antiapoptotic mechanism for NO is the
induction of Hsp32 (heme oxygenase) and Hsp70, by
means of NO-mediated modification in intracellular anti-
oxidants levels (Mosser et al. 1997).

The mechanism by which NO stimulates the expression
of Hsp70 may involve the interaction of NO with thiol-
containing molecules. Ample evidence exists to support the
view that NO readily oxidizes low molecular weight thiols,
forming S-nitrosothiols and disulfide. Among cellular low
molecular weight thiols, glutathione is the most abundant as
well as being one of the intracellular targets of NO. NO can
oxidize intracellular reduced glutathione and thereby
change the antioxidant levels within the cell, resulting in
oxidative or nitrosative stress. This action stimulates the
induction of heat shock proteins Hsp32 (heme oxygenase)
and Hsp70, which protect cells from apoptotic cell death
induced by tumor necrosis factor (TNF) plus actinomycin
D. (Kanner et al. 1991) and by oxidative or nitrosative
stress (Harbrecht et al. 1994).

Pretreatment of hepatocytes with NO has been shown to
alter the redox state accompanied by oxidation of glutathione
(GSH) and by formation of S-nitrosoglutathione. A GSH-
oxidizing agent (diamide) and a GSH alkylating agent (N-
ethylmaleimide) both induced Hsp70 mRNA but a GSH
synthesis inhibitor (buthionine sulfoximine) did not; this
suggests that NO induces Hsp70 expression through GSH
oxidation (Kim et al. 1997). The above-mentioned induction
may occur via the activation of heat shock factor 1 (Xu et al.
1997). The accumulation of misfolded proteins causes the
mobilization of the HSPs resulting in the free pool of Hsp70,
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Fig. 2 Mitochondrial apoptotic pathway induction after 14 days of
kidney obstruction; A Induction of mRNA expression for Bcl-2 and
Bax and the ratio of mRNA Bax/mRNA Bcl-2 in kidney cortexes after
UUO for 5 and 14 days mRNA for Bcl-2 and Bax were measured by
reverse transcription polymerase chain reaction. Histograms show the
relative concentration of mRNAs for Bcl-2 and Bax to β-actin mRNA.
Cortexes obstructed for 14 days compared with CC *p<0.05. Data
represent the means ± SEM of six independent experiments. B
Western Blot analysis for 32 kDa pro-caspase 3 protein and caspase 3
activity in obstructed and control kidney cortexes. Upper Panel: Total
protein (50 μg) was extracted and equal amounts of protein were
loaded and separated by molecular weight on 12% SDS-PAGE. Blot
represents one out of six separate experiments. Lower Panel: Caspase
3 activity was assessed by level of Ac-DEVD-AMC cleavage release
of fluorescence AMC tag. Activity is expressed as pmol AMC/min/μg
protein. Cortexes obstructed for 14 days compared with CC **p<
0.01. Caspase 3 activity and pro-caspase 3 protein assay data were
obtained from the same six independent samples. (Manucha and
Vallés 2008)
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and the subsequent removal of the negative regulatory
influence on HSF activation, during heat shock or other
stresses. The released HSF is phosphorylated and assembles
into trimers, acquires DNA binding activity, and leads to
elevated Hsp70 mRNA transcripts. During NO stimulation,

multiple and complex pathophysiological changes occur in
vascular smooth muscle cells, including protein damage or
modifications due to the cytotoxic effect of NO (Lipton et al.
1993).

Thus, NO- and heat shock-induced Hsp70 production
share many similarities in the activation of Hsf1 and in the
regulation of Hsp70 gene expression.

The molecular mechanism underlying the antiapoptotic
effects of NO-mediated HSP expression may be associated
with two possibilities (Harbrecht et al. 1992). The first is
the direct suppression of apoptotic signal transduction
involving the inhibition of caspase family protease activa-
tion. The second involves the chaperon-mediated import of
precursor proteins into mitochondria by HSPs. This action
controls mitochondrial function and membrane permeabil-
ity, thereby preventing the release of cytochrome c that is
required for further activation of caspases.

A discussion of the relationship between Hsp70 and
apoptosis induction during obstructive nephropathy was
first given by Chan et al. (2001). Other results indicated
that Hsp70 could modulate the apoptosis cascade during
renal obstruction (Dmitrieva and Burg 2005; Manucha et al.
2005; Van de Water et al. 2006).

Recently, we have reported that nitric oxide prevents
obstruction-induced cell death by means of the mitochon-
drial apoptotic pathway, through the induction of heat
shock protein 70 (Manucha and Valles 2008). Our results
showed that the apoptotic effect created by lower nitric
oxide decreased Hsp70 expression. It was associated with
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the direct induction of the apoptotic signal transduction
involving the activation of caspase 3 by decreasing
stabilization of Bcl-2 (Fig. 3).

Of the factors regulating the renal apoptotic response in
renal injury that result from urinary tract obstruction,
reactive oxygen species are known to reduce the threshold
of tissues to undergo cell death (Kayanoki et al. 1996).

The neonatal obstructed kidney may be particularly
susceptible to the generation of reactive oxygen species
because endogenous renal antioxidant enzymes, including
superoxide dismutase, are suppressed in the neonate (Gupta
et al. 1999).

Overproduction of ROS has been identified as a key
component of apoptotic pathways involving activation of
endogenous endonucleases (Fernandez et al. 1995) and
direct DNA fragmentation (Mertens et al. 1995).

Under normal physiological conditions, a balance be-
tween superoxide and nitric oxide exists in vivo. NO and
superoxide react together at a diffusion-controlled rate to
yield peroxynitrite (ONOO−), which inflicts cellular injury
through oxidation of many biological molecules. Further-
more, ONOO− has been implicated in the inactivation of Mn
and Fe superoxide dismutase (Ischiropoulos et al. 1992).

In contrast, NO may protect cells from reactive oxygen
intermediate (ROI)-mediated cytotoxicity by scavenging
superoxide anions which are implicated in toxicity through
the formation of hydrogen peroxide or hydroxyl radical
(Bautista and Spitzer 1994). Nitric oxide has been shown to
inhibit superoxide anion generation. The mechanism for such
inhibition is thought to be due to the inactivation of
nicotinamide adenine dinucleotide phosphate-oxidase due
to the scavenging effects of NO on superoxide (Clancy et al.
1992).

High levels of NO exposure induce protective stress
responses, stimulating Hsp70 expression (Kim et al. 1997).

Induction of HSPs protects cells not only from damage
due to heat but also from damage due to oxidative injury
and cytokine-mediated cytotoxicity. Recently, we demon-
strated that after 24 h of unilateral ureteral obstruction,
protection against tubulointerstitial fibrosis by losartan,
independent from changes in blood pressure, includes
decreased oxidative stress linked to upregulation of Hsp70
expression (Manucha et al. 2005).

Previously, it has been shown that both ROI production
and lipid peroxidation are inhibited by NO donor-induced
Hsp70 expression. Furthermore, only cells overexpressing
Hsp70 were found to be protected from both ROI- and TNF-
induced cytotoxicity. Overexpression of Hsp27 only pro-
tected from exogenous ROI exposure but not from TNF
cytotoxicity (Jäättelä et al. 1992; Jäättelä and Wissing 1993).

Recent data have shown that HSPs may protect from
TNF toxicity by inhibiting the action of ROI on mitochon-
drial membrane potential (Cossarizza et al. 1995).

As has been discussed by Billiar et al., inhibition of TNFα
toxicity by an NO donor pretreatment could occur through
the inhibition of ROI production in mitochondria, preventing
ROI-mediated alterations in mitochondrial membrane po-
tential (Kim et al. 1997). This could prevent cytochrome c
release, which is involved in apoptosis through activation
of cysteine protease (Liu et al. 1996). Since Hsp70 is not a
mitochondrial protein, however, it is unlikely that Hsp70
acts directly as a mitochondrial antioxidant. Hsp70 may
instead block signal transduction to the mitochondria,
resulting in the inhibition of mitochondrial ROI production
either by inhibiting second lipid messenger(s) to the
mitochondria (Jacquier-Sarlin et al. 1994) or by preventing
the interaction between the death domain of TNFα receptor
and signal molecule(s) (Hsu et al. 1995). Alternatively, it is
possible that Hsp70 may enhance the chaperon-mediated
import of precursor proteins into the mitochondria which
control mitochondrial function and lead to decreased ROS
formation (Harkness et al. 1994). On this matter, in a recent
chapter of book, we present some of the factors identified
along with proposed interactions (Fig. 4).

Taken together, our data demonstrate that the effect of
the interaction of NO with Hsp70 is a result of the capacity
of both to prevent the activation of the mitochondrial
apoptotic pathway in neonatal early kidney obstruction.
Induction of Hsp70 protects cells not only from damage
due to apoptosis induction but also from damage due to
oxidative injury. These findings demonstrate that NO can
induce cytoprotection in early obstructed kidney cortex
tubular epithelial cells through the stimulation of Hsp70
expression.

In conclusion, the accumulated data suggest that relevant
levels of nitric oxide may contribute to apoptotic pathway
suppression by the upregulation of Hsp70 and that
interaction is an early line of defense for protecting cells
from death. The induction of Hsp70 expression precedes
conventional markers of renal injury, protecting cells not
only from damage due to apoptosis induction but also from
damage due to oxidative injury. Further studies will
continue to elucidate the regulatory events of apoptosis
induction in obstructive nephropathy.
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