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Abstract Heat shock proteins (HSPs) are implicated in all
phases of cancer from proliferation, impaired apoptosis and
sustained angiogenesis to invasion and metastasis. The
presence of abnormal HSP levels in several human tumours
suggests that these proteins could be used as diagnostic
and/or prognostic markers, whilst the direct correlation
between HSP expression and drug resistance in neoplastic
tissues means they could also be used to predict cancer
response to specific treatment. HSPs have also been
successfully targeted in clinical trials modifying their
expression or chaperone activity. Preliminary studies in
veterinary medicine have also demonstrated the presence of
altered HSP expression in neoplasms, and the study of
carcinogenesis and the role of HSPs in animal models will
surely be an additional source of information for clinical
cancer research.
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Introduction

Heat shock proteins (HSPs), also known as “stress
proteins”, are a large class of proteins that have been
highly conserved throughout evolution and are expressed
by prokaryote and eukaryote organisms. HSPs control
protein biogenesis by assisting in the correct folding of
newly formed polypeptides, oligomeric assembly and

intracellular translocation (Mathew and Morimoto 1998;
Nollen and Morimoto 2002) and are thus crucial in the
maintenance of cellular homeostasis. HSPs also prevent
inappropriate stress-induced protein aggregation by assist-
ing in the repair of denatured proteins or by promoting their
degradation. As a result of these roles, HSPs have also been
referred to as molecular “chaperones” (Whitley et al. 1999).
HSPs can be classified according to their molecular weight,
expressed in kDa: HSP15–30, HSP40, HSP60, HSP70,
HSP90 and HSP100. Each HSP family consists of several
molecules, all sharing a similar primary structure and able
to perform analogous functions in different subcellular
compartments.

HSPs were so-called because their expression was
induced by heat shock (Ritossa 1962; Tissieres et al.
1974). However, since then, a wide variety of environmental
and metabolic factors including hypoxia, oxidative injury,
glucose starvation, exposure to heavy metals or anti-cancer
agents have been shown to elicit stress protein expression.
Cellular stress response is a unique and important defence
mechanism put into act by the cell to cope with a wide range
of harmful conditions (Whitley et al. 1999). This response
includes increased HSP synthesis, which has been detected
in many pathophysiological conditions such as tissue injury
and repair, hypertrophy, fever, inflammation, viral and
bacterial infections (Morimoto 1998).

A growing body of evidence suggests that HSPs are also
closely involved in a number of crucial processes in tumour
development such as the regulation of cell cycle progres-
sion (Helmbrecht et al. 2000), control of apoptotic path-
ways (Didelot et al. 2006; Garrido et al. 2006; Schmitt et al.
2007) and immunosurveillance against cancer (Li 2001;
Multhoff 2006). Indeed, studies are underway to determine
whether these proteins could be used as diagnostic and/or
prognostic markers or represent new targets for therapy.

Cell Stress and Chaperones (2008) 13:253–262
DOI 10.1007/s12192-008-0030-8

M. Romanucci : T. Bastow : L. Della Salda (*)
Department of Comparative Biomedical Sciences,
Faculty of Veterinary Medicine, University of Teramo,
Teramo, Italy
e-mail: ldellasalda@unite.it



Altered HSP expression has been observed in preliminary
studies on rodent and canine neoplasms suggesting a
similar pattern of tumour development. These parallel
findings underline the relevance of animal models in
studies aimed at elucidating the multiple roles of HSPs in
carcinogenesis both in animals and humans.

Comparative evaluation of altered HSPs expression
in animal and human tumours

Since HSPs are overexpressed in many kinds of human
malignant cells, from a diagnostic point of view, their
immunodetection does not help in identifying the lineage of
origin (Ciocca and Calderwood 2005). However, anti-
αBcrystallin might be included in a panel of antibodies
for the identification of renal cell carcinomas when a
metastatic deposit or a small biopsy is evaluated (Pinder
et al. 1994). Plasma levels of Hsp70, along with PSA,
might also prove useful in the identification of patients with
early-stage prostate cancer (Abe et al. 2004). In addition,
serum levels of autoantibodies directed against HSPs in
cancer patients could be of significance as tumour markers
in different kinds of tumour (Korneeva et al. 2000; Trieb
et al. 2000; Oka et al. 2001; Luo et al. 2002; Zhong et al.
2003).

In veterinary literature, high levels of Hsp60 and Hsp70
were reported in canine transmissible venereal tumour
(CTVT), and it was thought that these HSPs could be
considered potential markers for CTVT cells (Chu et al.
2001). However, more recent studies have shown high
levels Hsp70 expression in canine mammary tumours
(Kumaraguruparan et al. 2006; Romanucci et al. 2006),
confirming that HSP expression cannot be relied upon for
the recognition of a specific tumour histological type.
Nevertheless, increased levels of Hsp60 have been linked to
CTVT regression (Chu et al. 2001).

Many further studies have looked at the potential
prognostic value of HSP expression; however, the data
obtained so far are controversial and strictly linked to
tumour type and organ. This is without doubt a reflection of
the multiple and still unidentified roles exerted by HSPs
both in different normal tissues and in cancer.

Hsp27 expression has been extensively studied in human
breast cancer: Hsp27 overexpression has been correlated
with oestrogen receptor levels (Thor et al. 1991; Hurlimann
et al. 1993; Love and King 1994; Takahashi et al. 1995;
O’Neill et al. 2004) and better differentiation of cancer cells
(Love and King 1994; Têtu et al. 1995). However, other
findings indicate that some but not all oestrogen receptor-
positive breast tumours express Hsp27 (Ciocca et al.
1993b). In vitro data suggest that Hsp27 expression is
associated with resistance to chemotherapeutic drugs

(Oesterreich et al. 1993; Conroy and Latchman 1996;
Hansen et al. 1999). In fact, despite the positive link with
oestrogen receptors, suggesting a correlation between high
amount of Hsp27 and better prognosis, an association
between Hsp27 overexpression and more aggressive
tumours has also been detected (Thor et al. 1991).
Likewise, Hsp27 positivity in tumours from node-negative
patients was correlated to lower overall survival and
survival after first recurrence (Thanner et al. 2005). We
have also observed a similar correlation between Hsp27
expression and tumour invasiveness in association with
reduced overall survival in canine malignant mammary
neoplasms (Romanucci et al. 2006). The detection of
Hsp27, particularly in canine mammary infiltrating neo-
plastic cells, supports the theory that Hsp27 overexpression
may influence the invasive and metastatic potential of
human breast cancer cells (Lemieux et al. 1997) by
controlling their migration on laminin-5 (Rust et al. 1999).
In fact, treatment of tumour cells with a synthetic inhibitor
of Hsp27 phosphorylation (Shin et al. 2005) and knock-
down of such HSP using transfection with short interfer-
ence RNA (Shin et al. 2005; Bausero et al. 2006) has been
found to halt tumour cell migration. In Hsp27-overexpressing
human breast cancer cells, an increased expression of matrix
metalloproteinase 9 has also been observed and appears to be
correlated with a down-regulated expression of the Src family
tyrosine protein kinase Yes (Hansen et al. 2001). However,
Hsp27 levels have also been correlated with different
biological features in early and advanced human breast
cancer such as short disease-free survival in node-negative
patients but with prolonged survival from first recurrence. It
is thought that the high levels of Hsp27 in advanced cancer
are indicative of long survival because of the link to
hormone response; however, the biological explanation for
the switch from Hsp27 being a bad to a good prognostic
factor in early and advanced breast cancer remains to be
clarified (Love and King 1994). Moreover, Hsp27 seems to
sort out cases with a better prognosis from the oestrogen
receptor-negative group of patients with a poor prognosis
(Hurlimann et al. 1993). Nevertheless, other findings reveal a
lack of association between Hsp27 expression and the clinical
outcome of this kind of neoplasm (Hurlimann et al. 1993;
Têtu et al. 1995; Oesterreich et al. 1996; Ioachim et al. 2003)
and its response to hormone therapy (Hurlimann et al. 1993;
Ciocca et al. 1998). Antibodies to Hsp27, on the other hand,
have been associated with improved survival in patients with
breast cancer (Conroy et al. 1998a).

Overexpression of Hsp70 has been frequently observed
in several kinds of human tumours and, in particular, breast
cancer where Hsp70 expression has been correlated to
adverse prognostic indicators, such as high tumour grade
and presence of nodal metastasis (Lazaris et al. 1997), and
appears to negatively influence overall survival and
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survival after recurrence (Thanner et al. 2003). It could well
prove useful in sorting out node-negative patients at high
risk of recurrence, thus influencing decisions regarding
treatment (Ciocca et al. 1993a). A strict correlation between
Hsp70 levels and oestrogen receptors has also been
detected, which is in agreement with other research
demonstrating the association of this protein with steroid
hormone receptors (Takahashi et al. 1994).

Hsp90 expression has also been extensively studied in
tumours, predominantly in breast cancer where a positive
relationship with oestrogen receptor levels has been found
(Shyamala et al. 1993). Hsp90 is a fundamental component
of the multi-molecular, steroid receptor complex (Cheung
and Smith 2000). Similarly to Hsp70 (Vargas-Roig et al.
1997), this Hsp also seems to be involved in the
proliferation of human breast cancer, as levels of Hsp90α,
an isoform of the HSP90 family, appears positively
correlated with cyclin D1 expression in this type of tumour
(Yano et al. 1999). In addition, the presence of autoanti-
bodies to Hsp90 in the sera of breast cancer patients has
been associated with poor survival (Conroy et al. 1998b).
Hsp90 overexpression has also been reported to indicate a
poor prognosis in human breast cancer (Jameel et al. 1992),
defining a population of patients with decreased survival
(Pick et al. 2007).

In canine malignant mammary tumours, although Hsp70
and Hsp90 levels were not of significant prognostic value,
the high Hsp90 expression levels detected in neoplastic
tissues, independently of tumour histological type or
aggressiveness (Romanucci et al. 2006), suggest that such
proteins could play a fundamental role in the multiple
processes leading to malignant transformation and tumour
progression in the canine mammary gland. Many of the
mutations in oncogenes and tumour suppressor genes
commonly found in cancer result in the expression of
defective proteins that display unusually stable physical
association with molecular chaperones. These molecular
chaperones, particularly Hsp90, seem to serve as biochemical
buffers at the phenotypical level for the multiple genetic
lesions which usually characterize tumours, thus permitting
cells to tolerate the mutations of crucial signalling molecules
that would otherwise be lethal (Whitesell and Lindquist 2005).
Furthermore, in breast cancer cells, Hsp90 is essential for the
stability and function of steroid hormone receptors (Pratt and
Toft 1997), whose expression has been found in both normal
and neoplastic canine mammary tissues (Donnay et al.
1993). Likewise, the membrane receptor tyrosine kinase
ErbB2 is also a Hsp90 client protein (Xu et al. 2001), whose
enhanced expression correlates with malignancy of breast
cancer progression (Miyata 2005) and which might also
exert an important role in carcinogenesis of canine mammary
gland (Ahern et al. 1996; Matsuyama et al. 2001; Martin de
las Mulas et al. 2003; Dutra et al. 2004).

The elevated expression of the HSP70 family members
in both cytoplasm and nucleus of canine mammary tumour
cells, characterised by intense proliferation activity and/or
stromal invasion (Romanucci et al. 2006), could be
correlated to the roles exerted by these chaperones in cell
cycle control (Helmbrecht et al. 2000). In addition, several
mammalian cells typically show an increase and a nuclear
translocation of Hsp72/73 (respectively, the inducible and
constitutive member of HSP70 family) during S-phase,
which suggests an enhanced requirement for nuclear protein
transport during this phase (Milarski and Morimoto 1986;
Shi and Thomas 1992; Zeise et al. 1998). These cells could
also be manifesting the symptoms of environmental stress,
such as lack of nutrients or hypoxia (Kaur et al. 1998; Jolly
and Morimoto 2000), particularly in the more aggressive
tumour areas. However, little information is available to
support this latter hypothesis and in contrast, HSP expression,
induced through the stress protein response, appears to
interfere with other gene expression programmes in the cell,
such as mitogenic signal transduction pathways (Calderwood
2005).

Increased transcription of hsp genes, on the other hand,
may be directly induced by basic oncogenic pathways
(Calderwood et al. 2006), such as those involving the c-myc
oncogene or p53 protein. Whereas c-myc does not appear to
exert a prominent role in oncogenesis of canine mammary
gland (Engstrom et al. 1987), the p53 tumour suppressor
gene results to be involved in both human and canine
mammary tumour development and progression (Van
Leeuwen et al. 1996; Kumar et al. 2007). Regulation of
HSP expression in normal cells also involves the tumour
suppressor protein p53, which represses transcription of the
hsp70 gene through the inhibition of CBF/HSP70, a
transcription factor binding to the CCAAT box on the
hsp70 promoter (Agoff et al. 1993; Chae et al. 2005). In fact,
mutation of the p53 gene reverses this effect with consequent
transactivation of the hsp70 promoter (Tsutsumi-Ishii et al.
1995). Furthermore, both Hsp72/73 and Hsp90 have been
found to be associated with the conformational mutant form
of p53 forming a multi-chaperone complex which mediates
the stabilisation, cytoplasmic sequestration and accumulation
of mutated p53 by masking the p53 nuclear localisation
signal (Akakura et al. 2001) and preventing its MDM2-
mediated ubiquitination (Peng et al. 2001).

A recent study has also demonstrated a similar pattern of
change in Hsp70, Hsp90 and apoptosis-associated proteins,
such as Bcl-2, Bcl-XL, Bax, Caspases 3 and 8, in both human
and canine mammary tumours. The resulting shift of balance
towards expression of HSPs and anti-apoptotic proteins
suggests the existence of similar mechanisms to evade
apoptosis in both humans and canines (Kumaraguruparan
et al. 2006). In this connection, an increasing number of
studies have greatly contributed in defining the anti-apoptotic
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activity of several HSPs, including Hsp70 and Hsp90, which
can interfere with both the mitochondrial (“intrinsic”) and
death receptor-mediated (“extrinsic”) apoptotic pathways
(Didelot et al. 2006; Garrido et al. 2006; Schmitt et al.
2007). It seems to be conceivable that HSPs might play
analogous functions both in humans and animals, as the
amino acid sequence of the canine hsp70 gene shares 90–
95% sequence similarity to the bovine, human and mouse
Hsp70 proteins (Kano et al. 2004).

HSPs expression has also been investigated in human,
mouse and canine cutaneous squamous cell carcinoma
(SCC). The data obtained from these studies indicate that
Hsp27 expression is strictly correlated to keratinocyte
differentiation, suggesting that the absence of this protein
in epidermal cells could be regarded as a marker of
epidermal malignancy in all the species so far investigated
(Trautinger et al. 1995; Kiriyama et al. 2001; Romanucci
et al. 2005). As a matter of fact, canine Hsp27 is also very
similar to the human form with its primary structure
deduced from nucleotide sequence revealing a 209 amino
acid protein sharing 86–89% homology with human,
mouse, rat and hamster small Hsp (Larsen et al. 1995). In
human epidermis, Hsp27 appears to operate as a chaperone
of cornification, as it colocalises with keratins and proteins
of the cornified cell envelope (Jonak et al. 2002), whilst
another study suggests that Hsp27 could be also involved in
the regulation of differentiation-associated gene expression
(Hell-Pourmojib et al. 2002).

Finally, in both canine mammary tumours and cutaneous
SCC, Hsp90 and Hsp73 exhibit a clear-cut expression in
mitotic cells (Romanucci et al. 2005, 2006), lending further
support to the role of HSPs in regulating the assembly of
mitotic apparatus. In fact, Hsp73 has been found to localise
on centrosomes where it probably assists the centrosomal
chaperonine tailless complex protein-1 (TCP-1) in tubulin
folding (Brown et al. 1996a, b). It has also been found on
the fibres of spindles and asters during metaphase (Agueli
et al. 2001). Hsp90 is also a core centrosomal component,
and it has been found that HeLa cells treated with a specific
competitive inhibitor of Hsp90, geldanamycin, tend to stop
at metaphase (Lange et al. 2000). Hsp90 seems to regulate
metaphase–anaphase transition (de Carcer 2004) by pro-
moting the stabilisation of the Polo kinase, an essential
centrosomal protein which regulates several aspects of cell
division including centrosome maturation and function (de
Carcer et al. 2001).

Animal models in HSP-based cancer therapy

Although potentially dangerous, the ability of HSPs to
stabilise altered conformations of signal transduction
molecules and to impair apoptotic pathways also represents

a weakness as far as tumour cells are concerned, as the
inhibition of their chaperone function can be expected to
affect the survival of such cells, independently of the
alteration responsible for the oncogenic phenotype (Mosser
and Morimoto 2004). Therefore, HSPs have become targets
for anti-cancer drug design: in particular, Hsp90 has
emerged as an especially promising molecular target, given
its interaction with over 100 client proteins, many of which
are involved in cancer-associated signalling pathways.
Consequently, inhibition of Hsp90 functions can affect
multiple oncogenic substrates simultaneously, thus helping
to circumvent the genetic plasticity that may allow cancer
cells to escape the toxic effects of most molecularly
targeted agents which attack on a single signalling node
(Neckers 2006). Although the combinatorial action of
Hsp90 inhibitors is a major advantage of this class of
anti-cancer drugs, this does not exclude a role for their
action against a specific oncogene product in particular
tumours (Sharp and Workman 2006), such as ErbB2 in
breast cancer or B-Raf in melanoma. Furthermore, as
Hsp90 has been demonstrated to play crucial roles in
regulating angiogenic responses, evidence suggests that
Hsp90 inhibitors may provide therapeutic benefit not only
via direct effects on tumour cells but also by interfering
with several steps of tumour angiogenesis (Kaur et al. 2004;
Sanderson et al. 2006).

Even if Hsp90 represents 1–2% of the total cellular
protein content and chaperones several proteins that are
essential for maintaining homeostasis of healthy cells,
Hsp90 inhibitors have proven to be well tolerated. One
possible explanation for their therapeutic selectivity against
neoplastic cells is that oncogene-addicted tumour cells are
far more sensitive that normal cells, which are responsive to
a plethora of pathways and stimuli (Pearl 2005). Then,
given the genetic instability which is a common event in
tumour genesis, and the ability of Hsp90 to function as a
biochemical buffer of the multiple genetic lesions, which
usually characterise tumour cells, it is likely that Hsp90 in
cancers could be far more involved in the constitution of
multi-chaperone complexes, thus displaying a higher
ATPase activity with an apparently higher affinity for
Hsp90 inhibitors than does “free” Hsp90 in normal cells
(Kamal et al. 2003; Pearl 2005). In fact, most Hsp90
inhibitors act by docking in the N-terminal nucleotide
binding domain, thereby inhibiting intrinsic ATPase activity
and thus blocking the formation of mature complexes. Such
inhibitors include the benzoquinone ansamycin antibiotic
geldanamycin and its derivatives, the macrocyclic antibiotic
radicicol and its analogues, purine-scaffold derivatives and
shepherdin (Sharp and Workman 2006; Xiao et al. 2006).
The latter is specifically designed to block the interaction
between Hsp90 and survivin (Plescia et al. 2005). 17-
Allylamino, 17-demethoxygeldanamycin (17-AAG) has
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recently completed several phase I clinical trials (Banerji
et al. 2005; Goetz et al. 2005; Grem et al. 2005;
Ramanathan et al. 2005; Nowakowski et al. 2006) and
entered phase II single agent therapy in various tumour
types including melanoma, breast cancers and paediatric
(Sharp and Workman 2006) and genitourinary (Lattouf
et al. 2006) malignancies. There is also great interest in
combining 17-AAG treatment with other cancer therapies,
such as radiation (Bisht et al. 2003; Enmon et al. 2003;
Russell et al. 2003; Machida et al. 2005; Shintani et al.
2006) or various cytotoxic agents (Nguyen et al. 2001;
Rahmani et al. 2003; Solit et al. 2003; George et al. 2004,
2005; Mesa et al. 2005; Vasilevskaya and O’Dwyer 2005;
Yao et al. 2005; Barker et al. 2006; Sain et al. 2006;
Premkumar et al. 2006), as 17-AAG can sensitise tumour
cells to the induction of apoptosis by other treatments.

The most limiting factor in clinical trials is that 17-AAG
has poor solubility in water and lacks oral bioavailability.
Thus, its highly soluble hydroquinone hydrochloride deriva-
tive IP-504 has been synthesised as an Hsp90 inhibitor and
appears to be effective in cellular and mouse models of
myeloma (Sydor et al. 2006). In addition, a second generation
analogue of geldanamycin, 17-(dimetylaminoethylamino)-
17-demethoxygeldanamycin (17-DMAG) has been devel-
oped, which is water soluble and orally bioavailable. A series
of preclinical studies has been carried out to establish its in
vitro and in vivo anti-tumour activity and spectrum of
toxicity (Bull et al. 2004; Eiseman et al. 2005; Glaze et al.
2005; Hollingshead et al. 2005; Smith et al. 2005; Robles et
al. 2006), which appears to be similar to 17-AAG. 17-
DMAG is currently in phase I clinical trials (Shadad and
Ramanathan 2006; Sharp and Workman 2006).

Despite their promising anti-cancer properties, one
concern in the clinical application of Hsp90 inhibitors is
that they may induce the expression of HSPs, including
Hsp70, via the activation of HSF1 (Bagatell et al. 2000).
The blocking of Hsp70 induction has been observed to
significantly enhance the anti-leukaemia activity of 17-
AAG (Guo et al. 2005). Hsp27 up-regulation could also
play a significant role in 17-AAG resistance which may be
mediated, in part, through glutathione regulation (McCollum
et al. 2006). Further evaluation of Hsp90-targeted cancer
therapy also appears to be essential, as a potential
contraindication to this therapy has been found: 17-AAG
appears to enhance bone metastasis of a human breast
cancer cell line following intracardiac inoculation in the
nude mouse (Price et al. 2005). Such findings underline the
importance of in vivo models for further testing of Hsp90-
targeted cancer treatments, and the abundant Hsp90
expression detected in canine malignant mammary tumours
(Romanucci et al. 2006) suggests that the canine model
may well prove useful in the testing of new breast cancer
therapy.

In veterinary medicine, mammary tumours constitute the
most common malignant neoplasms in the bitch (Misdorp
2002), showing wide pathological and clinical heterogeneity
similar to the disease in humans. Similarities between human
and canine mammary neoplasms on a molecular level allow
more significant comparative evaluations of the molecular
mechanisms involved in carcinogenesis with respect to the
classical rodent model (Kumaraguruparan et al. 2006). As a
matter of fact, translation of a therapeutic into the clinic
requires the use of animal models that parallel the biological,
genetic, etiological, immunological and therapeutic proper-
ties of human cancer (Talmadge et al. 2007). Several
characteristics allow to consider spontaneously occurring
tumours in dogs as an attractive model for human cancer
(Vail and MacEwen 2000; Sutter and Ostrander 2004). In
this respect, there is a greater genetic homology between
dogs and humans than between either species and the mouse
(Kirkness et al. 2003; Switonski et al. 2004). Furthermore,
companion animals live in the same environment as humans
and share similar environmental risk factors (Mueller et al.
2007). Naturally occurring canine neoplasms also represent
autochthonous tumour models which are believed to repro-
duce human tumours more closely than transplanted
tumours, as they show orthotopic growth, tumour histology
devoid of transplantation induced changes, metastasis via
lymphatic and vascular vessels surrounding and within the
primary tumour (Talmadge et al. 2007). Since adjuvant
treatments are mainly aimed at controlling micrometastases,
the strong Hsp90 and Hsp73 immunolabelling detected in
canine mammary neoplastic emboli (Romanucci et al. 2006)
is significant as it suggests that these HSPs are necessary to
cells with metastatic potential and that the inhibition of their
functions could affect the survival of such cells, which does
not always show the same pattern of expression respect to
the primary tumour (Cardoso et al. 2001).

The anti-apoptotic relevance of Hsp70 in cancer cells has
been confirmed, both in vitro and in vivo, by evaluating the
effects of “antisense Hsp70 sequences” (AsHsp70) (Gibbons
et al. 2000; Kaur et al. 2000; Nylandsted et al. 2002; He
et al. 2005; Zhao and Shen 2005). The AsHsp70-induced
apoptosis seems to be caspase-independent and not rescued
by the Bcl-2 anti-apoptotic protein (Nylandsted et al. 2000).
Thus, Hsp70 depletion may provide a new target for cancer
therapy (Jones et al. 2004), especially when acquired
chemoresistance occurs (Gabai et al. 2005). AsHsp70 could
be particularly useful in the therapy of tumours characterised
by local tissue infiltration and invasion without metastasis
(Nylandsted et al. 2002). In addition, a peptide containing
the AIF sequence involved in its interaction with Hsp70,
called the AIF-derived decoy for Hsp70 (ADD70), has been
shown to bind to and neutralise Hsp70 in the cytosol, thereby
sensitising cancer cells to apoptosis induced by a variety of
stimuli (Schmitt et al. 2003) and exerting anti-tumour effects
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in rodent models of colon cancer and melanoma (Schmitt
et al. 2006). Notwithstanding this, drugs selectively inhibit-
ing Hsp70 have not yet been identified.

Concluding remarks

Even if the roles of HSPs in cancer have not yet been
completely clarified, the data so far obtained clearly indicate
that they are involved in all the aspects of tumour biology.
HSPs are essential for the survival and proliferation of
neoplastic cells and represent targets for anti-cancer therapy.
Preliminary studies carried out on animal tumours have
identified similar changes in HSP expression with respect to
their human counterparts, thus indicating similar roles/
functions during human and animal carcinogenesis. Recent
data suggests that the canine model would make a more
suitable model with respect to the traditional rodent model to
investigate the molecular mechanisms of tumour develop-
ment and progression and to test the efficacy of new anti-
cancer treatments.
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