
A Stimulus-Locked Vector Autoregressive Model for Slow Event-
Related fMRI Designs

Wesley K. Thompson and
Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA, email:
wes.stat@gmail.com, telephone: 858.534.3684, fax: 858.534.7653

Greg Siegle
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA

Summary
Neuroscientists have become increasingly interested in exploring dynamic relationships among brain
regions. Such a relationship, when directed from one region toward another, is denoted by “effective
connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective
connectivity is the slow event-related design. This design presents stimuli at sufficient temporal
spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of
stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially
important for emotional stimuli processing, which can evolve over the course of several seconds, if
not longer. However, while several methods have been devised for determining fMRI effective
connectivity, few are adapted to event-related designs, which include non-stationary BOLD
responses and multiple levels of nesting. We propose a model tailored for exploring effective
connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation
of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity
coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions,
and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective
connectivity and hence is useful for building connectivity models when prior information on dynamic
regional relationships is sparse. Indices derived from the coefficient estimates can also be used to
relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the
SloVAR model on a sample of clinically depressed and normal controls, showing that early but not
late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-
cortico connectivity predicts depression severity in the depressed group, relationships that would
have been missed in a more traditional VAR analysis.

Introduction
Interest among neuroscientists has increasingly centered on the determination of dynamic
relationships among specialized brain regions in processessing information. The determination
of dynamic relationships among brain regions has been termed “connectivity” analysis
(Friston, 1994; Horwitz, 2003). In particular, an “effective connectivity” analysis attempts to
determine directed influences from one brain region to another. However, researchers often
have little prior knowledge about the nature of effective connectivity among regions, including
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the strength or direction (excitatory or inhibitory) of such relationships. Moreover, even less
may be known about how these effective connectivity relationships may vary across time after
the application of an experimental stimulus. We propose an exploratory model for effective
connectivity analysis which is specifically tailored to elucidate directed dynamic relationships
among multiple brain regions in slow event-related fMRI experimental designs, while making
minimal assumptions about the nature of these relationships. We were particularly motivated
by observations of unpredicted lagged and non-linear relationships between regions (Wagner
et al 2001; Siegle et al 2007) as well as frequently observed responses that do not match a
canonical hemodynamic model (e.g., Siegle et al 2002; 2007) to develop a more exploratory
approach. This exploratory approach for effective connectivity is in contradistinction to
structural equation models (SEM; McIntosh and Gonzales-Lima, 1995) and dynamic causal
models (DCM; Friston et al 2003), which generally require a priori the specification of
effective connectivity relationships. Our exploratory model's estimates of effective
connectivity can be used to assist in building confirmatory parametric models (including SEMs
or DCMs). Additionally, because we explicitly allow for variation in effective connectivity
across groups and subjects, indices derived from the connectivity coefficients can be used to
predict individual variation in other variables, such as behavioral or clinical measures. We
provide an example of this in the analysis of the application dataset below.

Vector autoregressive (VAR) models have proven popular for effective connectivity analysis
over the last several years (Harrison et al 2003; Goebel et al 2003; Ho et al 2005; Bhattacharya
et al 2006; Rykhlevskaia et al 2006). One reason for this popularity is that in VAR modeling,
the direction and valence of effective connectivity relationships do not need to be pre-specified.
Specifically, the standard VAR model relates the time-dependent structure of fMRI activation
of multiple regions through a multivariate regression of prior levels of activation on current
levels. Directed connectivity coefficients between regions are derived from the off-diagonal
elements of the autoregressive matrices. The VAR approach has been utilized for the
construction of graphical models for effective connectivity through the use of Granger causality
analysis (Goebel et al 2003; Eichler, 2005; Roebroeck et al 2005; Valdes-Sosa et al 2005).
Granger causality (Granger, 1969) is based on the common-sense idea that causes precede
effects. With this in mind, activation in one region is said to “Granger cause” activation in
another if prior levels of activation in the first region improve prediction of current values in
the second; for stationary Gaussian VAR processes this is equivalent to testing whether the
off-diagonal elements of the autoregressive matrices corresponding to these two regions are
nonzero (Eichler, 2005). However, as noted by a referee, one must be careful not to over-
interpret Granger causal relationships as truly causal; among other difficulties, VAR modeling
is open to confounding from unmeasured relationships, as is any statistical modeling procedure
(including SEM and DCM). Nonetheless, VAR models have proven a useful methodology for
the effective connectivity analysis of neuroimaging data.

To date, however, VAR models have not been adapted to exploit specific characteristics of
event-related fMRI experimental designs, which include nonstationary BOLD response curves
and potentially dynamic effective connectivity relationships among brain regions. Adaptation
of VAR models to slow event-related designs is particularly desirable because these designs
are well-suited for exploring temporal dynamics of activity in regions involved in complex
cognitive and emotional tasks, which may take several seconds to process. In the slow event-
related experimental paradigm, brief stimuli are separated by an inter-trial interval usually on
the order of 10 to 20 seconds. This duration is generally sufficient to allow a hemodynamic
response associated with the stimulus to occur and fully decay (Glover, 1999), allowing for
the examination of post-stimulus temporal dynamics among brain regions. Experimental
stimuli are usually presented in a randomized order and mean stimulus-locked hemodynamic
response curves can be computed by averaging over repetitions of trials of the same type.
Locking activation curves to stimulus onset enables exploration of BOLD response trajectories
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and dynamic interrelationships among regions which can be contrasted across stimulus types,
individual subjects, and/or experimental subgroups.

An example of this approach is presented in Figure (1); data in this figure are group mean
stimulus-locked response trajectories for three regions of interest (ROIs) for 24 mentally-
healthy controls and 32 acutely depressed subjects. As described in more detail below, these
subjects were presented with emotionally-negative words (200 ms) with an inter-stimulus
interval of 10.8 seconds. The mean fMRI response depends both on group and, as is to be
expected, time since stimulus. These data thus exhibit first-order nonstationarity.

While curve averaging within subjects or trial types provides a simple method for studying
stimulus-locked first-order nonstationarities in BOLD responses, it is less readily apparent how
to handle potential nonstationarities in effective connectivity relationships. Such
nonstationarities arise if effective connectivity varies in a systematic fashion across the time
course of a given trial type. For example, two regions may have a directed relationship near
the beginning of a trial but not toward the end or an initially excitatory relationship may become
less so or even inhibitory. Several studies have shown that connectivity is time and context
dependent (Aertson and Preissl, 1991; Friston, 1994; Sato et al 2006; Bhattacharya et al 2007).
Thus, current VAR methods which assume stationarity and otherwise do not explicitly
incorporate the structure of event-related designs do a poor job at modeling important aspects
of regional dynamics following application of a stimulus.

Empirical evidence also indicates that both activation and effective connectivity varies strongly
from person to person (Mechelli et al 2002) and from group to group (e.g., Anand et al
2005). Indeed, testing for individual or group differences in connectivity among regions is
often of considerable interest in and of itself (Mayberg et al 1999; Siegle et al 2007). Hence,
another desirable property for a effective connectivity analysis is the ability to explicitly
account for between-subject and between-group variability in effective connectivity
relationships.

We therefore propose an adaptation of VAR models tailored for the exploration of effective
connectivity in multi-subject slow event-related designs. This model, termed the “stimulus-
locked VAR” (SloVAR) model, allows for fixed-effect differences in effective connectivity
across stimulus types or experimental subgroups and random effect differences in connectivity
across subjects within groups. Stochastic variation in BOLD response trajectories across scans
and trials is modeled via multivariate Gaussian inputs, while effective connectivity is modeled
via a generalized VAR framework. This generalized framework allows for a nonstationary
VAR covariance structure on the regional BOLD responses by allowing the autoregression
parameters to vary as a function of lag and time since last stimulus onset. This highly
parametrized effective connectivity model is regularized via a low-rank basis expansion using
a bivariate tensor product of cubic B-splines. We implement this using a mixed model
formulation (Wand, 2003) with roughness penalty parameters treated as components of
variance and estimated from the data. The mixed model is implemented within a Bayesian
framework by specifying priors on the parameters, including roughness penalty parameters
and using a Markov Chain Monte Carlo (MCMC) Gibbs sampling algorithm.

The output of SloVAR modeling is thus a set of surfaces representing the directed relationships
of each structure in the model, at each lag, to each other structure. We envision two primary
uses for this information. First, visual inspection of observed relationships facilitates
exploration of non-trivial time-dependent relationships among structures. These relationships
could otherwise be missed or not accounted for in analyses. Following an inspection,
parameters capturing relevant aspects of variation can be extracted for testing in parametric
models (e.g., the strength of association of early activity in one structure with later activity in
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another structure). This useage follows common practice in using nonparametric models as
aides in building parametric ones (Ruppert et al 2003). Formal inference from such empirically-
determined models can be sought in the subsequent analysis of data obtained from additional
subjects or by data splitting (Picard and Berk, 1990). Second, posterior estimates of
connectivity parameters can be related to known non-fMRI cognitive or clinical information
to better understand the relationships of fMRI-connectivity to these variables. If quantitative
relationships are observed, features of the connectivity surfaces that generated the relationships
can be explored post-hoc, again, necessitating extraction of relevant parameters to allow
hypothesis testing.

Following a demonstration of the utility of the SloVAR model with simulated data, each of
these applications is illustrated in the Results section below, using a sample psychiatric
neuroimaging dataset in which we had previously examined functional connectivity using more
conventional measures. As shown in the Results, use of SloVAR increases both intuitive
understanding of the data as well as its clinical applicability. These findings suggest that early
(within the first two seconds) but not late within-trial cortical to amygdala connectivity appears
crucial to emotional control. This result matches theoretical explanations for mutually
inhibitory influences of the prefrontal cortex on the amygdala and vice-versa but for the first
time adds temporal specificity to the theoretical picture. Moreover, temporal specificity is
important for relating connectivity to depression severity within the depressed group: early but
not late cortico-cortico connectivity predicts depression severity on a clinical measure. This
predictive relationship would have been missed in more traditional VAR analyses which
assume stationarity and hence do not account for the stimulus-locked temporal variation in
effective connectivity observed in these data across the course of a trial.

A MATLAB toolbox implementing the SloVAR model is available from the first author upon
request.

Materials and Methods
The SloVAR Model

Suppose there are N subjects, with subject i completing Mi trials. Each trial consists of a short
stimulus followed by an intertrial period consisting of T fMRI scans. Stimulus-locked fMRI
activation profiles for each trial are obtained from P pre-specified brain regions. Note, we
assume that one activation time course is obtained per region per trial by, e.g., computing a
per-trial average time course of all voxels contained within the region. For trial j nested within
subject i, denote the P-dimensional BOLD response at the tth time (scan) following stimulus
presentation by fij(t). The SloVAR model decomposes the P-dimensional BOLD response
trajectories fij(·) into two parts, giving effective connectivity model

(1)

Where

(2)

The gij(t) represent the portion of the BOLD response attributable to the internal dynamics of
the system of P regions up to time t, with the ωij(t) ∼ MVNP(0, Σω) allowing for stochastic

Thompson and Siegle Page 4

Neuroimage. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



external inputs from other regions and otherwise noisy system dynamics. The P × P
connectivity coefficent matrices Γi vary across subjects to account for subject-specific
differences in connectivity. The Γi also vary as a function of lag s and time t, so that

(3)

The connectivity coefficents γip1p2(s, t), quantify the effect of region p2 on region p1 at time
t and lag s, with time locked to stimulus (trial) onset. Since the connectivity coefficients are
allowed to vary as a function of time, the effect of region p2 on region p1 at lag s may differ
across the course of a single trial. This may be the case if, for example, region p2 sends inputs
to region p1 near the beginning of a trial but not near the end, or if the input is inhibitory at one
timepoint and excitatory at another. Since 1 ≤ s < t ≤ T, the connectivity coefficients γip1p2(·,
·) in (3) are real-valued functions of two variables with triangluar support. The resulting NP2

connectivity coefficient surfaces are estimated and regularized using linear combinations of
bivariate basis functions with roughness penalties as described in the next subsection.

Regularization of Autoregression Surfaces
Equations (1)-(3) allow for the nonstationary evolution of underlying BOLD trajectory
dynamics as a function of time since stimulus onset. However, without regularization this level
of flexibility results in an over-parametrized model: with P regions and T times per trial this
would result in T(T − 1)P2/2 parameters to estimate for each connectivity matrix Γi. One way
of handling this is by treating the the connectivity surfaces γip1p2(·, ·) as smooth functions of
time and lag; this assumption was justified in the example dataset by plotting and inspecting
raw lagged relationships. To implement this approach the connectivity coefficients γip1p2(s,
t) are approximated using a tensor product of univariate bases, with ψ1(s) = (ψ11(s), …,
ψ1H1(s))′ a basis for the first argument (lag) and ψ2(t) = (ψ21(t), …, ψ2H2(t))′ a basis for the
second argument (scan, or time). To be specific, we choose ψ1(s) to consist of H1 cubic B-
splines with support on the interval [1, T − 1] and ψ2(t) to consist of H2 cubic B-splines with
support on the interval [2, T]. Considerations for choosing H1 and H2 are outlined in the
Discussion section; briefly, the strategy is to include enough basis functions for the for flexible,
data-determined fits while keeping the number small enough to be computationally feasible
(Crainiceanu et al, 2005). Let ψ(s, t) denote the H-dimensional tensor product of these two
bases evaluated at lag s and time t, where 1 ≤ s < t ≤ T and H = H1H2. The connectivity
coefficients are approximated by a linear combination of the components of ψ(s, t)

(4)

This results in a model with HP2/2 parameters to be estimated per connectivity matrix Γi. The
reduced-rank smoothing spline strategy we implement is to include more than enough basis
functions to obtain a good fit to the data and then penalize the roughness of the estimates. The
roughness penalty is allowed to vary across time and lag arguments and implemented by the
appropriate prior specification in a Bayesian mixed model.

Specifically, define the integrated squared second derivative penalty matrices as
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Following Wood (2006), we can approximate the integrated squared second derivative penalty
for the total surface curvature by defining S̃ψ1 = (Jψ1 ⊗ IH2) and S̃ψ2 = (IH1 ⊗ Jψ2), where ⊗
denotes the Kronecker product and IHj denotes the identity matrix of dimension Hj, j = 1, 2,
and letting S̃ = S̃ψ1 +S̃ψ2 (an H × H matrix). The total surface curvature penalty matrix S̃ is not
strictly positive definite because it has 4 eigenvalues equal to zero, corresponding to the linear
subspace spanned by the cubic B-spline tensor product basis.

Thus, to utilize S̃ in the prior specification for the tensor product basis coefficients αip1p2 we
proceed by computing its spectral decomposition S̃ = VDV′, where the columns of V are
orthonormal eigenvectors and D is a diagonal matrix of eigenvalues whose first 4 diagonal
elements are zero. Partition V = [VF VR], where VF is composed of the first 4 columns and
VR the last H − 4 columns of V. The tensor product basis is linearly transformed to

. This linear transformation of the tensor product
basis partitions it to perfectly smooth (linear) basis functions ψF(·) and “wiggly” basis functions
ψR(·). The coefficients for ψF(·) are unpenalized, since they are already smooth, whereas the
coefficients for ψR(·) are penalized.

After this linear transformation of the basis functions, model (4) for the connectivity surfaces
γip1p2(·, ·) becomes

(5)

With priors as specified in the next subsection, this becomes a Gaussian random effects model
with subject-specific random effects ηip1p2 for the completely smooth basis functions and
penalized fixed effects δqip1p2 for the “wiggly” basis functions. These fixed effects vary across
levels of a categorical variable qi ∈ {1, …, Q}, so that the mean shape of the connectivity
coefficient surfaces are allowed to depend on contextual factors such as subgroup; a similar
formulation could account for other categorical variables, including, e.g., within-subject
differences in experimental stimulus type.

Prior Specification
The parameters of the connectivity model are denoted by Φ = {ηip1p2, η̄qp1p2, δqp1p2, Σω, Ση,

, }, where indices 1 ≤ i ≤ N, 1 ≤ p1, p2 ≤ P, and 1 ≤ q ≤ Q range over subjects, regions,
and subgroups, respectively. Prior specification for these parameters follows common practice
for Bayesian mixed models (Gelman et al 2003). In particular, priors are conjugate where
possible. These priors have been shown to work well as long as hyperpriors for random effects
variance components are chosen carefully (Kass and Natarajan, 2006; Zhou et al 2006).

Specifically, the P × P variance-covariance matrix Σω for ωij(t) in Equation (1) is inverse
Wishart (IW) with scale matrix Sω and degrees of freedom dω. Hyperparameters Sω and dω
can be chosen to give a diffuse prior distribution by, e.g., setting Sω = IP and dω = P. The
hierarchical prior distributions of the 4-dimensional random effects ηip1p2 and the (H − 4)-
dimensional fixed effects δqp1p2 are given by
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with c a fixed constant (say c = 1000) chosen to give a diffuse but proper prior. The 4 × 4
variance-covariance matrix Ση is given a conjugate IW(Sη, dη) distribution, with Sη and dη
chosen to give a diffuse prior, if desired, using for example the results of Kass and Natarajan
(2006). Finally,  and  are smoothing parameters for the φR(·, ·) basis functions. These
two parameters are given inverse gamma (IG) distributions with hyperparameters τ1 and τ2
fixed; these are set to small values (say τ1 = τ2 = .01) to give diffuse yet proper priors.

The MCMC Gibbs sampling scheme and the derivation of the conditional posterior
distributions using these prior distributions on the parameters are given in the Appendix.

Results
Simulation Study

Here we evaluate the performance and utility of the proposed model in estimating the
connectivity coefficients through a simulation study. In this study we randomly generated 100
datasets according to model (1)-(3) with 25 subjects, 20 trials per subject (each consisting of
7 scans) and 2 ROIs. We generated data so that the region 1 demonstrates an effective
connectivity relationship directed to the region 2, whereas there is no connectivity from region
2 toward region 1 (the connectivity surface is zero at all points). The self-connectivity surfaces
and the connectivity surface for region 1 to region 2 are nonstationary: connectivity surfaces
vary strongly as a function of time since stimulus onset. The true between-region connectivity
coefficients, along with the simulation results, can be viewed in Table (1).

The SloVAR model was fitted for each of the 100 simulated datasets. Table (1) gives the mean
off-diagonal connectivity surface estimates and actual coverage of the corresponding 95%
posterior credible intervals. The proportion of times the posterior credible intervals include the
true coefficient values is slightly lower than the nominal level, with median 94.8% for all points.
Departures from the nominal level at individual points are due to biases induced from the
smoothing algorithm. This may be due to choice of basis or to using a particular number and
placement of knots. This subject is discussed in more detail in the conclusions. Nevertheless,
these biases are far less severe than biases from fitting a stationary VAR model, as we show
below.

To compare the SloVAR estimates with estimates obtained from usual practice, we also fit
VAR models assuming stationary, time-invariant autoregression coefficients. The number of
lags was set to 6. Nominal 95% posterior credible intervals for VAR coefficients were
determined as above. The mean estimates of connectivity coefficients and the coverage of the
corresponding confidence intervals is also given in Table (1). Unsurprisingly, the stationary
VAR model provides highly biased parameter estimates and very low coverage.

To assess the impact of model misspecification (i.e., falsely assuming stationarity), we
performed bivariate Granger causality tests at the 0.05 level (Granger, 1969) using the results
of the standard VAR model fits to the simulated data. These tests correctly concluded for all
100 simulations that there was a significant Granger causal relationship from region 1 to region
2. However, these tests also incorrectly concluded that for all 100 simulations there was a
significant Granger causal relationship from region 2 to region 1. These substantively false
conclusions result from the highly-biased estimates seen in Table (1) due to model
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misspecification. In general, the SloVAR model will provide a more acurate picture of effective
connectivity than does the standard VAR model when the connectivity is strongly depedent
on stimulus-locked time. We suggest possible ways for implementing more formal Granger
causal tests based on the SloVAR model in the Discussion.

Application
Ruminative processing in depression—We present data from a psychiatric
neuroscience experiment designed to test for functional differences in brain activation between
unipolar depressed subjects and never-depressed controls (Siegle et al 2007). The study was
constructed to understand brain correlates of sustained elaborative or “ruminative” processing
of emotional information in depression, which is linked to depressive severity and persistence
(Nolen-Hoeksema et al 1993). In particular, we examined relationships between a candidate
mechanism for this sustained processing, activity in the left amygdala, a brain region associated
with recognizing the emotionality of information and generating emotional reactions (LeDoux,
1996), and a two cortical regions: the left dorso-lateral prefrontal cortex (DLPFC), a region
associated with executive control and initiating emotion-regulation, and the rostral portion
Brodmann's Area 24 (BA24), a region associated with processing self-relevant information
and emotion regulation, particularly inhibition of the amygdala. Abnormalities in activity of
each of these areas have been observed in depression (for a review, see Mayberg, 2002).

Relationships of functioning among these areas is less well studied but has been hypothesized
extensively. For example, if executive control is necessary for emotion regulation (Metcalfe
and Mischel, 1999), and specifically, if participants use prefrontal cortex to initiate a process
of emotion regulation that results in inhibition of limbic regions such as the amygdala (Mayberg
et al 1999), sustained emotional reactivity might result indirectly from decreased function in
brain regions subserving executive control such as the DLPFC. There are no direct connections
from the DLPFC to the amygdala. Rather, inhibitory connections exist from ventromedial
regions such as BA24 to the amygdala (Ghashghaei and Barbas, 2002). The DLPFC has been
more formally associated with cognitive aspects of executive control but has been hypothesized
to be involved in effortful initiation of regulatory processes that are eventually implemented
by the more medial regions (e.g., Davidson et al 2000). Inhibitory connections from the
amygdala back to multiple regions of the prefrontal cortex (Amaral et al 1992) could also allow
excessive amygdala activity to contribute to decreased prefrontal activity (Moore and Grace,
2000), even without endogenously disrupted DLPFC activity. Ventromedial regions, in
particular, have been hypothesized as key to integrating limbic and cortical functioning (Siegle
et al 2006).

Experimental Design and Data Acquisition—To assess relationships between cortical
and amygdala activity, 32 unmedicated depressed and 24 healthy participants completed tasks
designed to provoke limbic reactivity to emotional stimuli in depression. In 60 slow event-
related trials, participants viewed a fixation cue (1 s) followed by a positive, negative, or neutral
word (200 ms), followed by a mask (row of Xs; 10.8 s). Participants were required to push a
button for whether presented words were not, somewhat, or very relevant to them or their lives.
For concision, the analyses presented in this paper include only the 20 trials using negative
words. Thirty-four 3.2mm slices were acquired parallel to the AC-PC line using a reverse spiral
pulse sequence (3T GE scanner, T2*-weighted images depicting BOLD contrast; TR=1500ms,
TE=25ms, FOV=24cm, flip=60), yielding 12 whole-brain images per 18 second trial. More
details on experimental design and subject characteristics can be found in Siegle et al (2007).

Data were pre-processed for analyses in several standard steps, as described in Siegle et al
(2007). Following motion correction using the 6 parameter AIR algorithm (Woods et al
1993), linear trends within runs were removed to eliminate effects of scanner drift. Outliers
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were winsorized. In contrast to Siegle et al (2007), data were not temporally smoothed before
cross-registration. Rather, the detrended fMRI data were cross-registered to a reference brain
using the 12 parameter AIR algorithm and spatially smoothed.

The left amygdala was identified anatomically in the functional data (using the mask shown
in Siegle et al (2007), Figure 1) because it is small and boundaries with functionally distinct
regions are hard to identify on functional times. In contrast, DLPFC and cingulate regions were
identified empirically because they encompass large regions of potential functional
heterogeneity and because relevant subregions are reliably differentiated on exploratory
analyses of tasks involving cognitive control and emotional information processing.
Specifically, the DLPFC region derived from a voxelwise analysis of group differences in the
time-course of response to putting digits in order on a sorting-task was employed (from a group
× scan random-effects analysis of variance (ANOVA)), as shown in Siegle et al (2007), Figures
3 and 5). A VMPFC region which differentiated depressed and healthy individuals in the time
course of response to negative words, in the context of a group x valence x scan ANOVA
(shown in Siegle et al 2007, Figure 2) was used for this analysis.

The averaged fMRI signal from each ROI was temporally smoothed similar to Pasquale et al
(2008) to obtain regional BOLD response profiles. Within-trial regional activation profiles
were normalized by subtracting the regional BOLD activation on the first time within each
trial from all subsequent trial times and dividing by the within-subject median regional
activation across the whole time series. Because the resulting normalized BOLD activation
trial profiles necessarily begin at zero, the first time in each trial was subsequently discarded
from the analysis, resulting in seven times per trial which did not start with zero. Figure (1)
shows the regions of interest and the employed mean time-series for each region for each group.

Statistical Analysis—The connectivity coefficients were allowed to vary across groups
(control or depressed) as in Equation (5) with Q = 2. The tensor basis functions for the
connectivity surfaces consisted of cubic B-splines with one internal knot for the time and one
internal knot for the lag dimension, giving 5 basis functions for each dimension. In the notation
of Section (3.2), H1 = H2 = 5, and hence the tensor product of the univariate bases has a total
of H = 25 basis functions. This was deemed more than sufficient to provide a good fit for a
surface consisting of 21 points; sensitivity analyses (varying the number and placement of
knots), not shown here, showed little difference in fits. The MCMC algorithm for the
connectivity model (as described in the Appendix) was applied for 10,000 iterations with a
burn in of 5,000 iterations. Convergence was monitored by initializing the chains at multiple
random starting values and observing that the posterior distributions of parameters had
converged to the same space (Gelman et al 2003).

Posterior estimates γ ̂qp1p2 (s, t) for group-level connectivity surfaces were obtained by
computing the mean over MCMC iterations

(6)

where l indexes the MCMC iteration and the total number of posterior draws L = 5, 000. Here
q = 1 indicates control group coefficients and q = 2 indicates depressed group coefficients. The
posterior connectivity surfaces determined by (6) were evaluated at 1 ≤ s < t ≤ 7. Other indices
derived from the connectivity coefficients were obtained similarly.
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The matrices of posterior estimates of connectivity surfaces are plotted in Figures (2) and (3)
for the control and depressed groups, respectively. (the surfaces in these figures are
reparameterized as functions of time (t) and time minus lag (t − s > 0) for better visual
presentation).

In general, the strongest connectivities are of a region with itself. These “self-connectivity”
surfaces (depicted on the diagonal panels of Figures (2) and (3)) show a strong positive value
at lag 1 across all time points, averaging 1.40 for all three regions in both groups followed by
a dampened oscillating pattern of negative/positive values with means at lag 2=-.53, lag 3=-.
42, lag 4=.26, lag 5=.46, and lag 6=-.51. This pattern is consonant with an initial amplification
of a signal that subsequently levels off at later time points, which in a general sense describes
the hemodynamic response to neural activity. The 95% pointwise posterior credible intervals
indicate that these self-connectivity coefficients are significantly different from zero at the .01
level at all times and lags.

Of more interest are the between-region connectivity surfaces, depicted on the off-diagonal
panels of Figures (2) and (3). These exhibit a greater degree of variation across regions and
groups in terms of stength, shape, and direction (excitatory or inhibitory).

In the control group, there were no observed significant connectivity estimates from DLPFC
to amygdala or from amygdala to either DLPFC or BA24. The DLPFC and BA24 have a
mutually excitatory relationship in the control group. The mean lag 1 connectivity over scans
2-7 from BA24 into DLPFC is .23 with 95% posterior credible interval (PCI) given by [.12, .
34], and the mean lag one connecitivity from DLPFC to BA24 is .09 (PCI= [.01, .17]). The
BA24 to amygdala connectivity relationship exhibits a different pattern. Here, it is early
activation, primarily time 1, which inhibits amygdala activation, with BA24 activity at time 1
damping amygdala activation at scans 3-7 (mean= −.23, PCI= [−.23, −.08]).

The depressed group qualitatively exhibits similar patterns of connectivity across the regions,
with some exceptions. For example, the BA24 to amygdala relationship in depressed
participants appears similar to that observed in controls, with BA24 activity at time 1 damping
amygdala activation at time 3-7 (mean= −.26, PCI= [−.40, −.14]), and BA24 remains excitatory
for DLPFC in the depressed group for all time points, lag 1 (mean= .16, PCI= [.05, .26]). Yet,
unlike controls, the directed excitatory influence of DLPFC on BA24 is not significant in the
depressed group.

In addition to exploring group differences in mean effective connectivity, it is of considerable
interest to determine whether individual variation in effective connectivity estimates are
predictive of clinical measures of depression. We therefore explored the relationship in the
depressed group only between differences in subject-level connectivity and scores on the Beck
Depression Inventory (BDI), a clinical measure of depressive severity. The BDI is a 21-
question self-report inventory of depressive symptoms: higher scores indicate more severe
depressive symptoms. Pre-treatment BDI scores were obtained on all 32 depressed subjects.
We fit regression models with BDI scores as response variables and the posterior estimates of
connectivity parameters ηi, p1, p2 as predictors.

A stepwise model selection procedure was performed using AIC as the criterion for adding
and dropping predictors. This procedure resulted in a model with only one predictor,

, or the first component of the parameter ηi, ba24, dlpfc, which has a correlation of .52

(p = .004 with BDI score. The parameter  determines subject differences in effective
connectivity from DLPFC to BA24 at early scans.
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To illustrate the effect of this parameter on DLPFC to BA24 connectivity, we computed the

mean connectivity surface for the 8 depressed subjects with values of  in the top
quartile and subtracted from it the mean connectivity surface for the 8 subjects in the bottom
quartile. This difference in DLPFC to BA24 connectivity is depicted in Figure (4). The biggest
impact is at early scans, especially scan 2 lag 1.

Figure (5) presents a scatterplot of BDI vs. γi ba24 dlpfc(1, 2). From this plot, it can be seen that
subjects with high lag 1 DLFC to BA24 inhibition at time 2 have higher BDI scores, whereas
subjects with high lag 1 DLPFC to BA24 excitation at time 2 have lower BDI scores. Thus
higher levels of depression are associated with early DLPFC inhibition of BA24 and lower
levels of depression are associated with early DLPFC excitation of BA24. The correlation of
γi ba24 dlpfc(1, 2) with BDI score is .48 (p = .008).

Discussion
To date, the most common methods applied to effective connectivity analyses have been SEM
(Bullmore et al 2000; McIntosh and Gonzalez-Lima, 1994) and DCM (Friston et al 2003; Penny
et al 2004). SEM was originally developed for econometric analysis (see Bollen, 1989),
whereas DCM was specifically tailored for studies of fMRI effective connectivity (for a
comparison of SEM and DCM, see Penny et al (2004)). While both methods have been
successfully applied to effective connectivity analysis in various contexts, they also have some
disadvantgages in the context of multi-subject event-related experimental designs. Neither
SEM nor DCM typically models the temporal correlation of observed fMRI data directly and
neither DCM nor SEM explicitly models individual subject differences in effective
connectivity directly. Most importantly, both SEM and DCM are essentially confirmatory in
nature and are difficult to apply in situations where a well-developed theory of regional
interaction is absent (Bullmore et al 2000). For exploring effective connectivity, the method
of VAR modeling has become more prevalent as it is agnostic as to the directionality of dynamic
relationships. We have proposed SloVAR as an adaptation of usual VAR models to exploit
important characteristics of slow event-related fMRI designs in exploring for effective
connectivity relationships. These adaptations allow for nonstationarites in dynamic
relationships locked to time since stimulus onset and for flexible data-driven estimates of these
stimulus-locked connectivity coefficents. Allowing for flexible data-driven fits and for
individual differences in connectivity enables researchers to obtain subject-level indices which
can isolate specific aspects of effective connectivity relationships among regions, e.g., early
versus late connectivity. The incremental utility of the SloVAR technique above and beyond
standard methods for examining functional relationships between brain regions was
demonstrated by re-examining a published fMRI dataset in which we had previously examined
functional connectivity. Previous analyses had suggested that there were group differences in
connectivity but their character was not probed.

SloVAR modeling suggested that both DLPFC and BA24 have inhibitory influences on the
amygdala, as has been hypothesized (e.g., Phillips et al 2003; 2008). Moreover, it is likely that
the inhibitory function of the DLPFC on the amygdala is mediated by excitation of BA24 early
on in a trial. Early activation in BA24 inhibits the amygdala for the entire remainder of the
trial, suggesting that emotion regulation is affectuated within the first two seconds after
stimulus presentation. In effect, if amygdala activity is to be inhibited, it must occur before it
can rise to a high enough level that it can hijack emotion regulatory systems. This formulation
is consistent as well with theoretical explanations for mutually inhibitory influences of the
prefrontal cortex on the amygdala and vice-versa but for the first time, adds intuitively plausible
temporal specificity to the theoretical picture.

Thompson and Siegle Page 11

Neuroimage. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Note, in the simulations we specifically considered the situation where effects present in the
early part of one event-related waveform were systematically related effects in the later part
of another waveform. These simulations demonstrated that traditional VAR methods would 1)
give highly biased estimates in this situation, and 2) not detect the actual nature of the Granger
causal relationship.

In addition, SloVAR modeling posited that inhibitory influences of DLPFC on BA24 are
reduced in the depressed sample, suggesting that increased affective reactivity in this group
could be due to decreased cortico-cortical inhibitory influences rather than simple hyper-limbic
reactivity or abnormal cortico-limbic connectivity. This observation could have high clinical
importance as common interventions for depression, such as selective serotonin reuptake
inhibitors, appear to directly target limbic (amygdala) activity. Rather, interventions more
directly associated with increasing cortico-cortical influences may help to intervene on the
underlying mechanisms of sustained emotional-information processing in depression.

Finally, SloVAR modeling suggested that within the depressed group early inhibition of BA24
by DLPFC is predictive of worse depression severity (as measured by the BDI), whereas early
excitation of BA24 by DLPFC was predictive of lower severity. To the extent that these data
can be interpreted causally, they suggest that depressed individuals in whom the DLPFC does
have an excitatory relationship on BA24 are characterized by more “normal” cortico-cortical
regulatory information processing. This response style would likely allow BA24 to inhibit the
amygdala, yielding decreased sustained reactivity. In contrast, the more severe depressed
participants were characterized by an inhibitory relationship, in which top-down cortical
influences were associated with inhibiting emotion-regulatory mechanisms. Such a situation
is consistent with clinical presentations in which depressed individuals have been shown to
value their rumination (e.g., Papageorgiou and Wells, 2001), and thus could work to allow
sustained emotional information processing to occur, potentially to their ultimate detriment.
Interventions targeted at these mechanisms (e.g., Wells, 2000) may be particularly warranted
in such cases.

Note that these effective connectivity relationships would not have been detected in the usual
VAR modeling framework. The usual VAR model assumes stationarity, so that effective
connectivity relationships at various lags are not allowed to vary in a systematic fashion as a
function of time. This does not appear to be a valid model, for example, for the BA24 to
amygdala connectivity observed in this experiment. Moreover, early excitation of BA24 by
DLPFC being predictive of lower depression severity would have been missed as well, again
since typical VAR models do not allow for systematic variation in connectivity estimates over
time. Of course, the clinical ties we have just described are speculative and must be more
formally tested. Yet without SloVAR modeling, we would not have thought to consider these
relationships and could have missed potentially crucial elements of the nature of emotional
information processing in depression.

One important issue in implementing the SloVAR model is the choice of number and placement
of the knots. Mirroring the approach in the statistics literature on reduced-rank spline smoothing
(e.g., Crainiceanu et al 2005), H1 and H2 should be chosen to provide a large-enough pool of
basis functions without becoming computationally infeasible. By “large-enough,” it is meant
as many as is necessary to provide a flexible, data-driven fit. For example, our choice of H1 =
H2 = 5 in the data analysis section results in 25 basis functions, which we decided was more
than sufficient to obtain a flexible fit for a surface consisting of 21 points; the roughness penalty
method prevents overfitting the data. However, we also tried sensitivity analyses using different
spacing of the knots, which in this case resulted in little difference in the estimated connectivity
surfaces. Other, more formal methods could involve reversible-jump MCMC (as suggested by
a referee) or estimation of the posterior probabilities of knot-inclusion indicators (Thompson
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and Rosen, 2008). Such methods would add another layer of complexity to the algorithm and
are left for future research.

Another useful feature for future research would be a formal test for bivariate Granger causality
(whether a given connectivity surface consists of all zeros). This might be done by fitting
multiple models and using a model selection statistic such as Bayes factors or as an integral
part of the MCMC algorithm through the use of indicators of pairwise connectivity surface
inclusion.

An important methodological question not addresssed in this paper is the impact of pre-
processing steps on the estimated effective connectivity coefficients. Of particular importance
is the choice of smoothing method used to obtain the underlying BOLD responses from noisy
fMRI signals on connectivity estimates. This is not just an issue for SloVAR but for any
connecitivity model which uses temporal dynamics to determine connectivity among regions
or voxels. In this paper, we employed a data-driven approach similar to de Pasquale et al
(2008) which accounts for autocorrelation in the fMRI noise when smoothing the data. We
intend to examine this issue with Monte Carlo simulations of event-related data in a
forthcoming paper.

Other further developments include devising procedures for utilizing SloVAR to build
parametric models of effective connectivity. Toward this end, it will be important to develop
metrics for model fit and selection among multiple competing effective connectivity models.
One way to accomplish this is through Bayesian predictive model checking methods and Bayes
factors (Gelman et al 2003); we intend to implement approaches such as these and to more
generally investigate issues related to posterior inference in future work.
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Appendix
The parameters of the connectivity model are denoted by Φ = {ηip1p2, η̄qp1p2, δqp1p2, Σω, Ση,

, }, where indices 1 ≤ i ≤ N, 1 ≤ p1, p2 ≤ P, and 1 ≤ q ≤ Q range over subjects, regions,
and subgroups, respectively. Priors are specified as in Section (3.3). Let

 be the 4P2-dimensional vector of the concatenated random effects
ηip1p2, and likewise let η̄q and δq be the 4P2- and (H − 4)P2-dimensional vectors of concatenated
fixed effect connectivity parameters. Furthermore, define the P × P2 matrix

 and the P2 × 4P2 matrix , where ⊗ denotes the
Kronecker product and IP and IP2 are the P- and P2-dimensional identity matrices, respectively.
Finally, let , a P2 × (H − 4)P2 matrix. From Equation (5) we can express
the effective connectivity relationships in (1) and (2) as
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where Xij(t) and Zij(t) are P × 4P2 and P × (H − 4)P2 dimensional matrices, respectively. The
sampling scheme and conditional posteriors for the MCMC algorithm are as follows.

Generating ηi: The posterior of ηi conditional on the data and the other parameters, denoted
by ηi| …, is multivariate normal MVN4P2(μηi|·, Σηi|·), where

Generating η̄q: The conditional posterior of η̄q| … ∼ MVN4P2(μη ̄q|·, Ση ̄q|·), where

and Nq is the number of subjects in group q.

Generating δq: The conditional posterior of δq| … ∼ MVN(H−4)P2(μδq|·, Σδq|·), where

Generating Σω: The conditional posterior of Σω| … ∼ IW(Sω|·, dω|·), where

where M is the total number of trials across all subjects.

Generating Ση: The conditional posterior of Ση| … ∼ IW(Sη|·, dη|·), where

Generating : The joint conditional posterior of  is nonstandard. It is
convenient to first transform the random variables so that at least one has a standard posterior.
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As in Section (3.3),  are a priori independent IG(π1, π2) random variables. Let
 and . After this transformation, the conditional posterior for τ1|τ2, … ∼ IG

(π1,τ1|·, π2,τ1|·), where

The random variable τ2|τ2, … has a nonstandard conditional posterior proportional to

With the exception of the last multiplicative term in this expression, this is a Gamma
distribution. We sample from this conditional posterior by evaluating this expression on a fine
grid of values of τ2 on a nonnegative interval containing almost all of the probability and
normalizing by numerically integrating (Gelman et al 2003). A random variable U ∼ (0, 1)
is drawn and the inverse cdf transformation is applied to obtain τ2.
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Figure 1.
Group mean stimulus-locked trial activation trajectories in three brain regions in response to
20 negative word stimuli per subject. Regional activation trajectories were determined by
averaging activation trajectories over voxels within the region. Blue lines indicate mean
stimulus-locked trajectory for 24 mentally-healthy controls and red lines indicate the same for
32 unmedicated depressed subjects.
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Figure 2.
Posterior connectivity surfaces for control group. Headings indicate influencing region (left of
arrow) and influenced region (right of arrow). The x-axis is time-lag (1 ≤ t ≤ 6) and the y-axis
is time (2 ≤ t ≤ 7).
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Figure 3.
Posterior connectivity surfaces for depressed group. Headings indicate influencing region (left
of arrow) and influenced region (right of arrow). The x-axis is time-lag (1 ≤ t ≤ 6) and the y-
axis is time (2 ≤ t ≤ 7).
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Figure 4.
Difference in connectivity surfaces (for DLPFC to BA24 connectivity) for 8 depressed subjects

with high values of  minus 8 depressed subjects with low values of .
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Figure 5.
Scatterplot of pre-treatment BDI in 32 depressed subjects vs. posterior estimates of
connectivity coefficients γi ba24, dlpfc(1, 2) determining subject-level variation in DLPFC on
BA24 connectivity at time 2 lag 1. Solid line is simple linear regression fit.
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