
THE EFFECTS OF ACUTE 17β-ESTRADIOL TREATMENT ON
GENE EXPRESSION IN THE YOUNG FEMALE MOUSE
HIPPOCAMPUS

Angela S. Pechenino1 and Karyn M. Frick1,2

1Department of Psychology, Yale University, New Haven, CT, 06520

2Interdepartmental Neuroscience Program, Yale University, New Haven, CT, 06520

Abstract
Previous studies have demonstrated that treatment with 17β-estradiol (E2) improves both spatial and
nonspatial memory in young female mice. Still unclear, however, are the molecular mechanisms
underlying the beneficial effects of E2 on memory. We have previously demonstrated that a single
post-training intraperitoneal (i.p.) injection of 0.2 mg/kg E2 can enhance hippocampal-dependent
spatial and object memory consolidation (e.g., Gresack and Frick, 2006b). Therefore, in the present
study, we performed a microarray analysis on the dorsal hippocampi of 4 month-old female mice
injected i.p. with vehicle or 0.2 mg/kg E2. Genes were considered differentially expressed following
E2 treatment if they showed a greater than two-fold change in RNA expression levels compared to
controls. Overall, out of a total of approximately 25,000 genes represented on the array, 204 genes
showed altered mRNA expression levels upon E2 treatment, with 111 up-regulated and 93 down-
regulated. Of these, 17 of the up-regulated and 6 of the down-regulated genes are known to be
involved in learning and memory. mRNA expression changes in 5 of the genes were confirmed by
real-time quantitative PCR analysis, and protein changes in these same genes were confirmed by
Western blot analysis: Hsp70, a heat shock protein known to be estrogen responsive; Igfbp2, an IGF-
I binding protein; Actn4, an actin binding protein involved in protein trafficking; Tubb2a, the major
component of microtubules; and Snap25, a synaptosome-specific protein required for
neurotransmitter release. The types of genes altered indicate that E2 may induce changes in the
structural mechanics of cells within the dorsal hippocampus that could be conducive to promoting
memory consolidation.
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1. Introduction
The loss of estrogens at menopause has been associated with increases in dementia and age-
related memory decline observed in aging women (Yaffe et al., 2000; Wolf and Kirschbaum,
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2002). Despite the findings of the Women’s Health Initiative Memory Study (WHIMS), which
demonstrated that giving estrogens alone or in combination with progesterone failed to prevent
dementia in postmenopausal women (Shumaker et al., 2003; Shumaker et al., 2004), other
evidence has shown that estrogen administration can have beneficial effects on memory. For
example, giving estrogen to healthy postmenopausal women can improve spatial working
memory (Duff and Hampson, 2000), object memory (Duka et al., 2000), and verbal memory
(Kampen and Sherwin, 1994). Research has also demonstrated the beneficial effects of the
potent estrogen, 17β-estradiol (E2), in rodent models. For example, E2 administered
intraperitoneally (i.p.) immediately post-training enhances both spatial reference memory in
the Morris water maze (Rissanen et al., 1999; Heikkinen et al., 2002; Gresack and Frick,
2006a) and novel object recognition memory (Luine et al., 2003; Gresack and Frick, 2006b)
in mice and rats. Spatial and object memory are also enhanced by pre-training E2 treatments
administered systemically by injection or silastic capsules (Daniel et al., 1997; Luine et al.,
1998; Bimonte and Denenberg, 1999; Sandstrom and Williams, 2001; Vaucher et al., 2002;
Sandstrom and Williams, 2004). However, systemic hormone administration in women can
lead to a host of physiological problems, including an increased incidence of coronary artery
disease, stroke, and invasive breast cancer (Mastorakos et al., 2006), calling into question
whether the potential benefits of E2 on cognition outweigh the risks associated with hormone
therapy.

An alternative approach to systemic hormone administration may be the specific targeting of
proteins within the brain that are modulated by E2. For example, if the downstream effectors
of E2 could be elucidated, then therapies that directly target these proteins could be developed
that would enhance memory without the side effects of systemic hormone administration. E2
is known to increase dendritic spine density (Woolley and McEwen, 1993; Frick et al., 2004)
and synaptic protein expression (Stone et al., 1998) in the CA1 region of the hippocampus and
enhance neurogenesis in the hippocampal dentate gyrus (Tanapat et al., 1999; Galea et al.,
2006). Additionally, acute E2 administration can activate several intracellular kinase cascades,
including phosphatidylinositol 3-kinase (PI3K; Cardona-Gomez et al., 2002; Yokomaku et al.,
2003; Mannella and Brinton, 2006) and extracellular signal-regulated kinase (ERK; Fernandez
et al., 2008; Kuroki et al., 2000; Fitzpatrick et al., 2002; Wade and Dorsa, 2003), both of which
can phosphorylate and activate CREB, an important protein involved in memory consolidation
(Bozon et al., 2003). Previous microarray studies report that E2 alters expression of several
genes in the hypothalamus (Malyala et al., 2004) and the hippocampus (Aenlle et al., 2007),
but these studies have been conducted using chronic E2 administration. No microarray study
has yet examined the effects of a single, acute dose of E2 on gene transcription in the
hippocampus. Such information is important to the development of hormone-based drug
treatments in order to more closely link E2-induced changes in signal transduction to alterations
in gene transcription.Therefore, the present study endeavored to identify genes whose mRNA
and protein expression levels were altered by an acute dose of water-soluble E2 known in young
ovariectomized mice to enhance spatial and object memory (Gresack and Frick, 2006b) and
activate the ERK cascade in the dorsal hippocampus (Fernandez et al., 2008; Lewis et al.,
2008).

2. Methods
2.1. Subjects

Four month old female C57BL/6 mice were obtained from Taconic (Germantown, NY). Mice
were bilaterally ovariectomized 1 week after arrival as per previously published methods
(Fernandez and Frick, 2004), and housed up to 5/cage in a room with a 12:12 light/dark cycle
(lights on at 07:00) for at least a week before treatments. Animals were handled 5 min per day
over the course of 5 days, and had ad libitum access to food and water. All procedures were
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approved by the Institutional Animal Care and Usage Committee of Yale University, and
conformed to the guidelines established by the National Institutes of Health Guide for the Care
and Use of Laboratory Animals.

Mice were randomly assigned to groups receiving i.p. injections of either 0.2 mg/kg 17β-
estradiol (E2) conjugated to the solubility enhancer 2-hydroxypropyl-β-cyclodextrin (HBC)
and dissolved in physiological saline (E2 group, n=3) or HBC dissolved in an equal volume of
physiological saline containing the same amount of cyclodextrin present in the HBC-E2
solution (vehicle group, n=3). HBC is a solubility-enhancer for steroid hormones that does not
alter the bioefficacy of the hormones (Pitha and Pitha, 1985), but allows them to successfully
cross the blood-brain barrier and rapidly dissociate into the tissue while the HBC remains in
the circulation (Taylor et al., 1989). This hormone preparation is metabolized within 24 hours
(Pitha et al., 1986; Taylor et al., 1989) and our laboratory has shown that that a single i.p.
injection of the 0.2 mg/kg dose given to young female mice immediately after training
specifically enhances memory consolidation in both spatial Morris water maze and novel object
recognition tasks (Gresack and Frick, 2006a). Previous studies have shown that a 1 μg dose of
estradiol dissolved in oil produces levels similar to those seen in the estrus phase of the estrous
cycle, and a 10 μg dose produces levels similar to those seen during the proestrus phase of the
cycle (Akinci and Johnston, 1997). Given mean body weight for young ovariectomized females
of 22 g, the approximate estradiol levels for the 0.2 mg/kg dose is 4.4 μg, and thus near the
middle of the physiological range.

In the present study, injections of vehicle or 0.2 mg/kg E2 were given 1 hour before sacrifice,
as our previous work found an increase in dorsal hippocampal p42 ERK phosphorylation at
this time point (Fernandez et al., 2008; Lewis et al., 2008). One hour (for RNA analyses) or 3
and 4 hours (for protein analyses) after injection, mice were cervically dislocated, and dorsal
hippocampi were bilaterally dissected and stored at -80°C until use.

2.2. RNA Isolation
RNA was isolated from hippocampal tissue using the Trizol reagent isolation protocol
(Invitrogen, Carlsbad, CA). Briefly, 800 μL Trizol reagent was added to each tube, and the
tissue was homogenized by 10 passes of a Dounce homogenizer (Kontes Glass Co, Vineland,
NJ). The homogenate was incubated for 5 min at room temperature and subsequently extracted
with 0.2 mL of chloroform to remove proteins. The aqueous phase was transferred to a fresh
tube, and the RNA was precipitated using 0.5 mL of isopropanol and centrifuged to pellet the
RNA. The RNA pellet was washed twice by resuspension in 1 mL of 75% ethanol. After the
last wash, the RNA pellet was allowed to air dry and was then resuspended in DEPC-treated
water. The RNA was further purified using the RNAeasy Mini Kit RNA Cleanup protocol
(Qiagen, Valencia, CA) per manufacturer’s instructions. The RNA concentration and purity
were measured by reading the absorbance at 260 nm and 280 nm on a SmartSpec 3000
Spectrophotometer (BioRad, Hercules, CA). The quality of the RNA was further assessed using
the Agilent Bioanalyser (Agilent, Santa Clara, CA).

2.3. Microarray Analysis
The microarrays used were OMM25K arrays developed by the Yale University WM Keck
Foundation Biotechnology Resource Laboratory. The arrays were fabricated from a 70mer
oligo set consisting of 16,463 oligos from the Operon Mouse Version 2.0 set and 8,097 oligos
from the Operon Mouse Version 3.0 set, both designed from the publicly available Ensembl
Mouse 14.30 database (http://www.ensembl.org/index.html) and the Mouse Genome
Sequencing Project (http://www.hgsc.bcm.tmc.edu/projects/mouse). Isolated RNA was
labeled by either Cy5 (RNA from vehicle-treated mice, n=3) or Cy3 (RNA from E2-treated
mice, n=3) dyes and hybridized onto the arrays using the Genisphere Array900 Expression
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Array Detection kit (Genisphere, Hatfield, PA) according to the manufacturer’s protocol.
Hybridizations were performed on an Advalytix SlideBooster hybridization station (Olympus
America Inc, Concord, MA), and slides were subsequently scanned on an Axon GenPix 4100
scanner and imaged using GenePix 5.0 software (Axon, Sunnyvale, CA). The data were then
analyzed according to the Genespring program (Agilent), in collaboration with the Biostatistics
Department of the Yale University WM Keck Foundation Biotechnology Resource Laboratory.
The intensity values for each spot were averaged across the three arrays to give an average
intensity of the spot for each group, and these values were normalized to background intensity.
Only those spots whose intensity was twice the background value were considered in the
analysis. The data were first subjected to multiple t-tests, and then to a false discovery rate
(FDR) correction. Genes were considered to have an altered expression with E2 treatment if
they showed a greater than 2-fold change in expression level, and had an FDR-adjusted p-value
of less than 0.05.

2.4. Quantitative real-time PCR
RNA was isolated from dorsal hippocampi according to the protocol described above. Total
RNA (1.5 μg) was reverse transcribed in the presence of random hexamers using the
SuperScript First-Strand Synthesis kit (Invitrogen) to synthesize cDNA. One ng of cDNA from
each sample (vehicle-treated, n = 3; E2-treated, n = 3) was used in analysis. Quantitative real-
time PCR (QPCR) was performed using the QuantiTect SYBR Green PCR Kit, with the
QuantiTect Primer Assay PCR primers (Qiagen). Quantitation of PCR products was performed
using the relative standard curve method. The cDNA standards were prepared from the liver
of a 4 month-old mouse (for all genes except Snap25) or mouse brain reference RNA (Applied
Biosystems, Foster City, CA, for Snap25) in the concentrations of 100, 50, 25, 10, and 1 ng/
μL. Standards were loaded onto the reaction plate in each experimental run with each primer
set. Standards were run in duplicate and samples in triplicate, with the housekeeping gene
GAPDH run on each plate for internal normalization. The PCR reactions were performed on
an ABI 7900 Sequence Detection System (Applied Biosystems) for 40 cycles (15 s at 95°C,
30 s at the annealing temperature, 30 s at 70°C), followed by a dissociation step at 60°C to
visualize the melt curve and determine the purity of the product. The threshold cycle (Ct) value
was calculated as the cycle number in which the SYBR green fluorescent signal crossed
detection threshold limit set by the instrument, which is the midpoint of the log phase of the
amplification reaction. A standard curve for each primer set was generated by plotting the
concentration versus the Ct value for the reference samples. The concentrations of unknown
samples were determined by substituting the Ct values for each sample into the best fit line
where y = mx + b, and solving for the concentration x. The concentrations of each sample were
reported as concentration equivalents of reference sample cDNA. Using SPSS 14.0 (SPSS Inc.,
Chicago, IL), separate independent samples t-tests were run for each gene comparing vehicle
and E2 groups.

Western blot analysis
Dorsal hippocampi were homogenized and Western blot analysis performed as previously
described (Fernandez et al., 2008; Lewis et al., 2008). Briefly, six μg of protein from each
homogenate (vehicle-treated, n = 3; E2-treated, n = 3) were run on a 10% SDS-PAGE (BioRad,
Hercules, CA), transferred to a PVDF membrane (Millipore, Temecula, CA), blocked in a 5%
non-fat dry milk dissolved in Tris-buffered saline containing 0.1% Tween-20 (TTBS), and
probed with Hsp70 (1:2000, #sc-33575, Santa Cruz, Santa Cruz, CA), IGFBP2 (1:1000,
#06-107, Upstate, Lake Placid, NY), Actn 4 (1:2000, #05-384, Millipore), Tubb (1:4000,
#3146, Cell Signaling, Danvers, MA), or SNAP-25 (1:1000, #610366, BD Biosciences, San
Jose, CA) diluted in 5% bovine serum albumin (BSA) in TTBS. Secondary antibodies were
either anti-rabbit horse radish peroxidase (HRP)-conjugated (1:2000, #7074, Cell Signaling,
used for Hsp70, IGFBP2, and Tubb2a) or anti-mouse-HRP (1:2000, #7076, Cell Signaling,
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used for Actn 4 and SNAP-25). Blots were stripped and then re-probed with GAPDH (1:2500,
#ab9484, Abcam, Cambridge, MA) for normalization. Band intensity was measured by
densitometry using Kodak 1D 3.6 software on the Kodak Image Station 440 CF. Data were
analyzed as described above.

3. Results
In order to identify the effects of E2 on gene expression in the hippocampus of young adult
mice, the dorsal hippocampi of 4 month-old mice were subjected to microarray analyses using
DNA oligo microarrays containing oligos from 25,000 genes. Overall, 73 genes were up-
regulated and 53 genes were down-regulated by E2 treatment (p < 0.05 by FDR multiple t-test
correction). Of the genes up-regulated by E2, 17 are known to be specifically involved in
learning and memory. These genes were divided into functional categories by a PubMed search
to elucidate their known activities in vivo. Two of the 17 genes encode for proteins that act as
transcription factors, 3 encode proteins involved in metabolism, 6 encode structural proteins,
6 encode neuropeptides/growth factors/receptors, and 1 encodes a molecular chaperone (these
17 genes shown in bold and italics, Table 1). Functional categories for other up-regulated genes
are also reported in Table 1. Of the genes down-regulated by E2, 6 are known to be specifically
involved in learning and memory. Of the 6 genes known to be involved in learning and memory,
4 encode transcription factors, 1 encodes a transport protein, and 1 encodes an anti-apoptotic
protein (these genes shown in bold and italics, Table 2). Functional categories for other down-
regulated genes are also reported in Table 2.

Of the genes whose expression was altered by E2, 5 were selected for further analysis by
quantitative real-time PCR (QPCR), followed by Western blot analysis based on reports in the
literature strongly linking them with learning and memory. The first chosen was heat shock
protein 70 (Hsp70-1), as it is not only associated with increased memory retention in the Morris
water maze (Pizarro et al., 2003), but is also known to be up-regulated by E2 (Olazabal et al.,
1992). Hsp70-1 mRNA levels increased 3-fold by QPCR (t(4) = 3.731, p = 0.02; Figure 2A),
matching the 2.1-fold increase seen on the microarray (Table 1). Additionally, when protein
levels of Hsp70-1 were measured by Western blot analysis, there was a 1.4-fold increase at 4
hours after treatment with E2 (t(5) = 4.418, p = 0.007; Figure 2A).

The next gene chosen was the transcription factor-associated gene insulin-like growth factor
binding protein 2 (Igfbp2). IGFBP2 is a serum protein secreted by a variety of cells, and is a
part of the insulin-like growth factor (IGF-I) signaling cascade. IGF-I is known to be involved
in memory, as long-term IGF-I treatment in aged rats improves learning and memory (Sonntag
et al., 2005), and is thought to exert its memory-enhancing affects by promoting adult
neurogenesis (Aberg et al., 2000; Perez-Martin et al., 2003) or neuronal survival (Subramaniam
et al., 2005). IGFBP2 binds IGF-I in the serum and prevents it from binding its receptor and
activating the cellular signaling cascade (Chesik et al., 2007); additionally, the serum levels of
IGFBP2 are down- regulated in humans after conjugated equine estrogen treatment (Heald et
al., 2005). The mRNA levels of Igfbp2 were down-regulated 2.4-fold on the microarrays (Table
2), a finding which was verified by QPCR, with a significant decrease of 1.5-fold relative to
vehicle (t(4) = 3.90, p = 0.18; Figure 2B). Additionally, protein levels of IGFBP2 showed a 2-
fold decrease 4 hours after E2 treatment (t(2.145) = 5.402, p = 0.028; Figure 2B), further
confirming the mRNA data and indicating that IGFBP2 levels were decreased by E2 treatment.

The last 3 genes analyzed by QPCR were all structural proteins: α-actinin 4 (Actn 4), tubulin
β2 (Tubb), and synaptosomal-associated protein 25 (Snap-25). Because estradiol is known to
increase dendritic spine density (Woolley and McEwen, 1993) and enhance neurogenesis
(Tanapat et al., 1999; Galea et al., 2006), these genes were predicted to be up-regulated by
E2 treatment. Actn 4, an actin binding protein that regulates hippocampus spine morphology
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and density (Nakagawa et al., 2004), showed a 2.6-fold increase in mRNA levels upon
microarray analysis (Table 1), a smaller but significant 0.5-fold increase relative to vehicle
with QPCR (t(4) = 3.562, p = 0.024; Figure 2C), and 1.3-fold increase in protein levels 3 hours
after treatment (t(5) = 3.603, p = 0.015; Figure 2C). Additionally, Tubb, an isoform of the
microtubule-forming protein tubulin that is used as a marker for neuronal differentiation and
whose expression increases with isoflavone treatment (Bu and Lephart, 2005), showed a 2.7-
fold increase in mRNA levels on the microarrays (Table 1), a significant 2-fold increase relative
to vehicle upon QPCR analysis (t(4) = 3.069, p = 0.037; Figure 2C), and a 1.7–fold increase
in protein levels 4 hours after E2 treatment (t(5) = 2.568, p = 0.049; Figure 2C). Lastly,
SNAP-25, a protein that localizes to synapses and may be required for long-term memory
formation (Hou et al., 2006), showed a 2.8-fold increase in expression on the microarrays
(Table 1), a significant 1.5-fold increase relative to vehicle upon QPCR analysis (t(4) = 4.623,
p = 0.01; Figure 2C), and a 1.9–fold increase in protein levels 4 hours after E2 treatment (t(5)
= 2.887, p = 0.034; Figure 2C).

4. Discussion
E2 administration led to increased RNA levels of 73 genes and decreased RNA levels of 53
genes. Of these, 17 of the up-regulated and 6 of the down-regulated genes have been previously
associated with learning and memory as described above. Five of these genes were chosen for
verification of RNA expression level changes by QPCR based on the availability of information
in the literature relating to their involvement in learning and memory. The changes in mRNA
and protein expression levels of all 5 of the genes were confirmed by QPCR and Western blot
analysis: Hsp70-1, Actn 4, Tubb, and Snap-25 were up-regulated with E2 treatment, and Igfbp2
was down-regulated with E2 treatment. The increase in Hsp70 mRNA and protein levels was
consistent with previous work, as estradiol has been shown to enhance Hsp70 expression
(Olazabal et al., 1992). The decrease in IGFBP2 mRNA and protein levels may suggest a role
for the IGF-I signaling pathway in mediating the mnemonic response to E2, whereas the
increases in mRNA and protein levels of Actn 4, Tubb, and Snap-25 suggest that E2-induced
alterations in the expression of these structural genes may play a role in the beneficial effects
of E2 on memory consolidation in the dorsal hippocampus. Interestingly, of the 5 genes
examined, only one, Hsp70, contains an estrogen response element in its promoter (Hamilton
et al., 2004), which suggests that most of the gene expression changes observed were likely
mediated primarily by mechanisms other than the classical estrogen receptor binding. Although
the present analyses cannot directly link E2-induced alterations in gene and protein expression
to those in learning and memory, the fact that a behaviorally effective dose of E2 was used in
this study lends strength to the correlative evidence linking E2-induced changes in the
hippocampus to memory. More study will be needed to determine the extent to which the
molecular alterations observed in the present study are necessary for E2 to modulate
hippocampal memory function.

Hsp70-1 belongs to the extensive heat shock protein family, and is responsible for assisting in
protein folding (Burston and Clarke, 1995). Hsp70 is also an integral part of the cytosolic
estrogen receptor (ER) protein complex that keeps ER in an inactive state until it binds its
estrogens and translocates to the nucleus (Whitesell and Lindquist, 2005). Hsp70 expression
has been well-documented to increase with E2 treatment in a wide variety of cell types, such
as breast cancer cells (Takahashi et al., 1994), heart (Hamilton et al., 2004), and brain, where
it may show differential expression based on sex (Olazabal et al., 1992). Hsp70 isoforms have
also been implicated in learning. Hsp70-1 mRNA and protein levels are increased in the
hippocampus of rats trained in the spatial Morris water maze (Pizarro et al., 2003), and the
inducible form of Hsp70, Hsp72, is increased in the cerebellum during acquisition of a two-
way avoidance task in rats (Ambrosini et al., 1999). Further, when Hsp72 is knocked out in
mice, this deletion prevents spatial memory acquisition in the radial arm maze (Ambrosini et
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al., 2005), suggesting an active and potentially critical role for Hsp70 isoforms in learning and
memory beyond their traditional function of simply complexing with ER in the cytoplasm and
maintaining it in the inactive state.

Insulin-like growth factor binding protein 2 (Igfbp2) is the predominant IGF-I binding protein
secreted by neuronal and glial cells in the brain (Bezchlibnyk et al., 2006). Igfbp2 binds IGF-
I in the serum and prevents it from activating the IGF-I receptor (IGF-IR) and initiating
intracellular signaling cascades such as PI3K and ERK (Aberg et al., 2006; Chesik et al.,
2007). Thus, an E2-induced down-regulation of Igfbp2 may lead to greater IGF-I availability,
and subsequently to increased activation of the PI3K and ERK cascades. Links between the
IGF-I signaling cascade and E2 are well-established. For example, treatment with E2 can
activate IGF-IR signaling, and IGF-I has been shown to regulate the transcriptional activation
of the classical estrogen receptors (ER) alpha and beta (Garcia-Segura et al., 2006).
Administration of the ER antagonist ICI 182,780 blocks IGF-I-induced neurogenesis in female
rats (Perez-Martin et al., 2003), suggesting that interactions with classical ERs are important
in mediating the effects of IGF-I on hippocampal plasticity. Previous microarray analyses have
shown a 1.7-fold increase in mRNA levels of another IGF-I binding protein, Igfbp6, in the
hippocampus of male intact middle-aged rats relative to young rats (Blalock et al., 2003), and
a decrease in the expression of Igfbp2 mRNA in the dentate gyrus of rats that have undergone
passive avoidance training relative to untrained controls (O’Sullivan et al., 2007). An age-
related increase in Igfbp6 mRNA could suggest that less IGF-I is available for binding to its
receptor, which would block downstream signaling cascades. In contrast, the decrease in Igfbp2
mRNA observed after passive avoidance and in the present study could suggest more IGF-I
available for binding, and may indicate an activity- or E2-induced increase in the activity of
the downstream signaling cascades associated with IGF-I, as we have previously observed with
ERK after 0.2 mg/kg E2 treatment (Fernandez et al., 2008).

Cytoskeletal structural genes are involved in several aspects of cellular function in the brain,
including transport of proteins to various cellular locations (Antar et al., 2005), endocytosis
and exocytosis of neurotransmitters (Chin et al., 2000), cell division during neurogenesis
(German and Eisch, 2004), neuronal plasticity (Bianchi et al., 2005), and dendritic spine
morphogenesis (Sekino et al., 2007). Several microarray studies have found alterations in the
expression patterns of structural genes with learning. For example, synaptojanin II, a protein
required for synaptic vesicle recycling, is up-regulated in aged rats who were classified as
superior learners in the spatial Morris water maze task as compared to age-matched control
learners (Burger et al., 2007). In addition, the mRNA levels of procollagen-type I, collagen
type III and coronin, an actin binding protein, were down-regulated with age in the rat
hippocampus, although vimentin and α-tubulin were both up-regulated with age (Blalock et
al., 2003). Fewer structural genes appear to be influenced by E2 alone in array studies. The
vesicle-associated membrane protein 2 and synaptogyrin were up-regulated in the basal
hypothalamus of female guinea pigs following E2 treatment (Malyala et al., 2004). In non-
array based studies, however, α-actinin 4 (Actn 4), a structural protein that binds to the actin
cytoskeleton and is involved in protein trafficking within the cell, was reportedly up-regulated
by the synthetic estrogen clomiphene citrate in rat uteri (Hosie et al., 2008) and was up-
regulated by E2 treatment in the present study as well. Actn 4 mRNA levels are also increased
in the amygdala during fear conditioning (Ressler et al., 2002), suggesting a role for this
structural protein both in response to E2 and in learning and memory.

Tubulin-β (Tubb) is the major structural component of the microtubule network inside of cells.
Column retention studies using hippocampal cell lysate have shown that tubulin-β binds
directly to E2 (Ramirez et al., 2001). Additionally, yeast two-hybrid screens using MCF-7 cells
indicate that microtubules may mediate the response of E2 by binding to and helping to shuttle
the ERs to various locations within the cell (Manavathi et al., 2006). On the other hand, studies
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in breast cancer cells show that E2 actually disrupts microtubule formation (Aizu-Yokota et
al., 1994), casting some doubt on whether there is a positive interaction between Tubb and
E2. Tubulin-β is often used as a marker for neurogenesis (Rai et al., 2007), indicating that the
increase in Tubb mRNA levels seen in this study may be due to cells preparing for future cell
division and neurogenesis. Given that E2 has been shown to enhance neurogenesis in the
hippocampal dentate gyrus (Tanapat et al., 1999; Galea et al., 2006), the increase in Tubb may
not reflect a direct interaction between E2 and tubulin-β, but rather be an indirect result of E2-
induced neurogenesis.

The final gene examined that was up-regulated by the microarray and QPCR analysis, as well
as the Western blot analysis, was the synaptosomal-associated protein of 25 kD (Snap-25).
SNAP-25 is a part of the synaptic vesicle docking and fusion process and is essential for
neurotransmitter release (Wang and Tang, 2006). Interestingly, previous in situ hybridization
data indicated that E2 treatment of ovariectomized rats decreased Snap-25 mRNA levels in the
pituitary (Jacobsson et al., 1998), and another microarray study indicated that Snap-25 mRNA
levels decrease after passive avoidance learning in the dentate gyrus of male rats (O’Sullivan
et al., 2007). Although both of these findings conflict with the present data, other studies have
shown that SNAP-25 is required for memory formation. For example, granule cells of the
dentate gyrus show an increase in Snap-25 mRNA expression 2 hours after LTP stimulation
(Roberts et al., 1998), and a Snap-25 antisense oligonucleotide added to either rat cortical
neurons or PC12 cells impairs axon growth (Osen-Sand et al., 1993). Male intact rats infused
with a SNAP-25 antisense oligonucleotide directly into either CA1 (Hou et al., 2004) or CA3
(Hou et al., 2006) exhibited impaired consolidation of contextual fear memory and spatial
memory, suggesting that SNAP-25 is involved in memory consolidation in the hippocampus.
As such, the increase in Snap-25 mRNA levels observed in our study indicate that treatment
with a dose of E2 that enhances hippocampal memory consolidation (Gresack and Frick,
2006b) has a beneficial effect on the expression of this important gene, perhaps by influencing
an increase in neurotransmitter release.

In conclusion, this study demonstrates that a single i.p. injection of a dose of E2 that enhances
spatial and object memory consolidation (Gresack and Frick, 2006b) can influence the mRNA
and protein expression levels of genes involved in learning and memory within 60 minutes of
injection. We have found that E2 can enhance the expression of genes that act as chaperone
proteins, such as Hsp70; transcription factor-related genes such as Igfbp2; genes involved in
intracellular trafficking pathways, such as α-actinin 4 and tubulin-β; and synaptosome-
associated proteins, such as Snap-25. These expression changes demonstrate that E2 may exert
its effects on a wide variety of intracellular mechanisms and render cells within the
hippocampus more amenable to the physical changes necessary to consolidate memories. More
work is needed to understand if these gene expression changes specifically affect memory
consolidation within the hippocampus. Nevertheless, the present data provide information that
will be critical to understanding how E2 and similar hormones modulate memory.
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Figure 1.
Heat-shock protein 70-1 (Hsp70-1) gene and protein expression levels following E2 treatment.
A. Hsp70-1 mRNA expression levels significantly increased 1 hour after E2 treatment. B.
Hsp70-1 protein levels were also significantly higher than vehicle 4 hours after E2 treatment.
*p < 0.05 relative to vehicle.
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Figure 2.
IGFBP2 gene and protein expression levels following E2 treatment. A. Igfbp2 mRNA
expression levels significantly decreased 1 hour after E2 treatment. B. IGFBP2 protein levels
were also significantly lower than vehicle 4 hours after E2 treatment. *p < 0.05 relative to
vehicle.
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Figure 3.
Structural protein gene and protein expression levels following E2 treatment. A. Actn4, Tubb,
and Snap-25 mRNA expression levels were all significantly increased 1 hour after E2 treatment.
B. Actn4 protein levels were increased 3 hours after E2 treatment, whereas, SNAP-25 and Tubb
protein levels were significantly higher than vehicle 4 hours after treatment. *p < 0.05 relative
to vehicle.
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Table 1
Genes whose expression was significantly up-regulated by E2 treatment
The p-values listed in the table represent significance reported after the false discovery rate (FDR) analysis. Genes in
bold and italics indicate those that are known to be involved in learning and memory based on a PubMed search. The
genes marked with an asterisk indicate those that were chosen for further study by real-time PCR and Western blotting.

Common Name Fold change p-value PubMed Number

Transcription Junb 2.35 0.0465 NM_008416

Pik3cb 2.13 0.0368 AK003230

Tcf4 2.24 0.0368 NM_013685

Eef1d 2.07 0.0491 NM_023240

Metabolism Odc 2.42 0.0487 NM_013614

Got2 2.35 0.0368 NM_010325

Atp1b3 2.28 0.0463 NM_007502

Sult4a1 2.16 0.0368 NM_013873

ATP F1 3.38 0.0203 BC013607

Dlat 2.03 0.0203 BC003202

Nec1 2.01 0.0368 AK018159

Atp6b2 2.07 0.0435 BC012497

Pmca1b 2.63 0.0398 AK013291

E2RG 10.42 0.0368 AK019895

Agk 2.05 0.0368 BC019145

Hatpaseb1 2.06 0.0464 BC017127

Structure Myo6 2.13 0.0435 NM_008662

Tubb2a* 2.67 0.042 M28739

Actn4* 2.63 0.0368 NM_021895

Tmsb4x 2.29 0.0368 NM_021278

Dctn4 2.4 0.0491 BC006677

Snap25* 2.84 0.0487 BC018249

Myh2 9.73 0.0368 BC008538

Esm1 12.28 0.0435 BC020038

Arfl10C 2.66 0.0465 BC013719

Tpk2 2.45 0.0464 BC019149

Structure Mtrp6 2.3 0.0368 BC020019

Cct6a 2.26 0.0203 NM_009838

Ccol 2.28 0.0368 NM_177177

NP/GF/Rec Rfrp 2.03 0.0465 NM_021892

Hgfl 3.69 0.0471 NM_008243

Erbb4 2.32 0.0402 AF059177

Neurod2 2.54 0.0368 NM_010895

Pafah1b1 2.4 0.0368 NM_013625

Kcna1 2.04 0.0471 NM_010595

Olfr, put 2.01 0.0368 X89678
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Common Name Fold change p-value PubMed Number

Olfr67 2.78 0.0491 NM_013619

Gpr124 2.05 0.0368 NM_054044

lgsf1 2.35 0.0464 AY227771

Scube1 2.34 0.046 NM_022723

Eva 5 09 0.0368 BC015076

Cd209e 2.39 0.0368 AF373412

Neph 2.36 0.0471 NM_025684

Chaperone HSP70-1* 2.11 0.0368 M12573

Differentiation Morf 2.04 0.0464 NM_017479

Cd81 2.21 0.049 BC011433

Gcm2 2.5 0.0368 NM_008104

Ctf1 2.84 0.0368 NM_007795

Alcam 2.07 0.0435 U95030

Mmd 2.37 0.0368 NM_026178

Nuf2r 8.42 0.0368 NM_023284

Ash1l 2.11 0.0389 AF247132

Oxidative Stress Pxf 2.56 0.0368 AK012785

Inflammation Tcra 2.49 0.0368 X72904

Aldh1a7 2 0.0465 NM_011921

Egln1 2.07 0.0386 BC006903

CS1 2.23 0.0368 AK014517

Protein deg Rbx1 2.05 0.0435 AK005127

Rnf5 2.1 0.0398 NM_019403

Bean 21.34 0.0368 AF240460

Pep4 6.54 0.0368 NM_008820

Serp23 2.18 0.0311 BC018517

Psmd1 2.1 0.0368 AK010596

Psmb2 2.06 0.0498 NM_011970

Transport SV2 2.13 0.0399 AK013742

Rab1b 2.54 0.0368 BC016408

MLC1 2.11 0.0466 AF449425

Snta1 2.17 0.0465 NM_009228

Slc14a1 2.08 0.0389 NM_028122

Rcc1 2.36 0.0465 BC019807

Itgb4bp 2.22 0.0368 BC015274

Ergic1 2.33 0.0464 NM_026170

Ssra 2.07 0.0386 NM_025965

Abbreviations: Transcription, transcription factor; NP/GF/Rec, neuropeptides, growth factors, or receptors; Protein deg, involved in protein degradation.
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Table 2
Genes whose expression was significantly down-regulated by E2 treatment
The p-values listed in the table represent significance reported after the false discovery rate (FDR) analysis. Genes in
bold and italics indicate those that are known to be involved in learning and memory based on a PubMed search. The
genes marked with an asterisk indicate those that were chosen for further study by real-time PCR and Western blotting.

Common Name Fold change p-value PubMed ID

Transcription Plc 16.67 0.0466 AK011892

lnpp5d 3.57 0.0468 NM_010566

Pla2g1b 3.85 0.0465 NM_011107

lgfbp2* 2.38 0.0389 NM_008342

AF-9 20 0.0368 AK008707

Brd7 25 0.0465 NM_012047

Ikbkb 10 0.0363 AF088910

Rbm8 3.23 0.0368 NM_025875

Smarca3 6.67 0.0368 AF165911

Lztfl1 2.13 0.0466 NM_033322

Transport Konj8 2.13 0.0389 NM_008428

Apoptosis Birc4 7.14 0.0368 NM_009688

Ca2+-assoc Calb2 2.5 0.0368 BC017646

Cacng3 2.56 0.0491 NM_019430

Calmbp1 5 0.0402 NM_009791

Cacybp 11.11 0.0368 U97327

Trpv6 2.17 0.0368 NM_022413

Pln 3.85 0.0466 AK002622

Metabolism Anpep 2.38 0.0368 NM_008486

Lrp6 2.17 0.0368 NM_008514

Atic 2.56 0.0465 AK010611

Fabp4 11.11 0.0465 BC002148

Cyp40 50 0.0368 AB006034

Nit1 3.03 0.0465 AK004988

Ethi6 20 0.0435 AK010551

Pit1 50 0.0389 AF196476

Structure Lox 11.11 0.0368 NM_010728

Siat8d 2.17 0.0368 NM_009183

Dpt 100 0.0368 NM_019759

Mtap4 50 0.0435 AK019611

Pxn10 2.17 0.0203 -

Cypt6 2.22 0.0368 NM_025738

Adam18 2.63 0.049 NM_010084

Adam rep 2.17 0.0491 AB112362

Differentiation Rho 7.14 0.0368 BC013125

Wnt4 3.85 0.0368 NM_009523
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Common Name Fold change p-value PubMed ID

Gli5 3.33 0.0368 BC021517

Pcdh15 2.86 0.0435 NM_023115

Pax5 8.33 0.0464 NM_008782

Pax9 2.78 0.0468 NM_011041

Ccna1 4.35 0.0203 NM_007628

Pol theta 2.7 0.0368 AK020790

Cdc2l2 2.22 0.0368 NM_007661

GF/Rec Pglp 50 0.0368 AJ293619

Cpr2 6.67 0.0401 BC016483

Gadd45a 20 0.0464 NM_007836

Protein deg Arih2 2.86 0.0495 NM_011790

Psg4-1 2.08 0.0464 AK017550

Immune sys Cd2 2.38 0.0384 NM_013486

Itgae 4.17 0.0435 NM_008399

Tslp 2.22 0.0471 NM_021367

Fcnb 3.7 0.0368 AK010913

BCA3 2.13 0.0465 NM_020616

Abbreviations: Transcription, transcription factor; Ca2+-assoc, involved in calcium signaling or processing; GF/Rec, growth factors or receptors; Protein
deg, involved in protein degradation; Immune sys, genes related to the immune system.
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