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Abstract
Adenosine A2A receptors are involved in the regulation of several behavioral functions. Adenosine
A2A antagonists exert antiparkinsonian effects in animal models, and adenosine A2A agonists
suppress locomotion and impair various aspects of motor control. The present experiments were
conducted to study the effects of low doses of the adenosine A2A agonist CGS 21680 on lever
pressing, specific parameters of food intake, and sedation. In the first experiment, the effects of CGS
21680 on fixed ratio 5 lever pressing were assessed. In the second experiment, rats were tested in 30
min feeding sessions, and also were observed for drug-induced sedation using a sedation rating scale.
CGS 21680 (0.025, 0.05, 0.1 mg/kg IP) produced a dose related suppression of lever pressing, and
also reduced the amount of food consumed. The feeding effect was largely dependent upon a slowing
of the rate of feeding, and there was only a modest suppression of time spent feeding. Doses of CGS
21680 that suppressed lever pressing and feeding also were associated with sedation/drowsiness. In
conjunction with other studies, the present results suggest that sedative effects may play an important
role in some of the behavioral effects produced by systemic administration of adenosine A2A agonists.
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1. Introduction
Over the last few years, interest in the behavioral significance of adenosine receptor function
has grown dramatically. Minor stimulants such as caffeine, theophylline and theobromine are
known to act as relatively non-selective adenosine antagonists. Although there are at least four
types of adenosine receptors, adenosine A2A receptors are primarily localized in striatal regions
(DeMet and Chicz-DeMet, 2002; Jarvis and Williams, 1989), especially on the dendritic spines
of GABAergic striatopallidal neurons (Ferré et al., 2004; Schiffmann et al., 1991).
Considerable evidence indicates that there is a functional interaction between DA and
adenosine A2A receptors in both dorsal and ventral striatal areas (Chen et al., 2001; Hettinger
et al., 2001; Svenningsson et al., 1999; Wang et al., 2000). This interaction often has been
studied in the context of animal models related to parkinsonism, which typically focus on
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neostriatal motor functions (Ferré et al., 1997, 2001; Hauber et al., 2001; Ishiwari et al.,
2007; Jenner, 2003, 2005; Morelli and Pinna, 2001; Pinna et al., 2005; Svenningsson et al.,
1999). In these studies, adenosine A2A receptor antagonists have been shown to exert effects
consistent with antiparkinsonian actions in animal models (Correa et al., 2004; Ferré et al.,
1997, 2001; Hauber et al., 2001; Pinna et al., 2005; Wardas et al., 2001). Based upon the results
of these animal studies, adenosine A2A receptor antagonists are now being evaluated for their
antiparkinsonian effects in human clinical trials (Jenner, 2005). In addition to this involvement
in motor function, adenosine A2A receptors also are thought to be involved in other behavioral
functions. For example, it was recently demonstrated that the adenosine A2A antagonist MSX-3
could reverse the effect of haloperidol on a concurrent lever pressing/feeding task that measures
aspects of motivation related to response allocation and effort-related choice behavior (Farrar
et al., 2007). Further studies have implicated adenosine A2A receptors in cognitive function
(Takahashi et al., 2008) and sleep (Hong et al., 2005; Porkka-Heiskanen et al., 2000; Satoh et
al., 1998; Scammell et al., 2001; Stenberg, 2007).

In addition to the pharmacological interaction between A2A and D2 receptors, there also is
evidence indicating that adenosine A2A agonists can produce effects that resemble those
produced by DA antagonists or DA depletions (Ferré, 1997). For example, intraventricular
administration of the adenosine A2A receptor agonist CGS 21680 inhibited acquisition and
expression of wheel running behavior (Cabeza de Vaca et al., 2007). CGS 21680 depressed
locomotor activity when infused directly into the nucleus accumbens (Barraco et al., 1993;
Hauber and Munkel, 1997). Stimulation of adenosine A2A receptors with high doses of CGS
21680 also was shown to induce catalepsy (Wardas et al., 2003). Although it seems clear that
stimulation of adenosine A2A receptors can suppress motor activity, less is known about the
effects of low doses of adenosine A2A agonists on other aspects of behavioral function. Based
upon studies with adenosine A2A antagonists, it has been suggested that adenosine A2A
receptors could be involved in reserpine-induced behavioral depression in rats (Minor et al.,
2003), motor readiness (O’Neill and Brown, 2006), cocaine reinstatement (Weerts and
Griffiths, 2003), and effort-related choice behavior (Farrar et al., 2007). Nevertheless,
relatively little is known about the effects of adenosine A2A agonists on food-motivated
behavior. The present studies were undertaken to investigate the effects of systemic
administration of the adenosine A2A agonist CGS 21680 on food-reinforced lever pressing and
feeding behavior. In the first experiment, the effects of CGS 21680 on operant responding were
assessed. The fixed ratio 5 (FR5) lever pressing schedule was used because it generates a high
rate of responding (i.e. greater than 1000 lever presses in 30 min) that is very sensitive to the
response suppressant properties of drugs (Chuck et al., 2006; Salamone et al., 1993a). This
schedule has been shown to be highly sensitive to the rate-decreasing effects of several classes
of drugs, including DA antagonists (Salamone et al., 1993a, 1996, 2002), the
acetylcholinesterase inhibitor tacrine (Carriero et al., 1998), cannabinoid CB1 agonists (Arizzi
et al., 2004; Carriero et al., 1998; McLaughlin et al., 2005a) and ethanol (Chuck et al., 2006).
In the second experiment, rats were observed in 30 min sessions that allowed for the
measurement of food intake, time spent feeding, and feeding rate. This type of measurement
of feeding behavior has been used previously by our laboratory to assess the effects of DA
antagonists (Salamone et al., 1990), striatal DA depletions (Salamone et al., 1993b), and
cannabinoid CB1 antagonists (McLaughlin et al., 2005b). As well as being assessed for aspects
of feeding behavior, rats in the second experiment also were observed for drug-induced
sedation using a sedation rating scale (Chuck et al., 2006; Salamone et al., 1996). Sedation was
examined in experiment 2 because of the considerable body of evidence indicating that
stimulation of adenosine A2A receptors could induce sedative effects, torpor, and drowsiness
(Hong et al., 2005; Porkka-Heiskanen et al., 2000; Satoh et al., 1998; Scammell et al., 2001;
Stenberg, 2007), and also because sedative effects of CGS 21680 were noted during experiment
1 (see below). It is important to examine these sedative effects because of the possibility that
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drug-induced sedation is an important factor in the suppression of lever pressing or feeding
produced by systemic administration of adenosine A2A receptor agonists.

2. Methods
2.1. Subjects

Male Sprague–Dawley rats (Harlan Sprague–Dawley, Indianapolis, IN) weighing between
300–360 g at the beginning of the study (n=16), were housed in a colony maintained at 23 °C
with a 12h light/dark cycle (lights on at 08:00 h). Rats were food restricted to 12 g food per
day prior to training, and throughout the experiment animals received supplemental food (up
to 12 g a day) and allowed modest growth. Water was available ad libitum in the home cages
at all times. Experimental methods were in accordance with the Guide for the Care and Use
of Laboratory Animals, National Research Council, National Academy Press, 1996.

2.2. Drugs
CGS 21680 was purchased from Tocris (Ellisville, Missouri). CGS 21680 was dissolved in
2% dimethyl sulfoxide solution (DMSO, Fisher Scientific, Hampton, New Hampshire, USA).
This solution also served as the vehicle control.

2.3. Behavioral procedure — acquisition phase of operant behavior
The lever pressing experiment was conducted in operant chambers (28 × 23 × 23 cm; Med
Associates) that contained one lever and a food magazine that was recessed into the wall of
the chamber to the right of the lever. Animals were initially trained to lever press for 4 days
(30 min sessions; 45 mg pellets, Bioserve Inc., Frenchtown, NJ) on a fixed ratio (FR) of 1
schedule of reinforcement. In this schedule for each lever press the animals receive one operant
pellet (45 mg pellets, Bioserve Inc., Frenchtown, NJ). After this initial training, the animals
were trained on a FR 5 schedule (30 min sessions, 5 days/week) for 4 additional weeks.

2.4. Behavioral procedure — acquisition of feeding behavior
Animals were trained to eat lab chow in an observation test chamber for 3 weeks before testing.
Animals were allowed to eat the pre-weighed food for 30 min. The test chamber had wire-
mesh floor that allowed for collection of spillage after each session. Food was weighed before
and after each session, and sufficient food was provided to allow for ad-lib feeding during the
session (16 to 19 g). Intake was defined as the difference between pre- and post-session food
weight, including spillage, which was collected on paper sheets below the wire-mesh floor of
the test chamber.

2.4.1. Experiment 1: effects of systemic administration of the selective
adenosine A2A agonist CGS 21680 on FR5 lever-pressing behavior—All animals
were tested after 4 weeks of training on the FR 5 schedule of reinforcement as described above.
For this and all the following experiments, the 2% DMSO vehicle solution (see above) was
also used as the vehicle control treatment. Rats (n=8) received i.p. injections of the following
doses of CGS 21680: vehicle, 0.025, 0.05, 0.1 mg/kg. This experiment used a within-groups
design, with all rats receiving all drug treatments in a randomly varied order (one treatment
per week). Baseline training (i.e., non-drug) sessions were conducted four additional days per
week. All injections were given 15 min before the animals were put in the in operant chambers
for a 30 min session.

2.4.2. Experiment 2: effects of systemic administration of the selective
adenosine A2A agonist CGS 21680 on feeding behavior and sedation—A separate
group of rats was trained to eat lab chow in the test chambers for 30 min as previously described.
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On the test day, all animals received i.p. injections of the following doses of CGS 21680:
vehicle, 0.025, 0.05 and 0.1 mg/kg (n=8). This experiment used a within-groups design, with
all rats receiving all drug treatments in a randomly varied order (one treatment per week using
a Latin-square design). Baseline training (i.e., non-drug) sessions were conducted four
additional days per week. All injections were given 15 min before the animals were put in an
observation test chambers with pre-weighed amounts of lab chow. During this test phase an
observer blind to treatment manipulated a computer-controlled timing program. Observers
depressed a switch while subjects were either eating or engaged in nonvacuous chewing (i.e.,
chewing initiated with pellet contact), and released the lever when subjects ceased eating or
chewing. Temporal recording was controlled via a custom-written program in QBasic with a
resolution of 1 s. Following a 30-minute session, remaining food and spillage was collected
and weighed. Differences between pre- and post-session weights were taken as a measure of
food intake. Feeding rate was calculated as food intake (g) divided by time spent feeding (min).
These behavioral methods are similar to those used previously to study antagonists of DA or
CB1 cannabinoid receptors (McLaughlin et al., 2005b; Salamone et al., 1990).

During the 30-min sessions the blind observer also assessed the behavior of the animals, and
assigned the numerical score according to a Sedation Rate Scale previously described in Chuck
et al. (2006). Briefly, the Sedation Rating Scale consisted of a 6-point scale ranging from 0 to
5. The ratings were as follows: 5—awake, active: engaged in locomotion, rearing, head
movements or grooming; 4—awake, inactive: eyes fully open, head up, little to no locomotion,
rearing or grooming, normal posture; 3—mild sedation: eyes partly closed, head somewhat
down, impaired locomotion including abnormal posture, use of only some limbs, paw dragging
and stumbling; 2—moderate sedation: head mostly or completely down, eyes partly closed,
flattened posture, no spontaneous movement; 1—heavy sedation: eyes mostly closed, flattened
posture, head down, no spontaneous movement; 0—asleep: eyes fully closed, body relaxed,
asleep. In a reliability test, two independent observers who rated these behaviors in the same
animal showed >90% agreement on the specific ratings.

2.5. Data analysis
The total number of lever presses and the feeding measures (food consumption, time spent
feeding, feeding rate) were analyzed with repeated measures analysis of variance (ANOVA).
Non-orthogonal planned comparisons using the overall error term were used, with the number
of comparisons being restricted to the number of treatments minus one (Keppel, 1991). In
addition, the lever pressing and feeding data were analyzed using a nonlinear regression
analysis (GraphPad Prism version5). This method was used to estimate the effective dose 50
(ED50) and provide 95% confidence interval values. The dose–response curve was fit to an
exponential one-phase decay function, and constrained to a minimum of zero and a maximum
of the control vehicle mean. The ED50 was estimated from the curve as the dose that produced
a response that was 50% of the control mean. The ED50 values and the confidence intervals
are reported as arithmetic doses (mg/kg).

For the sedation rating scale results, the nonparametric Friedman’s test was used to analyze
the overall effect. Post-hoc analyses between each drug dose and vehicle were performed using
the Wilcoxon Signed Ranks test (α=.05 for all tests).

3. Results
3.1. Experiment 1: effects of systemic administration of the selective adenosine A2A agonist
CGS 21680 on lever-pressing behavior

As shown in Fig. 1, systemic administration of CGS 21680 significantly decreased lever
pressing in rats trained on an FR5 schedule of reinforcement. ANOVA revealed a significant
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overall effect of treatment (F(3, 21)=16.8, p<0.001). Planned comparisons revealed that 0.05
and 0.1 mg/kg doses of CGS 21680 significantly decreased lever pressing relative to vehicle
control (p<0.05). In animals that were used in experiment 1, it was noted by experimenters that
rats treated with CGS 21680 also showed overt signs of sedation when they were being taken
in and out of the operant chambers. Based upon these observations, rats were explicitly
observed for sedative effects in experiment 2 (see below).

3.2. Experiment 2: effects of systemic administration of the selective adenosine A2A agonist
CGS 21680 on feeding and sedation

CGS 21680 impaired food intake in a dose-dependent manner. ANOVA revealed a significant
overall treatment effect (F(3, 21)=24.1, p<0.001; Fig. 2A), and planned comparisons revealed
that 0.05 and 0.1 mg/kg doses of CGS 21680 significantly decreased food intake relative to
vehicle control (p<0.05). Time spent feeding was minimally impaired (dose effect: F(3, 21)=3.2,
p=0.043;), with only the highest dose showing a small reduction (Fig. 2B). Additional analyses
showed that CGS 21680 substantially reduced the feeding rate at doses that suppressed intake
(see Fig. 2C). ANOVA revealed a significant effect of dose (F(3, 21)=23.7, p<0.001) and
planned comparisons revealed that 0.05 and 0.1 mg/kg doses of CGS 21680 significantly
decrease food intake relative to vehicle control (p<0.05).

CGS 21680 also dose-dependently induced behavioral markers of sedation (see Fig. 3).
Nonparametric analyses using Friedman’s test revealed an overall treatment effect (α=p<0.05),
and post-hoc analyses between each drug dose and vehicle using the Wilcox on Signed Ranks
test revealed that 0.05 and 0.1 mg/kg doses of CGS 21680 induced significant (α=p<0.05) signs
of sedation (e.g., eyes partly closed, lowered head, flattened posture, paw dragging).

3.3. Potency analyses: ED50 values for the effects of CGS 21680 on various behavioral
measures in experiments 1 and 2

Table 1 lists the ED50 values and 95% confidence intervals for the effects of CGS 21680 on
each of the behavioral measures obtained in experiments 1 and 2. Suppression of lever pressing,
reductions in food intake and feeding rate, and induction of sedation, all occurred in roughly
the same range of doses (i.e., ED50s from 0.07 to 0.1 mg/kg, with overlapping confidence
intervals). In contrast, the ED50 for reduction of time spent feeding had to be extrapolated
outside the range of doses tested (i.e., >0.4 mg/kg).

4. Discussion
These experiments demonstrate that the adenosine A2A agonist CGS 21680 could suppress
food-reinforced lever pressing, as well as consumption of lab chow, in the same dose range
(i.e., 0.05–0.1 mg/kg). The decreases in lab chow intake were characterized by reductions in
both the rate of feeding and the time spent feeding. These drug-induced changes in feeding
behavior were accompanied by overt signs of sedation. Taken together, the present results
provide a further characterization of the behavioral effects of adenosine A2A receptor
stimulation, and allow for comparisons between the effects of CGS 21680 and previously
reported actions of DA antagonists.

The results of experiment 1 demonstrated that CGS 21680 suppressed food-reinforced FR5
lever pressing at relatively low doses (i.e., 0.05 and 0.1 mg/kg). This finding is consistent with
a previous report showing that CGS 21680 could reduce operant response rates in rats
responding on cocaine and methamphetamine drug discrimination tasks (Justinova et al.,
2003). In the same dose range, this adenosine A2A agonist also suppressed consumption of lab
chow (experiment 2). The specific pattern of results suggests that there are similarities and
differences between the effects of adenosine A2A receptor stimulation and effects of DA
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antagonists that have been reported in the literature. The fact that CGS 21680 suppressed lever
pressing and chow intake indicates that adenosine A2A receptor stimulation can produce effects
that superficially resemble those of the DA antagonist haloperidol (Salamone et al., 1990,
1993a). Furthermore, the suppression of feeding produced by CGS 21680 was characterized
by a modest reduction in time spent feeding, but a substantial suppression of feeding rate. This
pattern of results suggests that the effects of CGS 21680 on feeding behavior are somewhat
similar to the effects of DA antagonists such as haloperidol, pimozide and raclopride (Blundell
and Latham, 1980; Blundell, 1987; Clifton et al., 1991; Salamone et al., 1990; Lee and Clifton,
2002), or striatal DA depletions (Salamone et al., 1990, 1993b). In addition to these similarities,
there also appear to be differences between the effects of CGS 21680 and those of most DA
antagonists. For example, DA antagonists such as haloperidol and spiroperidol generally have
been reported to suppress food-reinforced lever pressing at doses that are considerably lower
than those that suppress feeding (Fibiger et al., 1976; Rolls et al., 1974; Rusk and Cooper,
1994). The same pattern has been reported for the effects of DA antagonists on water-reinforced
behavior compared to water intake as well (Ljungberg, 1987, 1988, 1990). In contrast, the
present results indicate that CGS 21680 produced effects upon lever pressing and chow intake
at roughly the same range of doses (i.e., there were similar potencies based upon the ED50
values).

Another difference between the effects of CGS 21680 and haloperidol appears to be the
presence or absence of sedation in the dose range that also suppresses lever pressing. Previous
results indicate that doses of haloperidol ranging from 0.05–0.15 mg/kg, whether administered
acutely or repeatedly for 14 days, were able to substantially suppress lever pressing at doses
that did not produce appreciable changes in sedation (Salamone et al., 1996). The results of
experiment 2 indicated that administration of CGS 21680 at doses that suppressed lever
pressing and feeding led to observable signs of sedation/drowsiness that included paw
dragging, stumbling, lowered head, flattened posture and partially closed eyes. The magnitude
of the sedation effect produced by 0.1 mg/kg CGS 21680 in the present experiment was
comparable to that shown previously for 2.0 g/kg ethanol in rats assessed using the same scale
(Chuck et al., 2006). The sedative effects of adenosine have been widely reported in previous
studies (Hong et al., 2005; Porkka-Heiskanen et al., 2000; Satoh et al., 1998; Scammell et al.,
2001; Stenberg, 2007). Sleep can be induced by administration of adenosine either
systemically, into the ventricles, or locally into the basal forebrain (Stenberg, 2007).
Extracellular levels of adenosine are increased by sleep deprivation, and non-selective
adenosine antagonists such as caffeine are routinely used to promote wakefulness (Stenberg,
2007). Stenberg (2007) suggested that both adenosine A1 and A2A receptors are involved in
the regulation of sleep, though probably through different brain areas and mechanisms.
Previous studies have reported that systemic administration of CGS 21680, or local injections
into the basal forebrain, induce sleep (Hong et al., 2005; Porkka-Heiskanen et al., 2000; Satoh
et al., 1998; Scammell et al., 2001; Stenberg, 2007). Adenosine A2A receptor knockout mice
showed a loss of sensitivity to the sedative effects of adenosine A2A agonists compared to
wild-type mice, and in these studies it was clearly shown that an adenosine A2A agonist could
induce sleep in the wild-type mice (Satoh et al., 1998). Thus, the presence of overt signs of
sedation in animals treated with relatively low doses of CGS 21680 is consistent with much
of the published literature, and suggests that sedative effects could be an important factor
related to the suppression of lever pressing and feeding rate that also were observed in
experiments 1 and 2.

The atypical antipsychotic clozapine also has been shown to produce observable behavioral
signs of sedation at doses that suppress lever pressing (Salamone et al., 1996). Although this
could be viewed as consistent with the idea that adenosine A2A agonists produce behavioral
effects in animals that resemble those of atypical antipsychotics (Andersen et al., 2002; Ferré,
1997; Wardas et al., 2003), such comparisons should be treated with considerable caution
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(Wardas, in press). There still are not any clinical reports indicating that selective adenosine
A2A agonists produce therapeutic antipsychotic effects in humans. In addition, data on the
ability of non-selective adenosine antagonists to promote psychotic symptoms are rather
mixed, with some studies suggesting that caffeine can worsen schizophrenic symptoms (De
Freitas and Schwartz, 1979; Lucas et al., 1990; Mikkelsen, 1978), but other studies being unable
to observe this finding (Gurpegui et al., 2004; Hughes et al., 1998; Koczapski et al., 1989;
Mayo et al., 1993). In view of the fact that sedation is generally seen as an undesirable side
effect of clozapine administration (Burke and Sebastian, 1993; Chesler and Salamone, 1996;
Safferman et al., 1991; Salamone et al., 1996), and not as a marker of the therapeutic effect,
the present results should probably be interpreted as indicating that CCS 21680 and clozapine
both share the ability to produce overt signs of sedation and drowsiness at doses that also induce
other behavioral effects; any interpretation in terms of possible antipsychotic activity of
adenosine A2A agonists must await specific clinical findings.

In summary, the present experiments demonstrated that the adenosine A2A agonist CGS 21680
could suppress food-reinforced lever pressing and lab chow intake in the same dose range.
There were drug-induced reductions in both the rate of feeding and the time spent feeding,
though the feeding rate effect was more potent. The suppression of feeding behavior produced
by CGS 21680 was accompanied by measurable signs of sedation and drowsiness. These results
suggest that there are both similarities and differences between the effects of CGS 21680 and
previously reported effects of DA antagonists. Clearly, drug-induced sedation is an important
factor that contributes to the suppressive effects of CGS 21680 on lever pressing and feeding.
It also is possible that the suppression of lever pressing and feeding rate produced by systemic
injections of CGS 21680 results from a combination of sedation and other behavioral effects,
including actions on striatal mechanisms that partially resemble the effects of interference with
DA transmission. The effects of CGS 21680 did not closely resemble those produced by the
cannabinoid CB1 antagonists/inverse agonist AM251, which has been reported to have greater
effects on time spent feeding rather than feeding rate (McLaughlin et al., 2005b). However,
possible appetite suppressant or food aversion effects of CGS 21680 cannot be completely
ruled out based solely upon the present data. Additional studies involving intracranial
administration of CGS 21680 (e.g. Salamone et al., 2007) may be useful for disentangling some
of the distinct behavioral effects produced by adenosine A2A receptor stimulation.
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Fig. 1.
Effects of systemic injections of the adenosine A2A agonist CGS 21680 on lever pressing
performance (experiment 1). Rats received treatment with vehicle or various doses of CGS
21680. Mean (± SEM) number of lever presses (FR 5 schedule) during the 30 min session are
shown. (* p<0.05, different from vehicle).
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Fig. 2.
Effects of systemic injections of the adenosine A2A agonist CGS 21680 on feeding behavior
(experiment 2). Rats received treatment with vehicle or various doses of CGS 21680. A. Mean
(± SEM) gram quantity of chow intake. B. Mean (± SEM) time spent feeding (in min). C. Mean
(± SEM) rate of feeding (in g/min). (* p<0.05, different from vehicle).
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Fig. 3.
Effects of CGS 21680 on sedation/drowsiness. Mean (± SEM) sedation rating score is shown
for each condition. (* p<0.05, different from vehicle).
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Table 1
Potency analyses: ED50 values and 95% confidence intervals (C.I.) for the effects of CGS 21680 on various behavioral
measures in experiments 1 and 2

Behavior task Behavior measure ED50 (mg/kg) 95% C.I. (mg/kg)

Operant (FR5) Lever presses 0.070 0.052 to 0.109

Feeding task Food intake 0.087 0.071 to 0.112

Time Feeding 0.457 0.292 to 1.508

Rate of Feeding 0.106 0.085 to 0.141

Sedation Rating Scale 0.100 0.084 to 0.124
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