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Learning about the world through our senses constrains our ability to recognise our surroundings.
Experience shapes perception. What is the neural basis for object recognition and how are learning-
induced changes in recognition manifested in neural populations? We consider first the location of
neurons that appear to be critical for object recognition, before describing what is known about their
function. Two complementary processes of object recognition are considered: discrimination among
diagnostic object features and generalization across non-diagnostic features. Neural plasticity
appears to underlie the development of discrimination and generalization for a given set of features,
though tracking these changes directly over the course of learning has remained an elusive task.
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1. INTRODUCTION
Perception does not occur as the tabula rasa. Even

newborns come into the world with biases that point

them along the path of learning about the faces and

places surrounding them. One of the most constructive

processes in perception is object recognition, since our

three-dimensional understanding of the objects around

us are known to us only via brief, often occluded, two-

dimensional blips somewhere on our retina. The rest of

the process is up to our brains, and will be based on a

foundation of extensive visual experience. What is the

nature of this constructive process? What parts of the

brain are critical for object recognition and how does it

enable learning about new objects and object categories?

In this article, we will consider first where and then

how the brain learns to recognise objects. The ‘where’

description will involve neurons in the lateral and ventral

temporal lobe neocortex, though other areas have also

been implicated. The ‘how’ can be thought of as an

interplay between discrimination, in which features are

teased apart, and generalization or invariance, in which

features are treated as the same. The former, discrimi-

nation, is the process by which perceptual learning is

classically interpreted. Typically, these experiments take

a relatively ‘elemental’ aspect of a visual stimulus, such

as line orientation, and train to increasing levels of

discriminability. But equally important to object

learning is the development of generalization across

irrelevant changes in features. For example, we maintain

a remarkable ability to recognise objects across

dramatic changes in appearance due to different
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lighting or angle of regard. We will consider the mech-
anisms that may underlie discrimination, or increased
sensitivity to visual features, before tackling the
more elusive issue that is the counterpart to sensitivity:
generalization, or grouping across varying features.

One limitation that should be mentioned at the
outset is that any description of the mechanisms of
object learning will rely heavily on the neural coding of
objects, with the assumption that this has been built up
through experience. Nearly all studies on the neural
basis of object learning and categorization monitor
neural responses before and after learning, rather than
tracking the process itself (but see Messinger et al.
(2001) for one notable exception). Responses to novel
stimuli (or features) are compared to those of trained
stimuli (or features), and any difference in the neural
code is attributed to learning. Prior biases between
novel and trained stimuli, or use of innately specified or
otherwise unique object categories, may render spur-
ious results. This is still the predominant method, since
it does not require recording from the same neurons
over the hours, days or months of learning, making it
accessible to most of the recording methods available.
Adding to the technical challenges is the location in
which object-selective responses are seen: areas at the
lateral and ventral extreme in human and macaque
brains, which are more difficult to access from the
standard dorsal approach. Section 1a will describe in
more detail the brain regions that are associated with
object recognition.

(a) The ventro-lateral temporal lobe encodes

shapes and objects

Inferotemporal cortex (IT), lying along the lateral and
ventral aspects of the temporal lobe, is the first visual
area in which no retinotopic organization is seen. In
This journal is q 2008 The Royal Society
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Figure 1. (Caption opposite.)
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contrast to most other visual areas in the brain,
responses are largely position invariant, with receptive
fields that cover major portions of our field of view,

typically overlapping the fovea, crossing hemifields
(adapted from Gross et al. 1972; Desimone & Gross
1979; Desimone et al. 1984). Stimuli that reliably drive
cells in primary visual areas are far less effective in IT

(Gross et al. 1972; Richmond et al. 1983; Pollen et al.
1984; Vogels & Orban 1994a); instead, faces and
objects are commonly observed to drive cells in IT
Phil. Trans. R. Soc. B (2009)
(Perrett et al. 1982; Rolls & Baylis 1986; Yamane et al.
1988; Hasselmo et al. 1989; Young & Yamane 1992).
More recent imaging results are generally consistent

with the location and selectivity of cells in superior
temporal sulcus (STS)/IT (Logothetis et al. 1999; Tsao
et al. 2003; Pinsk et al. 2005; Zangenehpour &
Chaudhuri 2005; Hoffman et al. 2007). The import-

ance of IT in processing shapes, objects and faces has
been demonstrated through lesions or disconnections
in IT (Mishkin 1954; Mishkin & Pribram 1954;



Figure 1. (Opposite.) (a) Schematic of tuning curves for systematically varying face or object stimuli. Each black curve shown
below reflects the relative change in firing rate for a given neuron that is elicited by the stimuli depicted above. The neuron
leading to the far left curve would be said to ‘prefer’ the profile face view (or cat stimulus), but would also change activity for the
adjacent image. (b) Cat and dog morphs taken from Freedman et al. (2003); face views taken from Eifuku et al. (2004).
Selectivity can be increased by raising thresholds, as indicated by the horizontal black line. Here, instead of firing at an
intermediate level for the adjacent images, the tuning curves indicate a near or below threshold activity level for all but the
preferred stimulus. This decrease in the number of effective stimuli is also referred to in the text as a ‘sparsening’ of the code.
(c) Sparsening shown ‘normalised’ to the threshold. The same tuning functions as in (b), but shown with respect to the new
threshold. The narrowing of the tuning curve, indicating sparsening, is now clear. (d ) Increased sensitivity to the varying
stimulus parameter can be accomplished by a combination of the recruitment of neurons and a sparsening (i.e. sharpening) of
their tuning functions. (e) Selective sharpening and recruitment restricted to the critical parameters is sometimes seen. For
example, sharpening of tuning can be seen around trained orientations. In contrast to increased sensitivity to small differences,
categorization effects are often seen as an invariance to small, irrelevant differences, but a preserved sensitivity to the across-
category, or relevant, differences. The extreme right and left faces here represent two identities, with intermediate morphs in
between, and the prototype morph in the middle (adapted from Leopold et al. 2006). Discrimination training to various identity
morphs leads to responses that increase as the morphs approach the identity of an individual (grey and black thick lines). Thus,
the neural code affords some degree of within-category invariance to identity, while maintaining selectivity across identities, even
for images near the ‘average’ face. ( f ) In the human medial temporal lobe, cells respond with a remarkable degree of ‘within-
category’ invariance for a specific individual. Whereas some cells will prefer only a subset of images of a given individual (thin
black lines), many neurons responded to all examples of the preferred individual (either left three or right three images), despite
large differences in perceptual input, and including the visually dissimilar written name of the individual (thick lines). Bottom
images modified from Quiroga et al. (2005). (g) A relatively unexplored means by which neurons could code for face or object
category is in spike timing. In the locust olfactory system, repeated presentation of scent classes evokes fewer, but better-timed
responses. (i)–(iii) Subsequent trials of a given odour. (i) The local field potential (population) response, revealing the
emergence of sustained oscillations following odour presentation. (ii) The next trace shows the spiking activity, which becomes
aligned to the oscillation upon repeated presentations. (iii) Two simultaneously recorded neurons, revealing how time locking to
a common oscillation also results in a synchronization of responses across the population of responsive neurons. Fewer, but
better-timed spikes may lead to a more efficient representation of the relevant odour classes. Traces are adapted from Stopfer &
Laurent (1999).
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Horel & Misantone 1976; Ungerleider & Mishkin
1982) and, for face discrimination, inactivation of STS,
medial temporal gyrus or inferior temporal gyrus all
produce impairments (Horel et al. 1987; Horel 1993).
Conversely, stimulation within areas selective for faces
elicits a bias towards face perception (Afraz et al. 2006).
Given the importance of the code in IT for discriminat-
ing objects, we will focus on this region in our
discussion on the neural basis of perceptual learning
of objects. Because relatively few studies have explored
the effects of learning in any one sub-region within the
IT, we will consider in our discussion studies exploring
the broadly defined territory around IT, including the
upper bank of STS and perirhinal cortex (PRh).
2. OBJECT RECOGNITION I: INCREASED
SENSITIVITY
The most frequently reported change in neural
response with perceptual learning appears to be a
sparsening of the activity, often seen as a sharpening of
a cell’s ‘tuning curve’. That is, if a cell responds to
several stimuli weakly and to one stimulus strongly,
after learning, it might respond only to that ‘best’
stimulus (figure 1a-c). This sharpening of the response
with learning is inferred from the difference in tuning
curves of cells responding to trained versus untrained
stimuli during discrimination of simple stimulus
characteristics such as orientation discrimination
(Schoups et al. 2001; Yang & Maunsell 2004) or
coherent motion from random-dot stimuli (Zohary
et al. 1994). It has also been described for cells in IT
following discrimination training on objects (Baker
et al. 2002; Sigala & Logothetis 2002; Freedman et al.
2003) and can be seen in these cells even after mere
exposure to images (Freedman et al. 2006).
Phil. Trans. R. Soc. B (2009)
In principle, sharpening could result from an

increase in response to the optimal stimuli, a decrease

in the response to sub-optimal stimuli, or a com-

bination of the two. In practice, cells in IT manifest

sharpening primarily as a decrease in response to

stimuli that elicit a sub-optimal response, rather than

an amplification of the best stimulus (Freedman et al.
2006), to the point of observing responses below

baseline for the least-preferred, trained stimuli.

On the whole, the result of sharpening across the

population of cells would lead to a smaller fraction of

cells being active for any given stimulus as a result of

learning. But the population may also change as a

function of learning (figure 1d ). Discrimination

training, particularly in the presence of reinforcement,

leads to greater cortical magnification corresponding to

the trained locations. That is, more cells respond to the

trained location, potentially at the cost of cells

responding to nearby locations, which can be depicted

as a ‘swelling’ of the cortical map of response

preferences. Examples of such cortical reorganization

or magnification include expansion of somatosensory

areas on two digits that were stimulated in a

discrimination task (Recanzone et al. 1992a,b), or in

auditory cortex, for regions responding to tones that

needed to be discriminated (Recanzone et al. 1993). In

fact, both sharpening of tuning and a shift in preferred

stimuli towards the trained stimuli—as seen in cortical

expansion—have been observed (Recanzone et al.
1993; Weinberger 1993). In this way, there may not

be a loss of net activity for a given stimulus, even with

sparsening. Independent of tuning curve changes, an

increase in signal (to noise) would result from the

addition of cells with selective responses to the stimuli

that need to be discriminated.
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Changes in the sparseness and coverage—the
number of responsive neurons—may cluster around
trained or relevant stimuli for discrimination, even in
the absence of any obvious cortical ‘map’ or topo-
graphy. For example, when comparing responses
to face and non-face images, more cells responded to
faces, but with a more distributed tuning than for non-
face-responsive cells (Rolls & Tovee 1995). This led to
a greater differentiation of the face stimuli than of the
non-face stimuli, consistent with behavioural evidence
in humans that individual faces are identified faster and
more accurately than within-category object exemplars
(e.g. Tanaka 2001). If one presumes greater ‘training’
with faces than non-face objects, this would be one
example of a broader tuning for the trained set, but
leading to greater discriminability of members of the
trained set; however, these conclusions are based on
only 14 cells, which were located in the fundus of STS.
Moreover, faces may constitute a unique category of
objects for which innate or early developmental biases
may exist (Hoffman & Gauthier 2007), thus their
underlying coding scheme may be different from that of
other object categories.

(a) Other possible changes with learning

The above accounts of changes with learning all
influence the signal of the rate code in response to
stimuli. Another putative mechanism of learning, not
mutually exclusive with the others mentioned, involves
recruitment of neurons from other brain areas. This
could happen though enhancement of the synaptic
connections that converge upon downstream areas, by
which selectivity could be ‘built up’ for important
differences such as the features that define an object or
group of objects. Indeed, the prefrontal cortex shows
category-boundary sensitivity (Freedman et al. 2003),
possibly resulting from temporal lobe projections,
though the development of this selectivity with
learning is unknown.

Change could also occur in upstream areas, as a
cascade moving in the reverse direction of signal
propagation during stimulus processing. According to
this reverse hierarchy theory (Ahissar & Hochstein
2004), the broad spectrum of responses initially
passed on to a ‘downstream’ target area narrows
according to the features that are necessary for the
learned discrimination. If an upstream area contains
cells selective for the dimension of discrimination, and
if the task consistently activates the same pool of
neurons in that area, then a ‘backwards shift’ to that
area is predicted. For example, cells in IT do not
change tuning for an orientation discrimination task
(Vogels & Orban 1994b), but their upstream target
neurons in V4 do (Yang & Maunsell 2004). Part of
the process of perceptual learning, therefore, would
be to find the optimal level in the visual hierarchy
for maximizing the neural signal to noise available
for that task (see Kourtzi & DiCarlo (2006) for
additional discussion).

Yet another way of enhancing performance would be
to reduce the ‘noise’ in the tuning curves of a given cell
through more precise, consistent firing of that cell.
When the difference in responses to preferred and non-
preferred stimuli can be as little as a few spikes per trial,
Phil. Trans. R. Soc. B (2009)
it may be difficult to determine whether the response on
a given trial was a poor response to a preferred stimulus
or a strong response to a non-preferred stimulus.
Consistent, well-timed responses can be generated
when spikes are phase locked to an oscillation. If
oscillations are, in turn, evoked in response to a
stimulus, reliable spike timing and rate can be realised.
In the olfactory systems of locusts, precisely such a
mechanism has been observed (figure 1g ; Stopfer &
Laurent 1999). It remains to be seen whether neurons
in IT show any timing effects with learning, or if any
oscillations develop.

Though inconclusive, it is perhaps of interest that
the activation in IT, which is typically analysed as a rate
code value, often includes early transient responses.
These early responses may be critical for accounts of
rapid perception. Monkeys are able to discriminate
categories of images by generating the correct manual
response around 170–180 ms after stimulus onset
(Fabre-Thorpe et al. 1998), yet typical onset latencies
in ITare approximately 100 ms and rate code values are
calculated in windows that end hundreds of milli-
seconds after these manual responses have occurred.
Selective responses to faces (Oram & Perrett 1992) or
various objects (Hung et al. 2005) can be observed as
early as 5–13 ms after the onset of the responses in IT.
Often, the initial response includes a transient ‘peak’
and this has been shown to contain information about
category membership (Freedman et al. 2003). This
means that the first 1–2 spikes of a response could
provide sufficient information about the stimulus to
make perceptual or categorical judgments, consistent
with evidence that information may be conveyed in the
timing of IT responses (Optican & Richmond 1987;
Richmond & Optican 1987; Richmond et al. 1987).
Oscillatory activity is but one means of accomplishing
this, and there is relatively little information about
the role oscillations play in IT responses. It is, however,
intriguing to note that the population responses in
IT to familiar objects show approximately 8Hz
‘rebounds’ of activity not seen for the population
response to novel objects (Freedman et al. 2006, fig. 8).
In general, though, the role of oscillations or spike
timing on the neural basis for object recognition awaits
further investigation.
3. OBJECT RECOGNITION II: GENERALIZATION
AND CATEGORY FORMATION
The mechanisms underlying perceptual learning, and
object recognition in particular, must not only hone our
ability to discriminate diagnostic or relevant differences
between two objects; it must also facilitate recognition
of objects as belonging to a single group, despite
perceptual differences. Take, for example, the change
in the retinal position of a face as we stare at its different
parts, and in its size as we approach it; the contrast of a
face under different lighting conditions, and the changes
in view, from profile to head-on. These variances
produce dramatically different images on the retina,
yet we perceive the object type in spite of the varied
exemplars. This generalization, or invariance, across
exemplars is a key component in object learning. We will
consider three types of generalization: those to retinal
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deviations, object view and categorization, operating on
the premise that the development of invariances for
these parameters occur through experience.

(a) Invariance to size, position and in-plane

rotation

Shape-selective cells in IT show size invariance,
meaning that a preferred stimulus will elicit a similar
response despite dramatic changes in its size (Sato et al.
1980; Desimone et al. 1984; Sary et al. 1993). These
cells also show position invariance, in which centrally
presented and increasingly eccentric presentations of
the same images elicit similar responses (but see
DiCarlo & Maunsell (2003) for limits to position
invariance). Since the areas of visual cortex that project
to IT are retinotopic, one question was how variations
in retinal input, and thus variations in the topographic
neural responses, could ultimately be combined to
produce invariant responses. Solutions emerged from
hierarchical models of translation invariance, which
could sequentially build up representations of increas-
ing complexity (Fukushima 1980; Perrett & Oram
1993; Wallis & Rolls 1997). These models typically
posit projections from a lower-level retinotopic layer to
layers with increasingly large and complex receptive
fields. Ultimately, these fields reflecting one location in
the visual field send divergent projections to the
invariant area. Projections from various retinotopic
locations would converge within the invariant area
based instead on the ‘match’ to the complexity of
the stimulus. But for this type of invariance, all the
information needed for the match is present in the
input: an image-plane rotation, translation, or scaling
‘aligns’ the stimulus for matching. What about ‘hidden’
parts of three-dimensional objects, which we are able to
recognise despite rotations in depth, revealing new
features of the image and hiding others?

Object recognition from different views may occur as
the result of a transformation of the object until it
matches a single stored three-dimensional description
of an object, or based on structural descriptions of the
key elements of the three-dimensional structure
(‘object centred descriptions’: Marr 1982; Biederman
1987; Ullman 1989). Alternatively, view invariance
may arise from experience: with a sufficient number of
views of an object, novel views may be a close enough
match to one of the collection of learned views (‘viewer-
centred descriptions’: Poggio & Edelman 1990;
Logothetis et al. 1994). In practice, both view-based
and view-invariant codes have been observed, though
the preponderance of view-selective cells strongly
suggests viewer-centred descriptions. After extensive
training (w600 000 trials per category) of monkeys on
a set of novel three-dimensional objects, a population
of cells in IT were revealed to respond to novel views of
trained stimuli (Logothetis & Pauls 1995). Of approxi-
mately 1000 neurons recorded, the vast majority
were visually responsive, and 12 per cent of those
were selectively tuned around a preferred view of one
preferred object. The tuning varied across the popu-
lation, such that the object could, in principle, be
recognised based on which of the collection of neurons
happened to be tuned to the present view. By contrast,
only three cells (0.37%) showed view-invariant object
Phil. Trans. R. Soc. B (2009)
preferences. Similar results were obtained by exposing
monkeys to real three-dimensional objects in their
home cages and then testing neural responses to images
of those objects, yielding mainly view-selective but also
view-invariant responses (Booth & Rolls 1998). The
view-invariant responses would not be necessary for
recognition, due to the preponderance of view-tuned
cells, thus the overall code appears to fit best with
viewer-centre models of object recognition.

(b) Categorization

At a behavioural level, studies in the pigeon were the first
to demonstrate generalization of categories of images
such as ‘human’ and ‘non-human’ (Herrnstein &
Loveland 1964). In the wild, vervet monkeys naturally
‘categorize’ potential predators, producing unique
vocalizations in response (Seyfarth et al. 1980). In
laboratory settings, monkeys show categorization
of images (Humphrey 1974; Schrier et al. 1984;
Yoshikubo 1985; Schrier & Brady 1987; D’Amato &
Van Sant 1988; Roberts & Mazmanian 1988) including
the untrained ability to discriminate faces and objects
(Pascalis & Bachevalier 1998). Moreover, they show a
hierarchical categorization that allows untrained
discrimination between their own species’ faces and
another species of monkey, but also better discrimi-
nation between pairs of their own species’ faces than
between pairs of the other species’ faces (i.e. species-
specific subordinate-level discrimination; Dahl et al.
2007). What neural activity underlies these abilities?

Invariance could be manifest in cells that fire for all
exemplars of one category and none of any others. But
other possibilities exist. Invariance could also arise
from a population of category-specific neurons that still
maintain selectivity for some examples within the
category. For example, basic-level categories such as
trees and fish (Vogels 1999), or trained categories of
image morphs from virtual ‘cat’ and ‘dog’ stimuli
(Freedman et al. 2003), evoke responses in IT. These
responses discriminated categories, not by showing
similar responses across all members within a category,
but by showing some preference for many category
members. In fact, cells with broad tuning (a distributed
code) but favouring one category over another
produced the best decoding of categories (Thomas
et al. 2001). Thus, it is from the neural population
activity, and not necessarily exclusive ‘category cells’,
that category membership can be extracted.

Sometimes the shape space among parametrically
varied stimuli appears to be the main coding dimen-
sion. Op de Beeck et al. (2001) did not find cells that
differentiated between two categories, nor was there
any ‘boundary’ effect by which selectivity was the
greatest near category borders; rather, the activity they
recorded reflected the differences between their para-
metrically varying radial-basis function stimuli, irre-
spective of category membership. Perhaps this was
due to the low dimensionality of the stimuli—or the
training on different spatial arrangements of category
boundaries across the three sets of stimuli.

Another set of systematically varied stimuli with
considerably more complexity is the ‘face space’
created from morphs of multiple three-dimensionally
rendered faces. Where identity may be represented as
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distance from a core prototype, one might expect cells
that are sensitive to deviations from the prototype,
allowing effective grouping among exemplars of one
identity, but discrimination among exemplars across
identity lines. Indeed, in monkeys that had seen many
examples of morphed faces that varied in their
proximity to a face prototype, activity of a given cell
tended to increase with increasing distance from the
prototype, for a subset of identities (figure 1e; Leopold
et al. 2006). This monotonic increase in preference
would help differentiate among various exemplars that
fit in face space around a prototype (Loffler et al. 2005).
In addition, it suggests an emphasis on the represen-
tation of the distinguishing characteristics in a set of
stimuli, with some invariance towards changes that are
not diagnostic for identity in face space (i.e. radial
changes). It should also be noted that this face space,
though not explicitly reinforced in one of the monkeys
studied, was viewed repeatedly hundreds of times over
many daily sessions. It is not unreasonable to suppose
that there might be an adaptive coding to ‘fill’ the face
space in terms of neural selectivity. Thus, it is not clear
if prototype coding is a default scheme adopted by IT
neurons, if it is merely a consequence of efficiently
differentiating this regular, predictable face space, or if
faces constitute a special class of objects with unique
coding properties. In any case, these results highlight
an important balance in the process of categorization
between sensitivity and generalization.

Of all the features that differ across objects,
categorization requires that features differing between
within-category members be ignored, and features that
are similar within-category but that are not shared by
members of other categories should be detected.
Indeed, there is evidence that the ‘diagnostic features’
of a category—those that are most telling of category
membership—are preferentially encoded in IT neurons
(Sigala et al. 2002; Nielsen et al. 2006). This places an
emphasis on the functional differences among exem-
plars, and not necessarily their physical similarity. And
this emphasis may be one of the key features of how the
brain categorizes objects.

(c) Processing amodally

Amodal categorization is the grouping of common
stimuli independent of the modality of sensory input.
Primates show behavioural signs of amodal categor-
ization/cross-modal equivalence. When provided with
an object to inspect haptically, apes and monkeys were
able to generalize what they had learned to the visual
modality (Davenport & Rogers 1970; Weiskrantz &
Cowey 1975; Elliot 1977). In addition, when monkeys
(or humans) were expected to categorize vocalizations,
prior presentation of conceptually congruent images
led to faster responses (Martin-Malivel & Fagot 2001).
This demonstrates an independence of the perceptual
attributes of a stimulus to categorization, something
that should be incorporated more explicitly in the
aforementioned models of object categorization.

We do not yet know the neural basis for amodal
processing, and, indeed, there may be biases for some
stimulus pairings across modality that are innate or
biased early in development, and therefore are not
consistent with other types of category learning.
Phil. Trans. R. Soc. B (2009)
Nevertheless, associations have been described for
arbitrary (but rewarded) pairings of stimuli, suggesting
cross-modal or amodal representations can be learned
under the same conditions as other types of categor-
ization. There are hints that IT and PRh may
accomplish this by coding for associated stimuli,
irrespective of their featural similarity. After monkeys
have learned the arbitrary pairing of sets of images,
‘pair coding’ neurons—those responding selectively to
both images in a pair—are seen (Miyashita 1988;
Sakai & Miyashita 1991). The paired associations in IT
neurons parallel learning (Messinger et al. 2001) and
can develop even without explicit reinforcement, that is
when the second item in the pair is irrelevant to correct
task performance (Erickson & Desimone 1999). Other
associations have been reported in monkeys well
trained to associate one visual cue with one auditory
cue, and a second visual cue with a second auditory cue
(Colombo & Gross 1994; Gibson & Maunsell 1997).
Under these conditions, cells were found in ‘visual’
cortex which were selective for one of the trained
auditory cues, suggesting a powerful association that
could also underlie amodal categorization.

In humans, neurons in the medial temporal lobe have
shown a striking degree of invariance, in which
the written name of a preferred individual was sufficient
to drive the cell as strongly as the response to various
images of that individual, whereas other visually similar
individuals were ineffective stimuli (figure 1f ; Quiroga
et al. 2005). That degree of invariance has not yet been
described in the monkey, but this could be due to several
differences between many object–response studies in
monkeys and the human study. First, the hippocampus
and entorhinal cortex were the regions demonstrating
invariant responses to individuals. The ITwas not tested
in humans, and typically, the hippocampal regions are
not tested for these properties in monkeys. Second, the
spontaneous firing rates of the invariant cells were often
remarkably low; well under 1 Hz. Biased selection of IT
cells during electrode placement would likely lead to
higher spontaneously active neurons, or even neurons
explicitly active for a broad range of stimuli, thus sparse-
firing cells such as the invariant neurons may have been
passed by in the monkey and in previous human
recordings. Finally, the cell isolation procedures have
improved greatly, and sorting of spikes requires good
signal-to-noise ratio on the electrode as well as proper
isolation procedures. Many of the studies from IT used
straight threshold crossing or pre-determined spike
waveform templates that could have excluded the
very cells that demonstrate invariance, or possibly
included them as part of a multiple unit activity
dominated by higher firing rate cells. Further testing
using procedures designed for unbiased sampling and
optimal cell isolation, in addition to recording in both
lateral and medial temporal lobe regions, could resolve
this outstanding issue.

The learning-induced changes in object-selective
neurons show some similarities to neurons in other
visual areas following perceptual learning. Namely,
neural activity is recruited to code the stimuli or
features to be differentiated, and a given neuron’s
activity will be more sharply tuned around the
diagnostic parameters. Broadening of selectivity has
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also been observed, so determining when a distributed
code will emerge and when sharpening or sparsening
follows learning will be a matter for future studies.
Category selectivity also has been seen in these cells,
even concurrent with increases in sensitivity. That is, in
IT, category membership can be extracted from the
tuning of category-biased cells, rather than appearing
in dedicated ‘within-category invariant’ responses.
This is in contrast to a small group of cells recorded
in the human medial temporal lobe, which, to a large

extent, do seem to reflect within-category invariant
responses around each example of a given individual.
In addition, the prefrontal cortex in the monkey shows
a greater degree of within-category invariant responses.
Where IT cells do approach a remarkable degree of
invariance is in the arbitrary pairing of stimuli that
become associated with each other. This suggests that
the temporal lobe is capable of associating and
generalizing, provided there is a strong basis of
experience on which to base those associations.
Amodal associations would, therefore, be an interesting
domain to pursue in the monkey, in particular for
stimuli with which the monkey has an abundance of
experience. Another important task will be to
determine whether the discrepancy between invar-
iances to the individual in humans, and its relative
absence in the monkey temporal lobe, is a consequence
of brain region, species or some other as-yet-unknown
factor. In sum, the IT undergoes a wide range of
changes with object learning, supporting a delicate
balance between sensitivity to relevant differences,
generalization across irrelevant differences and the
ability to flexibly adapt to both.
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