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Perception of shaded three-dimensional figures is inherently ambiguous, but this ambiguity can be resolved

if the brain assumes that figures are lit from a specific direction. Under the Bayesian framework, the visual

system assigns a weighting to each possible direction, and these weightings define a prior probability

distribution for light-source direction. Here, we describe a non-parametric maximum-likelihood

estimation method for finding the prior distribution for lighting direction. Our results suggest that each

observer has a distinct prior distribution, with non-zero values in all directions, but with a peak which

indicates observers are biased to expect light to come from above left. The implications of these results for

estimating general perceptual priors are discussed.
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1. INTRODUCTION
Perception consists of interpreting two-dimensional

retinal images of a three-dimensional world. The process

of projecting a three-dimensional scene onto a two-

dimensional retina necessarily discards information

about the three-dimensional structure of that scene. This

makes it impossible, in principle, to deduce all of the

three-dimensional structure of a scene, and perception is

therefore a classic example of an ill-posed problem (Poggio

et al. 1985). However, even though such problems cannot

be solved by deduction, acceptable solutions can be found

using statistical inference. This involves using additional

information, usually based on prior experience, to

interpret two-dimensional retinal images, where this

additional information takes the form of heuristics (rules

of thumb) or constraints (rules which exclude certain

‘illegal’ solutions).

Within the Bayesian framework, this extra information

is realized in the form of prior distributions. For example,

the image marked with a cross in figure 1 can be

interpreted as either convex or concave. The particular

perception evoked by this image depends only on the

direction in which the light source is assumed to

originate (Rittenhouse 1786; Brewster 1847; Oppel

1856; Kleffner & Ramachandran 1992). If the light source

is assumed to originate from below, then the image is

interpreted as convex, but if the light source is assumed to

originate from above, then the image is interpreted as

concave. As this is the usual interpretation made by

human observers, it implies that we implicitly assume light

originates from above. However, such demonstrations

provide only a qualitative impression of where we assume

the light source to be.

In reality, it is unlikely that human observers make the

simplistic assumption that light comes only from above or

below. More realistically, each observer assigns a prob-

ability to each possible light-source direction, which may
r for correspondence ( j.v.stone@shef.ac.uk).
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be based on prior experience of the directions in which

light sources originate.

These probability values collectively define a prior

probability density function, which can be visualized using

a polar plot, where the radial distance in a given direction

indicates the relative probability that the light originates

from that direction (as in figure 2c). In this paper, we show

how it is possible to estimate the overall form of this prior,

which, for reasons that will become obvious, we call the

light-from-above prior. For the sake of clarity, note that

we do not seek the prior for lighting direction, which

could be obtained empirically, but the prior as used by a

given observer.

Our general strategy is closely related to that described

in Paninski (2006). However, in the simulated experiment

described by Paninski, the observer estimates a continu-

ous parameter, and so each trial provides an equality

constraint on the prior. Here, we concentrate on the more

common case in which the observer makes a forced

choice, so that each trial provides a weaker, inequality

constraint on the prior.
2. RESULTS
The shape information in our images is a function of two

parameters, the direction q of the light source and the

three-dimensional shape c of the imaged surface, which

specifies whether the stimulus is concave cZc1 or convex

cZc0. On each trial, the observer is presented with an

image x, and makes a binary response rZ1 if the stimulus

appears concave or rZ0 if the stimulus appears convex

(see appendix A).

We assume that the observer’s perceived shape ĉ of a

shape c depends on two quantities: the posterior

probability density function and the loss function. First,

the probability (density) that the shape has value c and

that the light source is in direction q given an image x

defines the joint posterior probability density function

p(c,qjx). Second, the ‘cost’ of perceiving a shape as ĉ, when

it is actually c, is defined by the loss function Dðĉ; cÞ.
This journal is q 2009 The Royal Society



X

Figure 1. Typical stimulus presented to an observer on a
single trial. The observer’s task is to indicate whether or not
the quadrant marked with a cross (!) appears convex or
concave. This response implicitly defines the perceived
direction of the light source. For example, if the marked
quadrant is perceived as convex, then this implies that the
light originates from the lower right (i.e. approx. 3008), but if
it is perceived as concave, then this implies that the light
originates from the upper left (i.e. approx. 1208).
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The observer’s perception is assumed to correspond

to the shape ĉ, which minimizes the expected loss,

where this expectation is taken over all possible values

of q and c

E Z

ð
c

ð
q

pðc; q jxÞDðĉ; cÞdq dc; ð2:1Þ

Z

ð
c
Dðĉ; cÞ

ð
q
pðc; q jxÞdq

� �
dc: ð2:2Þ

Using Bayes’ rule, the posterior is given by

pðc; q jxÞZ pðx j c; qÞpðc; qÞ=pðxÞ; ð2:3Þ

where the observer’s prior expectations about shapes

and lighting directions define the joint prior distri-

bution p(c, q), and where the probability of the

observed image for a given three-dimensional shape

and lighting direction defines the likelihood function

p(xjc, q). The integral in square brackets in equation

(2.2) can now be rewritten as

pðc jxÞZ
1

pðxÞ

ð
q

pðx j c; qÞpðc; qÞdq; ð2:4Þ

so that the expected loss is

E Z

ð
c
pðc jxÞDðĉ; cÞdc: ð2:5Þ

In fact, each stimulus x is consistent with only two

lighting directions, qx and �qxZqxC1808. This implies

that the likelihood p(xjc, q) is a delta function, which

is zero except at qZqx and qZ �qx,

pðx j c0; qÞZ dðqK qxÞ; ð2:6Þ

pðx j c1; qÞZ dðqK �qxÞ: ð2:7Þ
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Substituting equation (2.6) in equation (2.4) for

cZc0 yields

pðc0 jxÞZ
1

pðxÞ

ð
dðqK qxÞp ðc0; qÞdq; ð2:8Þ

Z pðc0; qxÞ=pðxÞ: ð2:9Þ

If the observer assumes that the stimulus shape and

the lighting direction are independent, then the joint

prior distribution p(c0,qx) factorizes to yield

pðc0 jxÞZ pðc0ÞpqðqxÞ=pðxÞ; ð2:10Þ

where pq(qx) is the prior over lighting direction and

p(c0) is the prior for the shape c0. A similar calculation

for cZc1 yields

pðc1 jxÞZ pðc1Þpqð �qxÞ=pðxÞ: ð2:11Þ

Regardless of the value of qx and �qx, each observer

perceives the stimulus as either convex c0 or concave c1,

and responds accordingly. Thus, together, p(c1) and p(c0) is

a pair of co-determined observer-specific scalar priors,

such that p(c1)Cp(c0)Z1. We call the prior p(c1) the

concavity preference for a given observer, which can be

estimated using the same method (described below) for

estimating the prior pq(q).

We choose the zero/one loss function to model the

forced choice task, i.e. Dðĉ; cÞZ0 for a correct decision and

Dðĉ; cÞZ1 for an incorrect decision (Bishop 1996); the

optimal decision rule under this loss function minimizes

the number of misclassified stimuli. Substituting this loss

function into equation (2.5), we find that the observer

should respond rZ0 (convex) if the log posterior ratio

LZ log
pðc0 jxÞ

pðc1 jxÞ
; ð2:12Þ

Z log
pðc0ÞpðqxÞ

pðc1Þpð �qxÞ
; ð2:13Þ

R0 ð2:14Þ

and the response should be rZ1 (concave) otherwise.

This deterministic rule would lead to the same decision

for all presentations of a given stimulus. In order to model

the stochastic character of human decision making, we

follow a general suggestion of (Paninski 2006), and

assume that our rule is stochastic (see §3). Specifically,

we assume that the process (e.g. the observer’s criterion)

that compares the log posterior probability log p(c0jx)

with log p(c1jx) is subject to noise. In order to be clear

about the implications of this, we define

L0 Z10 log pðc0ÞpqðqxÞ; ð2:15Þ

L1 Z10 log pðc1Þpqð �qxÞ ð2:16Þ

and rewrite equation (2.14) as LZL0KL1. We assume

that the distribution of L0 values is Gaussian with mean �L0

and standard deviation s, and that the distribution of L1

values is Gaussian with mean �L1 and also with standard

deviation s. As L0 and L1 are both Gaussian with

variance s2, L is also Gaussian with mean �LZ �L0K �L1

and variance s2
LZ2s2. For simplicity, we assume that s is

the same for all lighting directions.

Note that we have chosen to measure the relative log

likelihood (sometimes called evidence) in decibels (dB) as

suggested by Jaynes (2003). This allows easy comparison

of levels of evidence. For example, evidence of 3 dB for a
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Figure 2. Evaluating cross-validation method for estimating
the value of the smoothing parameter l. Results for the
simulated observer’s data shown in (c) for sZ1. See
appendix B. (a) At each sampled value of l, three quarters
of the data were used to estimate the prior. Using this prior,
the likelihood of the remaining quarter was evaluated using
equation (2.23), where sZ1. This was repeated once for
each of four disjoint quarters, and the mean of the four
resultant likelihood functions is plotted here. The minimum
with respect to the negative log likelihood corresponds to
lz700. (b) To evaluate the success of cross-validation for
each sampled value lj of l, the Kullback–Leibler (KL)
divergence between the known prior p�q ðqÞ of this simulated
observer and the prior p̂qðqÞ obtained with lj was calculated
as EKLZ1000!Dq

P
p̂qðqiÞlog p̂qðqiÞ=p

�
q ðqiÞ; where iZ(0,

10, ., 350), qiZ10!i and DqZ108. The minimum with
respect to the KL distance also corresponds to lz700,
confirming that cross-validation chooses a value of l, which
provides a good estimate of the true prior. (c) Estimating the
light-from-above prior pq(q) for a simulated observer. The
lighting direction varies around the circle, and the probability
that the stimulus was judged to be convex varies with distance
from the origin. The graph shows (i) a sample from the
posterior p(c0jx) as the proportion of convex responses
(dashed), (ii) the known prior (dotted), (iii) the estimated
prior (solid), based on the proportion of convex responses, as it
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hypothesis means that it is about twice as likely than its

alternative, and 10 dB means that it is about 10 times as

likely. Jaynes has suggested that an evidence threshold of

approximately 1 dB is characteristic of many human

judgements (Jaynes 2003).

We assume that the probability P(c0jx) of the observer

perceiving a shape c0 is described by the cumulative

density function of a Gaussian with zero mean and

variance s2
L,

Pðc0 jxÞZ
1

sL
ffiffiffiffiffiffi
2p

p

ðL
KN

eKh2=ð2s2
LÞ dh; ð2:17Þ

Z ð1Cerf ðL
ffiffiffi
2

p
=sLÞÞ=2; ð2:18Þ

Z q; ð2:19Þ

where q is defined for brevity. For a given value of q, if

the same stimulus is presented on n trials and if

responses are independent across trials, then the

probability that the observer responds rZ1 (concave)

on m of those n trials is

pðm j qÞZCn;m qmð1KqÞnKm; ð2:20Þ

where Cn,m is a binomial coefficient. For a given light

direction, Cn,m is constant, and so it does not affect the

value q̂i that maximizes p(mjq), and is omitted below.

We discretize the lighting direction into N values:

qi:iZ1, ., N. For a given value of qi , we present the

stimulus ni times, and record the number mi of ‘concave’

responses, so that

pðmi j qiÞZ q
mi

i ð1K qiÞ
niKmi : ð2:21Þ

Thus, the ni binary responses of a single observer to

repeated presentations of the same stimulus are maximally

consistent with the value q̂i of qi , which is the probability

that the observer perceives the shape as concave when the

lighting direction is qi.

When considered over all N lighting directions, and

assuming independent noise, the probability of the vector

mZ(m1, ., mN) for a given vector qZ(q1, ., qN) is

pðm jqÞZ
Y
i

q
mi

i ð1K qiÞ
niKmi ; ð2:22Þ

which is the likelihood function of q. The vector q̂ of q that

maximizes p(mjq) is the maximum-likelihood estimate of

the true value q�. Taking logs and multiplying by minus,

one transforms equation (2.22) into the negative log

likelihood function of q,

Ef ZK
XN
i

mi log qi C ðniKmiÞlogð1K qiÞ: ð2:23Þ
would be for a human observer, and (iv) the mean vector
(solid line), which is the mean of the prior (see appendix C).
The direction of this vector indicates the bias in the prior, and
its length shows the amount of bias (see appendix A). The
simulated observer was exposed to the same 36 lighting
directions and the same number of trials per lighting direction
(32) as the human observers used in the experiment described
in the text, a discrimination parameter that was set at s�Z1 dB
and a concavity preference set at p(c1)Z0.5. The value of the
smoothing parameter estimated from cross-validation is
lZ700 (see (a) and (b)). Using lZ700 and sZ1, the concavity
preference was estimated as p̂ðc1ÞZ0:507.
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As both the prior distribution and the concavity preference

are implicit in q̂, this provides an estimate p̂qðqÞ of the true

prior distribution p�q ðqÞ, and an estimate p̂ðc1Þ of the true

concavity preference p�(c1).

As discussed later, the unknown value of the discrimi-

nation parameter sL means that, in practice, the prior is

not completely determined by equation (2.14) (see §3);

but for the sake of brevity, we will refer to this as

‘estimating the prior’.
102 103
42

l

Figure 3. Cross-validation. Result for estimating the value of
the smoothing parameter l for observer a in figure 4, with
sZ2. The minimum with respect to the negative log
likelihood corresponds to lz400. This curve is typical of
that obtained for other observers, and a value of l̂Z400 was
therefore used for all human observers.
(a) Smoothing the prior

Unless the dataset is very large, the prior distribution

estimated by direct minimization of Ef will not be very

smooth. Smoothness of the prior probability for lighting

direction is an important physical constraint, which we

can model by regularizing the solution

E ZEf Cl2Es; ð2:24Þ

where Es is a measure of the smoothness of pq(q), and l is

proportional to the square of the expected angular scale

over which the prior for lighting direction is expected to

change. This regularization procedure can be thought of

as specifying a ‘prior for priors’ (Paninski 2006).

Paninski suggests using the usual L2 norm on the

derivative of the prior to measure smoothness. A related

measure that is more appropriate to this probabilistic

situation (see §3) is the Fisher information, which

measures the extent to which the prior pq(q) is localized,

and which is a weighted version of the usual L2 norm,

Es ZE
d log pqðqÞ

dq

� �2� �
; ð2:25Þ

Z
X
i

ðpqðqiC1ÞK pqðqiÞÞ
2

pqðqiÞ Dq
: ð2:26Þ

In summary, for given values of the smoothing parameter l,

the values of the N elements of the discretized prior pq(q)

and the concavity preference p(c1) can be estimated

simultaneously as those values which minimize E (equation

(2.24)). The value of l was estimated using cross-validation

(Bishop 1996; see appendix B), and the MATLAB mini-

mization procedure ‘fminsearch’ was used to find an

estimate of p�q ðqÞ and p�(c1).

(b) Results for simulated observer

In order to test our methods, we first analysed data from

a simulated observer with a known prior p�q ðqÞ. The

prior was defined as a von Mises distribution (Fisher

1995) pqðqÞZexpðk cosðqKmÞÞ, with location parameter

mZK458 and dispersion parameter kZ0.33. The value of

the smoothing parameter l has no explicit representation

when generating data for the simulated observer, and

cross-validation (appendix B) was used to find an estimate

of l̂Z700 (figure 2). This was then used with the known

value of sZ1 to estimate the simulated observer’s prior

p̂qðqÞ for lighting direction and its concavity preference

p̂ðc1Þ. The concavity preference of this simulated observer

had been defined as p(c1)Z0.5, and was subsequently

estimated as p̂ðc1ÞZ0:507. The method also recovered an

accurate estimate of the prior, as shown in figure 2c.
Proc. R. Soc. B (2009)
(c) Results for human observers

Using cross-validation (appendix B), the estimated value

of the smoothing parameter was l̂Z400 (figure 3). This

was then used with sZ2 to estimate each observer’s prior

pq(q) (figure 4). In each case, the estimated prior is biased

towards the upper left, in agreement with previous

findings on group average data (Mamassian & Landy

2001). Thus, the left biases observed in each posterior in

figure 4 and in Mamassian & Goutcher (2001), as well as

the left and right biases reported in Sun & Perona (1998)

and Adams et al. (2004), are probably due to a bias in each

observer’s prior, rather than a bias in the likelihood

function. The estimated prior concavity preferences for all

observers were within the range p̂ðc1ÞZ0:49–0:51,

compared with findings for the posterior in Adams et al.

(2004) (0.44), which used similar stimuli. Details of the

experimental procedure are given in appendix A.
3. DISCUSSION
When an observer is asked to report the concavity/

convexity of a shape for a range of different lighting

directions, the resultant set of responses (usually depicted

as a polar plot) represents a sample from their posterior

probability density function for shape. It is this sample

from the observer’s posterior which has been used in all

previous experiments to provide estimates of observers’

posterior for lighting direction.

The main contribution of this paper is a method for

using this sampled posterior, in combination with a

likelihood function and a loss function, to estimate the

prior probability density function for lighting direction

and the prior for concavity preference in individual

observers. In order to achieve this, we assume plausible

forms for the likelihood and loss functions. For the loss

function, we assume that each observer attempts to

minimize the number of misclassified stimuli, an objective

which corresponds to making responses consistent with

the mode of the posterior probability density function.

With regard to the likelihood function, each convexity/

concavity response is consistent with one of two possible

lighting directions, which effectively implies that the

likelihood function is a delta function with non-zero

values corresponding to these two lighting directions. This

provides a posterior which is proportional to the prior

for exactly two lighting directions and two shapes
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Figure 4. Polar plots of estimated priors for eight observers. Each graph shows the frequency of convex responses (dashed) as a
function of light-source direction. This is essentially a sample from the observer’s posterior, and is used to estimate the prior
(solid). For display purposes, the lengths of all mean vectors (solid line) have been scaled by the same factor across all graphs,
and all graphs are drawn to the same scale (see appendix C). Note that all biases are to the left, with values of 208, 78, 98, 188, 348,
148, 288 and 168, respectively (mean 188). These results were obtained using all the data for each observer with lZ400 and sZ2.
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(convex/concave). An estimate of each observer’s prior

and concavity preference was then obtained by minimizing

a regularized (smoothed) version of the negative log

likelihood of the sampled posterior.

(a) Related work

Research on motion perception explained the change in

perceived speed that occurs at different levels of contrast

by assuming a specific (Gaussian) form the speed prior

(Weiss et al. 2002). Other researchers assume that the

mean of the posterior coincides with the true stimulus

value in a sensorimotor task (Körding & Wolpert 2004) or

that (i) the log of the prior is a straight line, (ii) the

likelihood is Gaussian, and (iii) the mean of the posterior

is the true mean (Stocker & Simoncelli 2006a). We make

none of these assumptions.

A parametric estimate of the lighting prior has

previously been obtained (Mamassian & Landy 2001)

under the assumption that it can be described by a two-

parameter von Mises distribution (see below).

The method described here is inspired by Paninski

(2006). However, our method is different from Paninski’s

in two key respects. First, the stochastic choice model

assumes that the log posterior probabilities (and not
Proc. R. Soc. B (2009)
posterior probabilities) are subject to additive Gaussian

noise (equation (2.17)). This has a number of advantages.

(i) The chosen value of s corresponds naturally to a

threshold value for the evidence (in the sense of log

posterior ratio) needed to obtain a given choice rate in

the presence of encoding noise. (ii) There are no

problems of positivity in adding an unbounded noise

contribution to probability values which should be

positive. (iii) The neural encoding of log probabilities

has been shown to have a direct neural interpretation as an

approximation to Poisson noise in neural populations

(Gold & Shadlen 2001).

Second, we have replaced the L2 regularizer used in

Paninski (2006) with Fisher information. This is more

closely related to the probabilistic nature of the problem.

Essentially, regularization using Fisher information

(equation (2.26)) tries to satisfy the experimental

constraints using the least localized prior density. By

up-weighting the contribution for low probabilities (i.e. by

1/pq(q)), the Fisher regularizer takes account of the fact

that small ripples in low-probability regions are just as

significant as larger ripples at higher probability values

when the task requires a likelihood ratio judgement. There

is inevitably a trade-off between the form of the estimated
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Figure 5. The discrimination parameter s is undetermined. (a) Graph of an example log prior, log pq(q) (solid horizontal
sinusoid curve), as a function of lighting direction q. Given two hypothetical neurons with preferred lighting directions q and �q,
their responses are determined by their log probability density functions, log p(q) and log pð�qÞ, indicated by the vertical dashed
and solid curves, respectively. For a given stimulus, the larger of the two observed values from the probability density functions
log p(q) and log pð�qÞ determines the lighting direction assumed by the observer, and this, in turn, determines the concave/convex
observer response. These two observed values are noisy estimates of the probability density function means, so the choice
probability q (see equation (2.19)) is determined by the relative overlap of the probability density functions (vertical dashed and
solid curves) for these two quantities. (b) A log prior with amplitude variations k times smaller than in (a) leads to the same
choice probabilities as in (a), provided the noise level s is also reduced by a factor k. (For simplicity, this analysis assumes a
concavity preference of 0.5.)
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prior and the nature of the smoothing function. However,

because the Fisher regularizer seeks that prior with

the least localized density, it can be interpreted as the

regularizer of least commitment.
(b) The experimental task

The design of the concavity–convexity task was chosen for

a number of reasons. First, we have chosen a forced choice

task. Experiments in which the observer provides an

explicit estimate of lighting direction on each trial could

provide more powerful constraints on the prior. However,

asking observers to estimate lighting direction is an

unnatural task, and is therefore likely to yield data that

are both biased and noisy. Although we have seen that the

forced choice experiment leaves some aspects of the prior

unconstrained, it requires far fewer modelling assump-

tions than parameter estimation alternatives, and so the

information that is obtained is more reliable.

Second, although the question of the modification of

the prior by feedback is of great interest (Adams et al.

2004), no feedback was given here, and there is no correct

response for the chosen stimuli. This is important

because, in most applications, even a small number of

trials with feedback reduce the dependence of the

posterior on the prior to insignificance (Mele & Rawling

2004; indeed, this ‘washing out’ property is often invoked

to protect Bayesian methods from the consequences of

choosing incorrect priors). In our experiment, neither the

posterior nor the prior can be updated as a consequence of

feedback. It is generally assumed that exposure to a biased

population of stimuli (e.g. exposure to mainly concave

stimuli) induces a shift in the prior. However, this appears

to be the case only if feedback is given to correct the

interpretation of ambiguous stimuli. Observers adapt their

visual interpretation of stimuli as those in figure 1,

provided they are given haptic feedback of those stimuli

(Adams et al. 2004). Moreover, this adaptation was found

to affect performance on a different (lightness judgement)

task, which required an assumption regarding light

direction, indicating a shift in the mean of the light-

from-above prior. From a statistical perspective, this
Proc. R. Soc. B (2009)
makes sense. Decisions based on a series of measurements

with corrective feedback are initially based mainly on prior

expectations. However, the corrective feedback can be

used to update the prior, making future decisions more

reliable, as in the classic Kalman filter (Kalman 1960).

However, exposure to a biased population of stimuli

without feedback induces after-effects in the opposite

direction to that predicted by a shift in the prior. These

after-effects are consistent with a change in the likelihood

function and not in the prior (Stocker & Simoncelli

2006b). In our experiment, observers were exposed to an

unbiased population of stimuli and received no feedback.

Given the above considerations, this suggests that the

prior and likelihood were not affected by the stimuli, and

were reasonably constant throughout the experiment.

Third, we have used stimuli which are essentially noise

free. Many visual tasks have unavoidable sensory noise,

and when this is not the case, experimenters have added

artificial noise, specifically in order to allow a Bayesian

analysis. By virtually eliminating this sensory noise in a

very simple task, we have ensured that any stochastic

variation in responses must be a result of noise in the

internal encoding of variables used in the decision process,

noise which we have modelled by the parameter s.
(c) Estimating the discrimination parameter

Our estimate of the prior depends on the value of the

discrimination parameter s, and we have not addressed

how to fix a value for s. This parameter cannot be

estimated directly from experimental data because, for any

given value of s, there is a prior which fits the observed

data equally well, as shown in figure 5. This ambiguity is

unavoidable for judgement tasks that depend only on

likelihood ratios, which comprise the majority of choice

tasks (Green & Swets 1966). For the task considered here,

this dependence is made explicit in equation (2.17), where

the posterior probability is seen to be a function of the

ratio L/s, so that smaller log likelihood differences L can

always be reliably detected by using a smaller value for s.

We have chosen a value sZ2 dB to analyse human data,

which is a generous approximation to the 1 dB assumed as
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a nominal value for the discrimination threshold for

human judgements (Jaynes 2003). We anticipate that an

analysis similar to that proposed by Jazayeri & Movshon

(2006) based on Poisson statistics of individual model

neurons would constrain the value of s.

We note that this choice of discrimination parameter

gives estimated lighting priors (figure 4), which are similar

in shape to the von Mises distributions assumed in

Mamassian & Landy (2001), but which are less localized

than implied by the values of their estimated concentration

parameters. This is consistent with our aim to use the prior

of least commitment.

(d) Priors for other parameters

The method described for estimating perceptual priors

can, in principle, be applied to a variety of other

parameters. These include priors for low-level parameters

(e.g. speed, direction, line orientation, colour, spectral

illuminance), but could also be extended to high-order

parameters (e.g. faces, words, syllables).

(e) More complex priors

In this study, we have just two variable parameters, light

direction (q) and the convexity/concavity (c) of a fixed

shape, and there is no reason to expect these parameters to

be correlated in the physical world. Hence, we were able

to assume independence and factorize the joint prior

p(q,c)Zpq(q)p(c). This assumption was essential in order

to make the estimation problem tractable, but it may not

be justified in general.

A prior is just the re-scaled marginal distribution of a

multivariate prior distribution. In this study, we have kept

all parameters constant except light direction (q) and

the convexity/concavity (c) of a fixed shape. This implies

that the prior we have estimated is the marginal of a

two-dimensional joint distribution p(q, c). Moreover, this

joint distribution is itself a marginal distribution of a high-

dimensional prior distribution with axes that include

parameters such as shape, illuminance spectrum, multiple

light sources, colour and stereo disparity. Had we the time

and the means to find the light-from-above marginal of

this high-dimensional prior distribution, it is possible that

the result would be quite different.
4. CONCLUSION
If Helmholtz was correct in stating that perception is a

form of ‘unconscious inference’ (von Helmholtz 1867),

then this implies the existence of a posterior (which

determines a perception), a likelihood function

(the conditional probability of the retinal image) and a

prior (the observer’s expectations about the statistical

structure of the visual world). Studies in computational

neuroscience suggest that the visual system is adapted to

the statistical structure of its physical environment

(Olshausen & Field 2004). Moreover, this adaptation

occurs over a range of time scales, and shapes the

evolution of the visual system over generations, and

the transfer functions of visual neurons over a matter of

seconds (Rieke et al. 1996). Here, we have described a

method for characterizing the prior for lighting direction.

We anticipate that this method will be used to characterize

many other priors used for perceptual inference.

Thanks to Stephen Isard for his useful discussions.
Proc. R. Soc. B (2009)
APPENDIX A. EXPERIMENTAL METHODS
(a) Participants

There were eight observers, in the age range of 21–26

years (mean ageZ22.7). Observers all gave their informed

consent and were paid £5 sterling.

(b) Apparatus and procedure

The experiment was run in a dimly lit room. Stimuli were

generated using the MATLAB (v. 7.3.0 R2006b) and

PSYCHTOOLBOX (v. 3.0.8) (Pelli 1997). The observer

viewed stimuli on a 17 inch TFT monitor, at a distance

of 57 cm, using a chin rest. Each observer completed 576

trials in a morning and afternoon session (not on the same

day), making a total of 1152 trials. Stimuli were presented

in 16 blocks of 36 trials each. After each block of 36 trials,

the observer was able to take a break. In each trial, a

stimulus was presented with one of the discs marked with

an ‘!’ in the outermost corner, as in figure 1. The

observer’s task was to indicate whether the marked disc

appeared to be convex or concave by pressing one of two

response keys. Each stimulus remained on the screen until

the observer made a response, after which the screen went

blank, and there was a pause of 0.5–1 s before the next

stimulus appeared. Observers received no feedback.

The lighting direction adopted one of 36 directions

‘around the clock’, at intervals of 108. For each lighting

direction, the stimulus had two complementary con-

figurations. In one configuration, the top left and

bottom right discs were convex, whereas the top right

and bottom left were concave, and in the comple-

mentary configuration it was the other way around. The

reason for having two configurations per lighting

direction was to ensure that each stimulus looked

identical to its complementary configuration when lit

from 1808 further around the clock. Each disc position

(e.g. top left) in each configuration was presented twice

at each lighting direction, making a total of 1152 trials

(i.e. 4 positions!2 configurations!2 repeats!36 light

orientations!2 sessions).
APPENDIX B. ESTIMATING LAMBDA
Cross-validation consists of splitting each observer’s data

into two subsets, a training dataset strain and a test dataset

stest. For each putative value of lZlj, the training data strain

was used to estimate q̂ (and therefore the prior) by

minimizing E. Setting qiZ q̂i in equation (2.23), E f (stest )

was then evaluated using the test data stest , which yields

estimate of the likelihood of the test data for lj. This

procedure is repeated over a range of values for lj, and the

value of lj that minimizes E f (stest ) is taken to be l̂. In

order to obtain a robust estimate for l̂, this whole

procedure was repeated using four runs, as follows.

Initially, the data were split into four subsets. On each

run, three subsets were combined to make the training set,

and the remaining subset was used as the test set. Each of

the four subsets took its turn as the test set on exactly one

run, with the remaining three subsets being used as the

training set. Each run yielded a curve for E f (stest ) as a

function of l, and these four curves were averaged. The

value of l corresponding to the minimum of this average

curve was taken to be l̂ for a single observer. The value of s

was set to sZ1 for the simulated observer and to sZ2 for

human observers.
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APPENDIX C. THE MEAN VECTOR
The mean vector is the mean of the estimated prior

distribution. The direction of this vector indicates the

direction of the bias (anisotropy) in the prior and its

length shows the amount of bias. The x and y compo-

nents of the mean vector are xZ
P

qpqðqÞcos q and

yZ
P

qpqðqÞsin q, respectively.
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