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Why do we age? Since ageing is a near-universal feature of complex organisms, a convincing theory must

provide a robust evolutionary explanation for its ubiquity. This theory should be compatible with the

physiological evidence that ageing is largely due to deterioration, which is, in principle, reversible through

repair. Moreover, this theory should also explain why natural selection has favoured organisms that first

improve with age (mortality rates decrease) and then deteriorate with age (mortality rates rise). We present

a candidate for such a theory of life history, applied initially to a species with determinate growth. The

model features both the quantity and the quality of somatic capital, where it is optimal to initially build up

quantity, but to allow quality to deteriorate. The main theoretical result of the paper is that a life history

where mortality decreases early in life and then increases late in life is evolutionarily optimal. In order to

apply the model to humans, in particular, we include a budget constraint to allow intergenerational

transfers. The resultant theory then accounts for all our basic demographic characteristics, including

menopause with extended survival after reproduction has ceased.
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1. INTRODUCTION
Why has natural selection not produced complex

organisms that do not age? As George Williams (1957)

wrote, ‘It is indeed remarkable that after a seemingly

miraculous feat of morphogenesis a complex metazoan

should be unable to perform the much simpler task of

merely maintaining what is already formed.’ After

50 years, evolutionary theory has yet to completely solve

this basic mystery of why complex life forms, such as

human beings, grow and improve during a first phase of

life, only then to deteriorate and senesce later. Indeed,

biologists have usually modelled the evolution of growth

and development separately from the evolution of ageing.

In this paper, we provide an integrated theory of

ageing that shows why this pattern is evolutionarily

optimal, at least in species with irreversible growth.
2. EVOLUTIONARY THEORIES OF AGEING
The classical biological theory of ageing argues that

natural selection on genes with age-specific phenotypic

effects become progressively weaker at older ages. That is,

since death occurs with some positive probability, traits

expressed at older ages have a smaller impact. Since the

frequency of deleterious mutations is a balance between

the mutation rate and the force of natural selection against

them, the frequency of such mutations should increase

with age (Medawar 1952). In addition, pleiotropic genes

with positive effects early in life but negative effects at later

ages should tend to accumulate in the population,

also resulting in an increase in the mortality rate with

age (Williams 1957). Hamilton (1966) was the first to

formalize this theory, and argued that senescence was an
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inevitable consequence of the progressive weakening of

selection with age. Since then, the theory has been further

elaborated by Charlesworth (1994), and generalized to

include intergenerational transfers by Lee (2003).

Recent work shows that this theory is not likely to

provide an adequate explanation of ageing. The claim that

senescence is an inevitable consequence of natural

selection has recently come under vigorous attack on

both empirical and theoretical grounds. From an empiri-

cal perspective, it is now known that some species exhibit

negligible senescence (Finch 1998). From a theoretical

perspective, Hamilton’s model is not very general, since

his results depend critically on how mutations affect

mortality rates (Steinsaltz et al. 2005), and under some

conditions mortality rates may even decrease late in life

(Vaupel et al. 2004). Next, a model on age-specific

mutations does not readily account for the progressive

deterioration of somatic tissue and functional abilities.

There is now increasing evidence that both intracellular

and organ damage accumulates gradually and pro-

gressively with age, and this results in cancers and

decreased functional abilities. An adequate theory of

ageing must not only account for rising mortality rates

with age, but also with the physiological evidence

concerning the ageing process itself. In summary, the

classical theory fails on two accounts: (i) lack of generality

and (ii) inability to account for the physiology of ageing.

Kirkwood’s (1990) disposable soma theory of ageing

solved some of these problems and inspired an optimality

approach to ageing. Kirkwood argued that the repair of

somatic tissue must be optimized by natural selection.

At some point, greater returns will be obtained through

reproduction than through repair. Perhaps, then, optimal

repair is less than complete and the soma deteriorates

with age, ultimately being replaced by descendants.

The segregation of the somatic and germ lines permits

the degradation of the former.
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While the disposable soma theory points to imperfect

repair as the key to understanding ageing, it does not

provide a convincing reason why optimal repair is

incomplete. Kirkwood’s original model, and others that

build upon it (e.g. Cichon & Kozlowski 2000), simply

assume costly repair functions that make it impossible for

mortality to decrease over time and prohibitively expens-

ive at the margin to even keep it constant. This assumption

assures ageing without explaining it. In fact, there is no

obvious reason why cell quality could not improve with

age. If organisms can invest in growth, an increase in the

quantity of somatic capital, why could they not also invest

in increasing somatic quality as well? In fact, Sozou &

Seymour (2004) showed that constant mortality may be

optimal if the assumption that a perfect repair is infinitely

costly is relaxed. Indeed, a familiar property of optimal

growth models from economics is that the capital stock

should grow until an optimal long-run level is reached,

after which this level should be maintained. If initially it is

worth investing in some asset, such as the body, it is worth

maintaining it at the optimal long-run level indefinitely.

Other models of optimal ageing also assume exogenous

conditions that assure ageing without explaining it. For

example, Chu & Lee (2004) showed that optimal

mortality rates decrease and increase in response to

exogenous increases and decreases in production. That

is, ageing is built into the production function, and hence

the model, by assumption, rather than being explained

within the model. Similarly, Grossman (1972) and

Ehrlich & Chuma (1990) presented economic models of

optimal mortality that generate senescence by assuming

that the depreciation rate for health capital is an

exogenously given increasing function of time. If it is

assumed that it becomes increasingly expensive to

maintain health, mortality rates will increase in

response—but this raises the question of why the cost of

health maintenance should rise with age.

Finally, neither mutation–selection balance nor

previous optimality models have fully accounted for the

decrease in mortality during the first phase of life.

The disposable soma models imply that mortality should

increase monotonically with age. Hamilton’s (1966)

analysis implies that mortality should be constant across

all ages up to sexual maturity. Lee (2003) showed how

mutation–selection models can lead to a decrease in

mortality with age, if individuals receive transfers when

they are young and provide them when they are old.

However, these transfer functions have an exogenously

given age dependence. Charnov (2005) also developed a

model that assumes size-dependent mortality and hence

an initial decrease in mortality with age.

Our paper is in the same tradition as Lee (2003).

However, we assume that all of the functions used as

building blocks in the model have no exogenously given time

dependence. Nevertheless, we prove that all the empirically

observable functions exhibit reasonable endogenously

derived age dependence. As a key example, mortality

decreases in an initial phase of life, but rises thereafter.

In summary, given that ageing is a near-universal

feature of complex organisms, an adequate theory should

provide a general evolutionary explanation for its occur-

rence, without making assumptions about exogenous

conditions that build ageing into the model. It should be

compatible with the physiological evidence that ageing is
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largely due to deterioration, which is, in principle,

reversible through repair. Moreover, an adequate theory

must explain why mortality rates decrease during the first

phase of life, but rise during the final phase. It must

explain why natural selection favoured organisms that first

improve with age and then deteriorate. Finally, it should

also have the potential to accommodate the key specific

attributes of human life history, such as menopause.

This paper presents a candidate for such a theory. Our

theory is restricted here to organisms with age-structured

life cycles in which growth is irreversible. For specificity, it

models the deterministic growth of mammals and birds,

but its results can easily be extended to organisms that

have no precise age at which growth ceases (indeterminate

growth). There are certainly issues with extending the

model to organisms with complex life cycles with

metamorphosis, such as many insects, amphibians and

marine organisms, where the body mass decreases,

perhaps dramatically. However, the insight here that

somatic maintenance may be too expensive for a larger

organism will retain much of its force for any multicellular

organism, even those with complex life cycles.
3. AN OVERVIEW OF THE THEORY
The basis of the theory is that complex multicellular

organisms evolved because investments in growth and cell

differentiation maximized the intrinsic rate of growth.

Thus, natural selection resulted in individuals who invest

in somatic capital, which is then used to produce energy to

support continued life and reproduction. A novel feature

of this theory is that such somatic capital is characterized

here by both quantity and quality. The quantity of capital

is the number of cells, which is closely related to mass.

There is initial investment in quantity, so cell number

increases irreversibly up to some age, but is thereafter

constant, capturing the determinate growth pattern of

humans, most birds and mammals. Cell quality, as

measured by functional efficiency, is also assumed to be

capable of improvement by investment. Without such

investment, however, cell quality depreciates over time

due to environmental assaults and the build-up of

deleterious by-products of cell metabolism.

The model then generates a new theory of ageing, as

follows. At each age, individuals are selected to optimize

the quantity and quality of somatic capital, and their

investments in mortality reduction and fertility, so as to

maximize the intrinsic rate of increase in their genetic

lineage. The time profiles affect fitness directly through

their impact on energy production. However, the cost of

investment in quality depends on the quantity of capital,

because each cell is subject to deterioration and has its

own maintenance costs. Under plausible conditions, it is

now evolutionarily optimal to generate a high level of

initial quality, but then to let it decrease with age. This is

because the quality of the relatively small number of cells

in the germ line can be maintained cheaply. Just as somatic

cells differentiate to accomplish specialized functions

(digestion, immune function, etc), germ cells and stem

cells are specialized to maintain genetic quality.

Optimal investments in mortality reduction respond to

the overall value of the remaining life. In an initial phase of

life there is somatic growth, and the net expected future

total production increases with age. Thus, optimal
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investment in mortality reduction increases and mortality

decreases. In a second phase of life, since quality continues

to decrease, the net expected future total production

declines with age. Thus, optimal investment in mortality

reduction decreases and mortality rises. These effects

occur even though the quantity and quality of capital have

no direct effects on mortality, but only indirect ones via

their impacts on productivity.

For specificity, our model allows extensive intergenera-

tional transfers, as is relevant to the human case. Transfers

do not end at any particular age of the offspring, and there is

a looser social budget constraint rather than a budget

constraint that applies to each family. Allowing intergenera-

tional transfers permits us to explain menopause—selection

favours mortality reduction among post-reproductive

individuals, given they provide such transfers. Our model

is therefore compatible with all of the basic demographic

characteristics of humans. At the same time, there would be

no difficulty in adapting our model of ageing to any system

of intergenerational transfers, even if they were strictly from

parent to offspring, and ended with weaning or even at

birth. The basic explanation of ageing provided here would

accordingly apply to a wide variety of multicellular

organisms with irreversible growth.

Consider then a formal model of ageing in humans.
4. THE MODEL
(a) Gross energy

Suppose that the gross energy production rate, G, of an

individual is an increasing function of the quantity, K, and

the quality, Q, of somatic capital. If either quantity or

quality of capital were zero, there would be no energy

production. (These and further assumptions below are

formulated more completely and technically in the

appendix in the electronic supplementary material.)

(b) Fertility and its energy cost

Reproduction requires energy. Define F, then, as the

amount of energy remaining from gross energy G, net of

the energy costs of fertility, s. F is an increasing function

of G but a decreasing function of s. It is further assumed

that, as the gross energy increases, reproduction becomes

cheaper at the margin, implying the following condition on

the second mixed partial derivative of F: KFGs(G,s)O0.

(c) Growth of somatic capital

Given the interpretation of the quantity of somatic capital

as the number of somatic cells, it is assumed that an

investment in somatic capital is irreversible and capital

does not depreciate. Thus, for some investment function,

v(t), the capital stock, K(t), evolves as

dKðtÞ

dt
Z vðtÞR0:

The energetic cost of such an investment is av. For

simplicity, growth is determinate and follows a bang-bang

trajectory, with an initial period of maximal growth, so

that the investment function vðtÞZ �vO0 until age t�, say,

followed by a growth plateau, so that v(t)Z0 for all ages

beyond t�.

Thus, the choice of the investment trajectory for the

quantity of somatic capital reduces to the choice of how

long to grow, i.e. to finding the optimal t�R0. The most
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fundamental insights of the theory are robust if growth is

indeterminate or even reversible. These issues are

addressed in §8.

(d) Quality of capital

Quality, Q, is endogenously determined in this model as

follows. In the absence of investment in quality, it

depreciates at a constant rate r, due to the damage induced

by metabolism and external assaults. However, it is possible

to offset or reverse such depreciation through investments

in quality w. Hence, quality evolves according to

dQðtÞ

dt
ZwðtÞKr:

Such an investment incurs an energetic cost. In order to

capture the idea that each cell requires such maintenance,

a key assumption is that this cost is an increasing function of

the quantity of somatic capital K. The energetic cost of

quality improvement is bd(w, K ), where b is an exogenous

parameter that scales cost and d is the cost of w, given K.

(e) Mortality

Another major component of the model concerns

mortality, which can be reduced through energetic

investment. Consider the operation of the immune

system, for example. The larger the number of antibodies

of a given type in the system, the better protected the

individual is against the corresponding disease; the wider

the spectrum of types of antibodies, the greater the variety

of diseases to which the individual is immune. But

the larger the total number of antibodies maintained, the

greater the metabolic cost. Lower mortality is then

assumed to be possible, but at a greater cost and, indeed,

at a greater marginal cost, as follows: if m(t) is the rate of

mortality at age t, and p(t) is the probability of survival to

age t, then

1

pðtÞ

dpðtÞ

dt
ZKmðtÞ where pð0ÞZ 1:

The energetic cost of some given m is e(m), where

e 0(m)!0.

Suppose now that the population is in a steady-state

growth equilibrium, with growth rate r. The Euler–Lotka

equation must then hold.1 That is,
ðN

0
eKrtpðtÞsðtÞdt Z 1: ð4:1Þ

In the light of the above definitions and assumptions,

the energy flow surplus for an individual of age t is

F½GðK ðtÞ;QðtÞÞ; sðtÞ�KavðtÞKbdðwðtÞ;K ðtÞÞKeðmðtÞÞ;

which may be either positive or negative.

Intergenerational transfers arise with all parentally

investing organisms, including humans. With unrestricted

transfers, but no energy storage, as with most foragers,

economic feasibility requires that the total energy excess

generated by the old cover the total energy deficits of the

young, so that the steady-state budget balance condition isðN
0

eKrtpðtÞðFðGðK ðtÞ;QðtÞÞ; sðtÞÞKavðtÞ

KbdðwðtÞ;K ðtÞÞKeðmðtÞÞÞdtR0: ð4:2Þ

This is equivalent to requiring that an individual

respect an intertemporal budget constraint, where
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borrowing or lending are freely permitted, with an interest

factor eKrtp(t) to discount the energy flow at age t back to

age zero.

This analysis involves an idealization of hunter–

gatherer society—that is, despite these having typically

20–50 people, it is assumed that a continuous steady-state

age structure has been attained. Indeed, perhaps this

capacity to smooth out intergenerational transfers was one

of the key factors leading to the formation of hunter–

gatherer societies and influencing group size; a factor

additional to the risk-sharing usually stressed.

For simplicity, reproduction is considered to be asexual

and individuals in each lineage are genetically identical.

This removes the biological incentive problems for each

adult to repay the transfer that was made to her when she

was young. That is, she would willingly make the transfer

if they favour her own fully related offspring.

The main theoretical result of the paper is the following

theorem, which provides an explanation of ageing.

Theorem 1. If a is small enough, but b and �v are large

enough, then any solution to the basic evolutionary problem of

maximizing the Malthusian parameter, r, subject to the above

assumptions, the Euler–Lotka equation (4.1), and the budget

balance inequality (4.2), has the properties that t�O0

and wO0, at all ages tR0. Quality nevertheless declines

throughout life. Furthermore, there exist tLR0 and tHOt�OtL
such that fertility, s(t), is zero for all t%tL and for all tRtH,

and has a unique maximum at t�. Finally, mortality, m(t), is

U-shaped with a unique minimum at some t̂ 2 ½0; t��.

The assumptions on a and �v are required to generate a

non-trivial initial phase of somatic growth in which the

increase in somatic quantity raises productivity. This is

clearly realistic given that growth is observed in all

complex organisms.

The assumption that b is large reflects the idea that

each cell has its own non-trivial maintenance costs.

Hence, the cost of maintaining the quality of the germ

line is vanishingly small relative to the cost of maintaining

the quality of the somatic line, given the wide disparity in

the numbers of cells involved.2 This interpretation of b is

elaborated in the appendix in the electronic supple-

mentary material.

Below we verify that the predictions of theorem 1 are

consistent with a complete stylized picture of the

demography of humans.
5. INTUITIONS FOR THEOREM 1
Figure 1 illustrates the optimal trajectories of quantity, K,

and quality, Q, of capital, as obtained in theorem 1. With

respect to quantity of capital, it will pay to grow as long as

the marginal benefit of growth is greater than the marginal

cost. The marginal cost of one unit of quantity is a. The

marginal benefit of growth is realized over the remainder

of life. Larger body size has two effects on net production.

A larger body has a direct positive effect on energy

production but increases the marginal cost of investment

in quality. The age, t�, at which it pays to cease growing is

where the lifetime marginal net benefit of growth is equal

to the marginal cost:

gðt�ÞZ
1

pðt�Þ

ðT

t�
eKrðtKt�ÞpðtÞ½FGGK KbdK � dtZa:
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In figure 1, it can be seen that the net marginal benefit

of growth, g, will generally be high when the individual is

small, and decrease with age. Body size, K, increases at the

rate �v until t� and then remains constant.

A similar logic governs optimal investments in quality.

At each age, t, investments in quality, w, will be optimized

when the marginal cost of an extra unit of quality is equal

to its lifetime marginal benefit:

bdwðw;K ðtÞÞZ
1

pðtÞ

ðN
t

eKrðtKtÞpðtÞFGGQ dtZjðtÞ:

Figure 1 illustrates that, as the organism grows, the

lifetime marginal benefit of investments in quality, j, may

increase because mortality is decreasing, but it will then

decrease as mortality increases later in life. At the same

time, however, the marginal cost of investment depends

on body size, so each unit increase in quality is more costly

as the organism grows. As long as b is large enough,

the level of w satisfying the above equation will be less

than the depreciation rate, r, and Q will decrease

monotonically throughout life.

The demographic results for fertility and mortality are

illustrated in figure 2. Fertility will be optimized by

comparing the marginal energetic cost of producing

offspring and the marginal benefit of producing offspring,

say h. Thus, the first-order condition for optimal choice of

fertility, s, is

KFsðGðKðtÞ;QðtÞÞ; sðtÞÞZ hO0; if sðtÞO0;

Rh; if sðtÞZ0;

for some hO0:

The marginal cost of fertility is constant over those ages

where fertility is positive. However, there may be ages at

which it does not pay to reproduce because the marginal

cost is greater than h. This generally arises when the

organism is young, and at old ages after the quality decline

has occurred. Since d/dG(KFs(G,s))!0, the marginal

cost of fertility is a decreasing function of gross energy G.

It follows that fertility will generally be positive where G

exceeds a threshold value, but zero otherwise. As depicted
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in the figure, theorem 1 implies that maximum fertility

occurs at age t�, when gross energy is at its maximum.

Finally, mortality reduction is optimized when its

marginal cost, Ke 0(m(t)), equals its marginal benefit.

This marginal benefit is the value of life, say L. This is

the sum of all expected net future energy production

plus the energetic value of all expected future fertility. The

first-order condition for optimal choice of m is

Ke0ðmÞZLðtÞZV ðtÞChRðtÞ;

where

V ðtÞZ
1

pðtÞ

ðN
t

eKr ðtKt ÞpðtÞðFKavKbdKeÞ dt

and

RðtÞZ
1

pðtÞ

ðN
t

eKr ðtKt ÞpðtÞsðtÞ dt:

The marginal gain from mortality reduction, L(t), has

two components. The second of these involves the term

R(t), which is precisely Fisher’s notion of reproductive

value.3 This is the expected future fertility contribution of

an individual of age t, conditional on this individual being

alive. The constant h, as defined above, can also be

interpreted as the exchange rate that converts fertility into

energy terms.

The first of these components, V(t), is the expected

future net energy contribution of an individual of age t.

This is analogous to Fisher’s reproductive value, except

that it derives from the net economic contribution of the

individual rather than from her fertility. The sum of these

two components is the overall value of life. The presence

of the first term means that there will be selection in favour

of mortality reduction for post-menopausal individuals.
6. AN OUTLINE OF THE PROOF OF THEOREM 1
The appendix in the electronic supplementary material

provides the formal proof of theorem 1. Here, we provide

an overview of the steps involved in the proof with the goal

of further explicating the theorem.4

The proof proceeds in five steps, each with an associated

lemma. We seek to characterize the solution to the basic

problem of maximizing the intrinsic growth rate r in terms
Proc. R. Soc. B (2009)
of the optimal trajectories of the quantity and quality of

somatic capital, fertility and mortality. The first step shows

that any solution to this basic problem is also a solution to

the transformed problem of maximizing total expected

discounted energy surplus, for a given value of r, together

with the requirement that this maximum surplus be zero.

This step is for mathematical convenience.

The second step constructs time paths for somatic

quality and mortality, which are candidates as partial

solutions to the transformed problem. (This assumes a

sufficiently large value of b, to reflect the relatively large

somatic quality maintenance relative to that of the germ

line.) These time paths are only partial solutions because

the length of the growth phase, t�, and the marginal benefit

of fertility, h, are left arbitrary for the moment.

The third step proves that these candidate time paths

are indeed partial solutions. This step also then ties down

the value of h and hence derives the time path of fertility, s.

All the time paths obtained are optimal for an arbitrary

choice of t�, but the fourth step then characterizes the

optimal choice of t�O0, given a sufficiently small value of

a, as required for non-trivial growth.

The fifth step then completes the proof of theorem 1 by

showing that the stated properties of the time paths of

fertility and mortality hold, given that the quantity cost

parameter a is small enough, but the upper bound on the

investment rate �v and the quality cost parameter b are large

enough. This step shows that the gross energy output, G, is

hump-shaped, implying that fertility will be zero at first,

then increase as production increases until t�. Fertility

will then decrease after t� generally again being zero in a

terminal phase of life, capturing menopause. Mortality, on

the other hand, first decreases, reaching a minimum at

some age prior to or at t�, but increases thereafter.
7. VERIFYING THE PREDICTIONS FOR HUMANS
First note that, since the actual growth rate of hominids

over the last two million years must have been almost zero,

on average, the above results are interpreted to hold for a

maximized value of rZ0.

Figure 3 presents data collected from hunter–gatherers

living under conditions perhaps similar to those in our

evolutionary past (Kaplan et al. 2000, 2003). It shows the

body weight and food production, scaled as a proportion

of the maximal level attained, and mortality rates, as a

function of age, averaged across males and females.

Mortality rates decline until adolescence and then increase

at an increasing rate, after age 35–40. After age 65–70,

mortality rates become especially high, and it is not typical

to live much past the eighth decade of life. Food

production reflects a similar improvement and then

deterioration with age, increasing monotonically through-

out the first phase of life, peaking around age 45 and

declining thereafter. Body weight, on the other hand,

increases until adulthood but it remains relatively stable

after that age.

Theorem 1 states that, under reasonable conditions, the

optimal life history has the following form: an individual

begins life with tissue quantity at its lowest level, but tissue

quality at its highest; he or she will then invest in growth,

increasing tissue quantity until some optimal age, t�.

Growth drives increasing productivity during the first

phase of life and this helps to produce a decline in mortality.
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Hurtado and K. Hawkes.
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Figure 5. Cumulative expected future production, V(t)
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in figure 1.

1842 H. S. Kaplan & A. J. Robson We age because we grow
Quality optimally depreciates throughout. Deterioration in

quality then drives the decline in productivity later in life

and this drives an endogenous increase in mortality. For

some of the growth period, optimal fertility is zero and then

it increases monotonically as somatic quantity increases. At

t�, when growth ceases, fertility is at its maximum. Since

tissue quantity remains constant after t�, but quality

continues to deteriorate, fertility also decreases with age,

ultimately becoming zero again in a final post-menopausal

phase of life.

Figure 4 shows the relationship between the human

survival and fertility curves. At the end of fertility for

women, there is an expected lifespan of approximately 20

years (Gurven & Kaplan 2007)!

These theoretical implications are consistent with the

data. In particular, note that the body mass increases until

the early twenties for human females in traditional

societies, which is not far off the age of maximum realized

female fertility for hunter–gatherers, at age 25.

Note now that the optimal investment in mortality

reduction in the model is positively related to the value of

life, so mortality is negatively related to this value. This

implies that mortality will first decrease with age until

some age prior or equal to t�, and thereafter increase

monotonically. This is also consistent with the facts, since

minimum mortality may be around age 13 for hunter–

gatherers, and a similar age obtains for modern humans.

Figure 5 shows how empirical estimates of the two

components determining the value of life, expected future

reproduction R and expected future net production V,

increase and decrease with age at different rates. These are

then in broad agreement with the empirical U-shaped

mortality profile in figure 3.

Consider in further detail the theoretical condition that

Ke0ðmÞZLðtÞZV ðtÞChRðtÞ for optimal choice of m. This

condition implies that mortality is governed mostly by

narrow reproductive considerations when young (as

reflected in R), and by purely economic considerations

at the other end of life (as reflected in V ). It is therefore

evolutionarily optimal to live beyond the age at which

fertility declines to zero, given net energy production

remains positive there. Thus, the theory also shows why

post-reproductive life can evolve. Maximization of the
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growth rate r generally entails transfers from older

individuals to younger individuals, sustaining the value

of life at older ages.

As an explanation of ageing, the crucial feature of the

theory is that it predicts that mortality will initially

decrease and then increase with age. During the initial

part of the growth period, expected future contributions to

fitness grow with age, and so mortality decreases.

Ultimately, however, future contributions decrease with

age, and mortality rises. While it is generally possible in the

model to maintain the value of life, and hence keep

mortality constant, this is not optimal. A type that did this

would not maximize the intrinsic growth rate. We grow old

because the marginal cost of not growing old, of keeping

mortality constant, exceeds the marginal benefit. This is in

the light of the option of using the pristine germ line

blueprints to create another individual, and is despite the

enormous biological and economic costs that must be

incurred in bringing such an individual to adulthood.
8. DISCUSSION AND CONCLUSIONS
The novel features of this theory account for all the key

characteristics of life history involving fertility, production
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and mortality. These features amplify Kirkwood’s (1990)

original hypothesis that the soma is disposable since

quality is maintained in the germ line.
(a) Generality of the model

Several assumptions of the model were employed for

specificity and for empirical application to humans.

Specifically, the model assumed determinate non-

reversible growth and unrestricted intergenerational

transfers. Here, we consider the implications of changing

those assumptions.

Indeterminate growth, in which growth continues

throughout life, and so overlaps with reproduction, is

very common across plant and animal taxa. Consider how

allowing this might affect figures 1 and 2. In figure 1, the

quantity of capital, K, would then continue to increase

with age, although probably with a rate of increase tending

to zero. This might tend to prolong the period of life

during which fertility, s, is positive. In figure 2, both the

reproductive value and expected future reproduction, R(t)

and V(t) curves, respectively, would probably peak at

older ages. This, in turn, would shift the age of minimum

mortality to the right as well. However, somatic quality Q

would continue to decrease monotonically with age, and

eventually mortality would increase with age, thus

preserving the central result of theorem 1. There is now

increasing evidence that even in long-lived indetermi-

nately growing plants and animals mortality eventually

increases with age, even though it continues to decrease

for significant periods after reproduction commences.

The possibility of reversible growth poses a more

challenging problem. For example, seasonal environments

spur fluctuations in fat mass in many species of animals

and leaf loss in plants. The effects of these fluctuations in

the quantity of capital on the time path of Q might be quite

complex. Nevertheless, without a complete reversal in

body size, Q would tend to decline over the long run and

mortality would tend to increase, thus preserving the key

features established here. A more complex situation arises

in various species of marine organisms, amphibians and

insects having life histories that include metamorphoses

where much of the body mass is discarded. Furthermore,

some multicellular organisms, especially plants, engage in

asexual, vegetative reproduction in which somatic and

reproductive cells are not so clearly divided. These cases

also present challenges for the current theory. Clearly,

future work should focus on extending the theory to such

more complex situations, since the key intuition why

somatic repair would be too expensive seems robust.

The assumption of unrestricted intergenerational

transfers could also be relaxed. If all investment in

offspring occurs prior to birth, for example, then the

curves of expected future reproduction and production in

figure 2 would taper off together, and we should find no

menopause. After expending the surplus provided by

parental investment, individuals would have to ‘self-

finance’ growth and reproduction, and would be con-

strained by their energy budget at each point in time. This

might force them to grow more slowly and to reproduce at

a later age. Nevertheless, if all other assumptions hold, we

would still find that reproduction would peak at t�,

mortality rates would decrease and then increase with

age, and Q would decrease monotonically with age.
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In summary, the present model is widely applicable to

ageing in species with irreversible growth. Changes in the

assumptions about growth and intergenerational transfers

affect important details in the time paths of fertility,

mortality and quality decline, but the generality of ageing

as a response to growth remains.

(b) Other extensions

The theory allows for various extensions. The most obvious

extensions involve comparative static results to examine

how changes in parameters affect optimal schedules of

senescence. One particularly illuminating extension might

be to examine parameter shifts that affect optimal body size.

Even though bigger bodies are more costly to maintain,

they might still be predicted to age more slowly, as is

consistent with a strong empirical regularity.

It will also be worthwhile to consider varying

assumptions about depreciation and mortality rates. The

parameter r in the current model assumes a constant

depreciation rate that depends neither on mass nor on cell

quality. Just as the total metabolism increases (albeit less

than proportionately) with increasing body size, it may be

that depreciation rate also depends on body size, and

perhaps cell quality as well. In addition, here we assume

that it is only production that is affected by cell quantity

and quality; however, mortality rates may also decrease as

a function of body mass and cell quality. If that were the

case, there would be larger declines in mortality prior to t̂

and a more rapid increase in mortality thereafter.

Results from previous models that featured only the

quantity of capital, K, and not its quality, Q, are likely to

extend to the current model (Kaplan & Robson 2002;

Robson & Kaplan 2003). One such result was that an

increase in the productivity of capital led to greater

optimal investments in mortality reduction at every age.

We also found that exogenous reductions in mortality

increased the optimal level of capital and of endogenous

mortality reduction expenditures. There should be similar

effects for investments in quality maintenance in the

present model. A result of particular interest for the

human case was that a shift in productivity from younger

to older ages, as derived from greater learning by doing,

increased investment in mortality reduction and longevity.

The accumulating evidence that humans age more slowly

than chimpanzees (Gurven & Kaplan 2007) is consistent

with humans being particularly reliant on learning.

Virtually all chimpanzees die before age 45, which is

when humans reach peak net economic productivity

(figure 3).

The present approach may, more generally, shed new

light on the evolution of species with long lifespans with

negligible senescence. While existing models of senes-

cence emphasize the role of exogenous components in

mortality, our theory shows how the productivity of capital

affects life-history evolution. Circumstances where various

types of capital investment are highly productive may

favour reduced senescence in humans and in diverse non-

human species. For example, the extreme longevity of

queens in social insect colonies may be due to the

productivity of capital investments that are not only

somatic, but also include the physical hive or nest.

An adequate theory of lifespan evolution, and its

diversity across living organisms, requires an integrated

view of growth, reproduction and senescence. Economic
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models incorporating quantity and quality of somatic

tissue illuminate the biological basis of demographic

phenomena, and explain why ageing is so pervasive.
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ENDNOTES
1See Charlesworth (1994, ch. 1), for example.
2There is evidence that germ line quality is less prone to deterioration

over time than is somatic quality—see Stambrook (2007), for

example.
3See Charlesworth (1994, ch. 1), for example.
4Robson & Kaplan (2007) states and proves a simpler version of

theorem 1.
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