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Receiver Operating Characteristic (ROC) analysis is a common tool for assessing the performance of various classifications. It
gained much popularity in medical and other fields including biological markers and, diagnostic test. This is particularly due to
the fact that in real-world problems misclassification costs are not known, and thus, ROC curve and related utility functions such
as F-measure can be more meaningful performance measures. F-measure combines recall and precision into a global measure. In
this paper, we propose a novel method through regularized F-measure maximization. The proposed method assigns different costs
to positive and negative samples and does simultaneous feature selection and prediction with L1 penalty. This method is useful
especially when data set is highly unbalanced, or the labels for negative (positive) samples are missing. Our experiments with the
benchmark, methylation, and high dimensional microarray data show that the performance of proposed algorithm is better or
equivalent compared with the other popular classifiers in limited experiments.
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1. Introduction

Receiver Operating Characteristic (ROC) analysis has
received increasing attention in the recent statistics and
machine learning literatures (Pepe [1, 2]; Pepe and Janes [3];
Provost and Fawcett [4]; Lasko et al. [5]; Kun et al. [6]). ROC
analysis originates in signal detection theory and is widely
used in medical statistics for visualization and comparison
of performance of binary classifiers. Traditionally, evaluation
of a classifier is done by minimizing an estimation of a
generalization error or some other related measures (Vapnik
[7]). However the accuracy (the rate of correct classification)
of a model does not always work. In fact when the data are
highly unbalanced, accuracy may be misleading, since the
all-positive or all-negative classifiers may achieve very good
classification rate. In real life applications, the situations for
which the data sets are unbalanced arise frequently. Utility
functions such as F-measure or AUC provide a better way
for classifier evaluation, since they can assign different error
costs for positive and negative samples.

When the goal is to achieve the best performance
under a ROC-based utility functions, it may be better

to build classifiers through directly optimizing the utility
functions. In fact, optimizing the log-likelihood function or
the mean-square error does not necessarily imply good ROC
curve performance. Hence, several algorithms have been
recently developed for optimizing the area under ROC curve
(AUC) function (Freund et al. [8]; Cortes and Mohri [9];
Rakotomamonjy [10]), and they have been proven to work
well with different degrees of success. However, there are
not many methods proposed for F-measure maximization.
Most approaches to date that we know of maximize F-
measure using SVMs and do so by varying parameters in
standard SVM in an attempt to maximize F-measure as much
as possible (Musicant et al. [11]). While this may result
in a “best possible” F-measure for a standard SVM, there
is no evidence that this technique should produce an F-
measure comparable with one from the classifier designed
to specifically optimize F-measure. Jansche [12] proposed
an approximation algorithm for F-measure maximization
in the logistic regression framework. His method, however,
gives extremely large values for the estimated parameters
and creates too many steep gradients. It, therefore, either
converges very slow or fails to converge for large datasets.
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Table 1: Classification outcomes.

Predicted
Total

1 −1

True
1 TP FN Np

−1 FP TN Nn

Mp Mn

Our aim in this paper is to propose a novel algorithm
that directly optimizes an approximation of the regularized
F-measure. The regularization term can be an L2, L1 or
a combination of L1 and L2 penalty based on different
prior assumptions (Tibshirani [13, 14]; Wang et al. [15]).
Due to the nature of L1 penalty, our algorithm provides
simultaneous feature selection and classification with L1

penalty. The proposed algorithm can be easily applied to
high dimensional microarray data. One advantage with this
method is that it is very efficient when data is highly
unbalanced, since it assigns different costs to the positive and
negative samples.

The paper is organized as follows. In Section 2 we
introduce the related concept of ROC and F-measure. The
algorithm and the brief proof of its generalization bounds
are proposed in Section 3. The computational experiments
and performance evaluation are given in Section 4. Finally
the conclusions and remarks are discussed in Section 5.

2. ROC Curves and F-Measure

In binary classification, a classifier attempts to map the
instances into two classes: positive (p) and negative (n).
There are four possible outcomes with the given classifier:
true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN). Table 1 summarizes these outcomes
with their associated terminology. The number of positive
instances is Np = TP + FN. Similarly Nn = TN + FP is the
number of negative instances.

From these counts the following statistics are derived:

tpr = TP
TP + FN

, tnr = TN
TN + FP

,

fpr = FP
FP + TN

, fnr = FN
TP + FN

,

(1)

where true positive rate (also called recall or sensitivity) is
denoted by tpr and true negative rate (specificity) by tnr.
False positive rate and false negative rate are denoted by fpr
and fnr, respectively. Note that tnr = 1 − fpr, and fnr =
1 − tpr. We also define the precision Pr = TP/(TP + FP).
ROC curves plot the true positive rate versus false positive
rate by varying the threshold which is usually the probability
of the membership to a class, distance to a decision surface,
or a score produced by a decision function. In the ROC space,
the upper left corner represents a perfect classification, while
a diagonal line represents random classification. A point in
ROC curve that lies upper left of another point represents a
better model.

F-measure combines the true positive rate (recall) and
precision Pr into a single utility function which is defined as
γ-weighted harmonic mean:

Fγ = 1
γ(1/tpr) + (1− γ)(1/Pr)

, where 0 ≤ γ ≤ 1. (2)

Fγ can be expressed with TP, FP, and FN as follows:

Fγ = TP
TP + γFN + (1− γ)FP

(3)

or equivalently

Fγ = TP
γNp + (1− γ)Mp

, (4)

where Np is the number of positive samples, and Mp =
TP + FP. Clearly 0 ≤ Fγ ≤ 1 and Fγ = 1 only when
all the data are classified correctly. Maximizing F-measure
is equivalent to maximizing the weighted sensitivity and
specificity. Therefore, maximizing Fγ will indirectly lead to
maximize the area under ROC curve (AUC).

To optimize Fγ, we have to define TP, FN, and FP
mathematically. We first introduce an indicator function

I(y ∈ C) =
⎧
⎨

⎩

1, if y ∈ C,

0, if y /∈C,
(5)

where C is a set. Let y = f (w, x) be a classifier with coeffi-
cients (weights) w and input variable x, and let ŷ be the pre-
dicted value. Given n samples, D = {(x1, y1), . . . , (xn, yn)},
where xi is a multidimensional input vector with dimension
m and class label yi ∈ {−1, 1}; TP, FN, and FP are given,
respectively:

TP =
n∑

i=1

I( ŷi = 1)I(yi = 1),

FN =
n∑

i=1

I( ŷi = −1)I(yi = 1),

(6)

FP =
n∑

i=1

I( ŷi = 1)I(yi = −1). (7)

It is clear that F-measure is a utility function that applies for
the whole data set.

3. The Algorithm

Usually given a classifier with known parameters w, F-
measure can be calculated with the test data to evaluate
the performance of the model. The aim of this paper is,
however, to learn a classifier and estimate the corresponding
parameters w with a given training data D and regularized F-
measure maximization. Since Fγ ∈ [0, 1], we have − logFγ ∈
[0,∞). Statistically Fγ is a probability that measures the
proportion of samples correctly classified. Based on these
observations, we can maximize the logFγ in the maximum
log likelihood framework. Different assumptions for the
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prior distribution of w will lead to different penalty terms.
Given the coefficient vector w with dimension m, we have
L2 = (1/2)

∑m
j=1|wj|2 for the assumption of Gaussian

distribution and L1 =
∑m

j=1|wj| with that of Laplacian prior.
In general, L1 penalty encourages sparse solutions, while the
classifiers with L2 are more robust. We make TP, FN, and FP
depend on w explicitly and maximize the following penalized
F-measure functions:

E1(w) = logFγ(TP(w), FN(w), FP(w))− λ
m∑

j=1

|wj|,

E2(w) = logFγ(TP(w), FN(w), FP(w))− 1
2
λ
m∑

j=1

|wj|2.

(8)

We have

ŵ = arg max
ŵ

{

logFγ(TP(w), FN(w), FP(w))− λ
m∑

j=1

|wj|
}

,

ŵ = arg max
ŵ

{

logFγ(TP(w), FN(w), FP(w))− 1
2
λ
m∑

j=1

|wj|2
}

.

(9)

Note that TP(w), FN(w), and FP(w) are all integers, and
the index function I in (7) is not differentiable. We first
define an S-type function to approximate the index function
I : Let z = wTx be a linear score function,

h(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, z < −1,

1
2

(1 + z)2, −1 ≤ z ≤ 0,

1
2

(2− (1− z)2), 0 < z ≤ 1,

1, z > 1.

(10)

The decision role such that ŷ(w, x) = 1 if z = wTx > 0 can
be represented as

I( ŷ = 1) = I(z > 0) = I(h(wTx) > 0.5) ≈ h(wTx). (11)

Figure 1 gives some insight about the h(z). Figure 1
shows that h(z) is a better approximation of I(z > 0) than
the sigmoid function g(z) = 1/(1 + e−z). The first derivative
of h(z) is continuous and given in (12):

h′(z) = dh(z)
dz

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, z < −1,

1 + z, −1 ≤ z ≤ 0,

1− z, 0 < z ≤ 1,

0, z > 1.

(12)

Based on (10) and (11), the approximated version of TP(w)
and Mp(w) = TP(w) + FP(w) can be written as follows:

TP(w) =
n∑

i=1
yi=1

h(wTxi),

Mp(w) =
n∑

i=1

h(wTxi).

(13)
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Figure 1: The plot for h(z), indicator function I(z > 0), and
Sigmoid g(z) = 1/(1 + e−z).

We can find the first-order derivatives of E1 and E2,
respectively, as follows:

∂E1(w)
∂wj

= ∂Fγ(w)/∂wj

Fγ(w)
− λ sign (wj),

∂E2(w)
∂wj

= ∂Fγ(w)/∂wj

Fγ(w)
− λwj ,

(14)

where,

∂Fγ(w)

∂wj
= B

∂TP(w)
∂wj

− B2TP(w)(1− γ)
∂Mp(w)

∂wj
,

B = 1
γNp + (1− γ)Mp(w)

,

∂TP(w)
∂wj

=
n∑

i=1
yi=1

h′(wTx)xi j ,

∂Mp(w)

∂wj
=

n∑

i=1

h′(wTx)xi j .

(15)

Knowing E1 and E2, and their derivatives ∇E1 = [∂E1/∂wj]
and ∇E2 = [∂E2/∂wj], we can maximize the penalized
function E1 and E2 with gradient descent-related algo-
rithm such as Broyden-Fletcher-Goldfarb-Shanno- (BFGS-)
related quasi-Newton method (Broyden [16]). The algo-
rithm for E2 maximization is straight forward as shown in
Algorithm 1. The step-size μ in the algorithm can be found
with line search.

The regularized F-measure maximization with L1 penalty
(E1) is of especial interest because it favors sparse solutions
and can select features automatically. However, maximizing
E1 is a little bit complex since L1 and E1 are not differ-
entiable at 0. For simplicity, let LF = logFγ(w), we have
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1. Given γ, λ, a small number ε, Initialize wt = w0, and set
t = 0.

2. While |wt+1 −wt| > ε
wt+1 = wt + μ(∇E2), where μ is the step-size

3. t = t + 1

Algorithm 1: L2 regularized F-measure maximization.

1. Given γ, λ, small numbers ε and δ, wt = w0, and set
t = 0 and Ψ = { j : wj /= 0}.

2. While |wt+1 −wt| > ε

wt+1 = wt + μ
((

∂LF

∂wj

)

Ψ
− λ sign (wi)Ψ

)

, where μ is

the step-size

Ψ = Ψ∪
{

j /∈Ψ :
∣
∣
∣
∣
∂LF

wj

∣
∣
∣
∣ > λ

}

Ψ = Ψ \ { j ∈ Ψ : |wj| < δ}
3. t = t + 1

Algorithm 2: L1 regularized F-measure maximization.

E1 = LF − λ
∑m

j=1|wj|. The Karush-Kuhn-Tucker (KKT)
conditions for optimality are given as follows:

∣
∣
∣
∣
∂LF

∂wj

∣
∣
∣
∣ < λ =⇒ wj = 0,

wj /= 0 =⇒
∣
∣
∣
∣
∂LF

∂wj

∣
∣
∣
∣ = λ.

(16)

The KKT conditions tell us that we have a set Ψ of
nonzero coefficients which corresponds to the variables
whose absolute value of first-order derivative is maximal and
equal to λ, and that all variables with smaller derivatives
have zero coefficients at the optimal penalized solution. Since
L1 is differentiable everywhere except at 0, we can design
an algorithm to deal with the nonzero coefficients only.
Algorithm 2 proposes an algorithm that can be applied to
the subspace of nonzero coefficient set denoted by Ψ. The
algorithm has a procedure to add or remove variables from
Ψ, when the first-order derivative becomes large and when a
coefficient hits 0, respectively.

3.1. Computational Considerations. Both γ and λ are free
parameters that need to be chosen. We will choose the best
parameter for γ and λwith the area under ROC curve (AUC).
Area under the ROC curve (AUC) is another scalar measure
for classifier comparison. Its value is between (0, 1). Larger
AUC values indicate better classifier performance across the
full range of possible thresholds. For datasets with skewed
class or cost distribution is unknown as in our applications,
AUC is a better measure than prediction accuracy.

Given a binary classification problem with Np positive
class samples and Nn negative class samples, let f (x) be the
score function to rank a sample x. AUC is the probability
that a classifier will rank a randomly chosen positive

Table 2: Overview of the datasets.

Datasets No. of samples
(train/test)

No. of
variables

No. of
experiments

Breast cancer 200/77 9 100

Diabetis 468/300 8 100

Heart 170/100 13 100

German 700/300 20 100

Thyroid 140/75 5 100

Titanic 150/2051 3 100

instance higher than a randomly chosen negative instance.
Mathematically

AUC =
∑Np

i=1

∑Nn
j=1I( f (xi) > f (y j))

NpNn
, (17)

where I(·) is an index function and I(·) = 1 if f (xi) > f (y j),
otherwise I(·) = 0. AUC is also called Wilcoxon-Mann-
Whitney statistic (Rakotomamonjy [10]).

Note that logFγ(w) is generally a nonconcave function
with respect to w; only local maximum is guaranteed. One
way to deal with this difficulty is to employ the multiple-
points initialization. Multiple random points are generated,
and our proposed algorithms are used to find the maximum
for each point. The result with the lowest test error is chosen
as our best solution.

4. Computational Results

4.1. Benchmark Data. To evaluate the performance of
the proposed method, experiments were performed
on six benchmark datasets which can be downloaded
from http://ida.first.fraunhofer.de/projects/bench/bench-
marks.htm. These benchmark datasets have been widely
used in model comparison studies in machine learning.
They are all binary classification problems, and the datasets
were randomly divided into train and test data 100 times
to prevent bias and overfitting. The data are normalized
with zero mean and standard deviation. The overview of the
datasets is given in Table 2. The computational results with
our algorithms, logistic regression, and linear support vector
machines are given in Figures 2-3.

Figures 2-3 show that L2 F-measure maximization
performs better or equivalent compared with logistic
regression and linear support vector machines (SVM)
in limited experiments. In fact, the test errors for all
datasets except for Thyroid are competitive with that of
the nonlinear classification methods reported by Ratsch
(http://ida.first.fraunhofer.de/projects/bench/benchmarks
.htm). The inferior performance of L2 F-measure with
Thyroid data indicates the strong nonlinear factors in that
data.

4.2. Real Methylation Data. This methylation data are
from 7 CpG regions and 87 lung cancer cell lines (Vir-
mani et al. [17], Siegmund et al. [18]). 41 lines are

http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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Figure 2: Test Errors of L2 F-Measure (FM), Logistic Regression (LR), and SVM.
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Figure 3: Test AUC of L2 F-Measure (FM), Logistic Regression (LR), and SVM.

from small cell lung cancer and 46 lines from nons-
mall cell lung cancer. The proportion of positive values
for the different regions ranges from 39% to 100% for
the small cell lung cancer and from 65% to 98% for
the nonsmall cell lung cancer. The data are available at

http://www-rcf.usc.edu/kims/SupplementaryInfo.html. We
utilize the twofold cross validation scheme to choose the best
λ and test our algorithms. Other cross-validation schemes
such as 10-fold cross validation will lead to similar results
but are more computational intensive. We randomly split

http://www-rcf.usc.edu/kims/SupplementaryInfo.html
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Table 3: Performance with different γ’s and L1 F-measure maximization.

γ Variables selected (1/0) Sensitivity Specificity Test error AUC

0.1 1101111 0.476 0.957 27.3 0.801

0.2 1111111 0.714 0.957 15.9 0.820

0.3 0101111 0.810 0.740 22.7 0.849

0.4 1111001 0.826 0.762 20.4 0.861

0.5 1111101 0.857 0.609 27.3 0.832

0.6 1100101 0.762 0.739 25 0.832

0.7 1110110 0.904 0.348 38 0.847

0.8 1011100 100 0.217 40.9 0.826

0.9 1100011 100 0 52.3 0.754

the data into two roughly equal-sized subsets and build
the classifier with one subset and test it with the other.
To avoid the bias arising from a particular partition, the
procedure is repeated 100 times, each time splitting the data
randomly into two folds and doing the cross validation.
The average computational results with different γs and
λ = 0.05 are given in Table 3. Table 3 shows the selected
variables (1: selected; 0: not selected), sensitivity, specificity,
test errors, and AUC values with different γ’s. We can see
clearly the sensitivity increases while the specificity decreases
as γ increases. When γ = 0.9, every example is classified
as positive examples. The best γ will be 0.4 according to
AUC but it will be 0.2 based on test error. Therefore, again
there is some inconsistence between two measures. Figure 4
gives some sight about how to choose λ and the number of
features. Given γ = 0.4, the optimal λ = 0.04, and those 5
out of 7 CpG regions selected by L1 F-measure maximization
have been proved to be predictive of lung cancer subtype
(Siegmund et al. [18]). The performance of the model is
improved roughly 6% in AUC and 3% in test error with only
5 instead of 7 CpG regions.

4.3. High Dimensional Microarray Data. The colon microar-
ray data set (Alon et al. [19]) has 2000 features (genes) per
sample and 62 samples which consisted 22 normal and 40
cancer tissues. The task is to distinguish tumor from normal
tissues. The data set was first normalized for each gene to
have zero mean and unit variance. The transformed data
was then used for all the experiments. We employed a same
twofold cross validation scheme to evaluate the model. This
computational experiments are repeated 100 times. The AUC
was calculated after each cross validation. The computational
results for performance comparison are reported in Table 4.

Table 4 gives us some insight that how the model
performance changes with different γ’s. Generally we can see
that the false negative (FN) decreases and the false positive
(FP) increases as γ increases. The only exception is when
γ = 0.1, both FN and FP have the worst performance. The
best performance is achieved when γ ∈ [0.7, 0.8] according
to both AUC and the number of misclassified samples.

The 10 genes selected are given in Table 5. The selected
genes allow the separation of cancer from normal samples
in the gene expression map. Some genes were selected
because their activities resulted in the difference in the

Table 4: Performance with different γ’s and L1 F-measure maxi-
mization (λ = 3).

γ No. of variables FN FP No. of misclassified AUC

0.1 10 11 33 44 0.588

0.2 10 3 3 6 0.989

0.3 10 3 3 6 0.989

0.4 10 3 3 6 0.989

0.5 10 3 3 6 0.989

0.6 10 3 3 6 0.989

0.7 10 2 3 5 0.993

0.8 10 2 3 5 0.993

0.9 10 2 5 7 0.988

1 10 2 8 10 0.971

Table 5: 10 differentially expressed genes.

Gene ID Description

h20709
myosin light chain alkali, smooth-muscle isoform
(human)

t71025 84103 human (human)

m76378 human cysteine-rich protein (crp) gene, exons 5 and 6

m63391 human desmin gene, complete cds

z50753 h.sapiens mrna for gcap-ii/uroguanylin precursor

r87126 myosin heavy chain, nonmuscle (gallus gallus)

x12671
human gene for heterogeneous nuclear
ribonucleoprotein (hnrnp) core protein a1

t92451
tropomyosin, fibroblast and epithelial muscle-type
(human)

j02854
myosin regulatory light chain 2, smooth muscle
isoform (human); contains element tar1 repetitive
element

m36634 human vasoactive intestinal peptide (vip) mrna,
complete cds

tissue composition between normal and cancer tissue. Other
genes were selected because they played a role in cancer
formation or cell proliferation. It was not surprise that
some genes implicated in other types of cancer such as
breast and prostate cancers were identified in the context
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Figure 4: Performance with different λs and number of variables.

of colon cancer because these tissue types shared similarity.
Our method is supported by the meaningful biological
interpretation of selected genes. For instance, three muscle-
related genes (H20709, T92451, and J02854) were selected
from the colon cancer data, reflecting the fact that normal
colon tissue had higher muscle content, whereas colon cancer
tissue had lower muscle content (biased toward epithelial
cells), and the selection of x12671 ribosomal protein agreed
with an observation that ribosomal protein genes had lower
expression in normal than in cancer colon tissue.

5. Conclusions and Remarks

We have presented a novel regularized F-measure maximiza-
tion for feature selection and classification. This technique
directly maximizes the tradeoff between specificity and
sensitivity. Regularization with L2 and L1 allows the algo-
rithm to converge quickly and to do simultaneous feature
selection and classification. We found that it has better or
equivalent performances when compared with the other
popular classifiers in limited experiments.

The proposed method has the ability to incorporate
nonstandard tradeoffs between sensitivity and specificity
with different γ. It is well suited for dealing with unbalanced
data or data with missing negative (positive) samples. For
instance, in the problem of gene function prediction, the
available information is only about positive samples. In other
words, we know which genes have the function of interested,
while it is generally unclear which genes do not have the
function. Most standard classification methods will fail but
our method can train the model with only positive labels by
setting γ = 1.

One difficulty with the regularized F-measure maximiza-
tion is the nonconcavity of the error function. We utilized
the random multiple points initialization to find the optimal
solutions. More efficient algorithms for nonconcave opti-
mization will be considered to speed up the computations.
The applications of the proposed method in gene function
predictions and others will be explored in the future.
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