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Abstract
There is an intrinsic complexity in the pathogenesis of common diseases. The concept of gene–
environment interaction is receiving support from emerging evidence coming primarily from studies
involving diet and cardiovascular disease (CVD) and its various risk factors. The accumulating
evidence shows that common variants at candidate genes for lipid metabolism, inflammation, and
obesity are associated with altered plasma levels of classic and new biomarkers of metabolic
syndrome and CVD risk. Major contributors to this knowledge have been a series of large population
studies containing phenotype-rich databases and dietary information to which genetic data have been
added. Although this approach has provided strong evidence supporting the concept of gene–diet
interactions modulating CVD risk factors, the strength of the individual effect is very small, and the
replication among studies is rather disappointing. Current population studies are starting to
incorporate experimental and analytical approaches that could provide more solid and comprehensive
results. However, other limitations, such as the size of the populations required to examine higher-
level interactions, are still major obstacles to translating this knowledge into practical public health
applications. Nevertheless, data from numerous molecular and genetic epidemiological studies
provide tantalizing evidence suggesting that gene–environment interactions, i.e., the modulation by
a genetic polymorphism of a dietary component effect on a specific phenotype (e.g., cholesterol
levels and obesity), can interact in ways that increase the risk for developing chronic disease,
including susceptibility to developing the metabolic syndrome. Once further experience is gained
from patients and/or individuals at high risk, more personalized genetic-based approaches may be
applied toward the primary prevention and treatment of CVDs and other complex inflammatory
diseases.
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The significant contribution of environmental factors to the susceptibility and causation of
multifactorial diseases is becoming better appreciated. More than ever, health care
professionals (HCPs) have embraced the link between proper diet and good health for the
prevention and treatment of numerous disorders. In the most extreme case, malnutrition in the
developing world clearly demonstrates the link between nutritional deficiencies and overall
health. However, the comparatively prosperous developed countries are also suffering from
malnutrition as a population, most clearly in the form of obesity and its associated disorders,

Correspondence: Dr. Jose Ordovas, 711 Washington St., Boston, MA 02111-1524. Fax: 617/556-3103; e-mail: E-mail:
jose.ordovas@tufts.edu.

NIH Public Access
Author Manuscript
J Periodontol. Author manuscript; available in PMC 2009 August 1.

Published in final edited form as:
J Periodontol. 2008 August ; 79(8 Suppl): 1508–1513. doi:10.1902/jop.2008.080232.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



such as diabetes, cardiovascular disease (CVD), and metabolic syndrome (MetS). Yet, the
resulting dietary and treatment guidelines to address these disease states, typically the
promotion of low-cholesterol, low-fat, low-salt food choices, do not consider the dramatic
differences in an individual’s responses to such interventions. 1 HCPs only have to examine
their typical patient load to realize that such interventions are not working precisely as
predicted. Despite the mechanisms responsible for the interindividual differences in treatment
response being far from fully understood, they are not unexpected, considering the variation
in responses to treatment when examining pharmacologic or behavioral therapies. The presence
of a genetic component in explaining the variations to such intervention has only recently been
investigated, despite the fact that there are well-known examples of inherited metabolic
diseases, such as phenylketonuria and galactosemia.2 As discussed below, the evidence clearly
demonstrates that a number of gene–environment interactions, notably via diet, modulate the
risk for developing MetS, diabetes, and CVD through their associations with multiple genes
responsible for obesity, lipid levels, and markers of inflammation.

GENE–ENVIRONMENT INTERACTIONS: VARIATIONS IN TREATMENT
RESPONSE

In a group of hypercholesterolemic subjects, diet restrictions of fat, saturated fat, and
cholesterol in an ad libitum diet led to only modest losses in body weight.3 A similar dietary
intervention therapy demonstrated a very large range of diet responsiveness, with changes in
low-density lipoprotein (LDL) cholesterol ranging from +5% to −40%.4 It is well understood
that such dietary-based therapies, even under the strictest states of compliance, result in modest
benefits, along with a great variability of response among the patient population.3,4 The wide
interindividual variations witnessed in such controlled conditions may indicate a potential role
for genetic variability in outcome determination. Gene–environment interaction is defined as
the modulation by a genetic polymorphism of a dietary component effect on a specific
phenotype (e.g., cholesterol levels and obesity).1 In terms of gene–environment interactions
for common multifactorial diseases, one of the clearest evidence of their involvement has been
identified with the factors involved in the inflammatory response.5,6

GENE–ENVIRONMENT INTERACTIONS: THE EXAMPLE OF TYPE 2
DIABETES

To better understand how far we have come as HCPs in understanding the genetic components
of a multifactorial disease and the role of environmental influences in its pathology, it is
necessary to show how we came to understand the pathobiology of type 2 diabetes.

Although in the 1960s and 1970s we did not have the technical abilities that modern genetic
research now affords us, the observation of disease clustering in families led to the hypothesis
of genes in the predisposition of diabetes.7 In the 1980s, investigations focused on individual
genes and their polymorphisms and led to a better understanding of its genetic susceptibility,
as witnessed with the report of a single mutation in the insulin gene.8 Following a confusing
flood of similar single-mutation reports, reports began to surface that offered direct
relationships between gene dysfunction and disease pathology, as demonstrated by the
relationship between an amino acid substitution in the peroxisome proliferator-activated
receptor-gamma (PPAR-γ) and the resulting decreased receptor activity, thus leading to a lower
body mass index (BMI) and improved insulin sensitivity.9 More recently, current population
studies of thousands of individuals are starting to incorporate far better genetic approaches
through increased coverage of the genetic variation at each locus and genome-wide
associations. For example, in the last year alone, researchers identified more genes potentially
involved in diabetes susceptibility than had been identified in the previous 40 years.10–15
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However, what we have learned from these genome-wide studies for diabetes also applies to
investigations involving obesity, hypercholesterolemia, or any other multifactorial disease.
That is, per-allele effect sizes of all candidate loci identified are modest at best, with odds ratios
(ORs) approximately ranging from 1.1 to 1.2, suggesting each gene is probably a minor
contributor to the overall pathogenesis, if at all. This is a sobering observation that highlights
the need for larger sample sizes if further loci are to be identified at genome-wide levels of
significance.16 For example, it has been estimated that >11,500 cases and 11,500 control
subjects would be necessary to detect an effect size of 1.15 with 80% power at P = 10−7 for a
common single nucleotide polymorphism (SNP) with 20% minor allele frequency.16 Even
larger population sizes are required to examine higher-level interactions, i.e., multigene–diet–
behavioral factors, and this represents a major obstacle to the translation of this knowledge
into practical public health applications. There are imperative quantitative and qualitative
needs, including experiment design and data interpretation, which can be fulfilled only through
the collaboration of experts in the different fields, from basic science to computational biology
and behavioral science.

GENE–ENVIRONMENT INTERACTIONS AND CVD
As highlighted by the diabetes genome-wide analyses, individual genes are minor contributors
to disease risk when examined individually. Perhaps examining the contribution of many genes
together would produce more fruitful results. Such is the case in a recent publication17 that,
very simply, looked at the distribution of genetic predisposition score (GPS) values in subjects
with coronary infarct compared to control subjects. By examining nine candidate CVD genes
and 11 SNPs present at these loci in 200 control subjects and 200 subjects with coronary infarct
of the European Prospective Investigation into Cancer and Nutrition (EPIC) study, subjects
were assigned a GPS for coronary infarct. If the subject was homozygous for increased risk,
heterozygous for increased risk, or did not express the increased risk SNP, the subject was
assigned a value of 1, 0.5, or 0, respectively, for each of the 11SNPs. Thus, the risk for coronary
infarct increased in proportion to the GPS value. Upon examination of the data, the subjects
with coronary infarct had a GPS distribution that skewed toward the higher values, whereas
the distribution of the control subjects skewed toward lower values (Fig. 1). Not surprisingly,
GPS population distributions differed between ethnic groups, especially compared to those
groups with a high degree of obesity, CVD, and diabetes (e.g., high-scoring Hispanic
populations versus Mediterranean populations).17 Together, the data suggested that there may
be a genetic threshold, which, if crossed, leads to the initiation of disease progression.

The reaching of such a threshold may explain why there is disagreement within the scientific
literature regarding the replication of findings in gene-association studies, i.e., examining a
genetic marker alone does not reveal the whole story. Moreover, there is evidence that
environmental factors, in this case, diet, influence the likelihood of disease status in the same
coronary infarct population.17 Briefly, the investigators examined the ORs of being a coronary
infarct case in relation to the concurrent presence of high (>3.5) or low (<3.5) GPS and
adherence to a Mediterranean diet. The healthy Mediterranean diet was characterized by a high
intake of plant foods and olive oil, a low intake of meat and dairy products, and a moderate
intake of wine. Not surprisingly, those with a high GPS and non-adherence to the
Mediterranean diet had the highest ORs for coronary infarct compared to the reference group
with good genes (low GPS) and healthy diet (Mediterranean diet compliance). However, by
simply adhering to the Mediterranean diet, those with high GPS could significantly lower their
OR for coronary infarct by ~60%. In fact, this dietary change was enough to bring the OR in
line with that of subjects with a low GPS who were not following a Mediterranean diet.

Some of the genes used to generate the GPS for coronary infarct were genes involved in the
inflammatory response, e.g., interleukin (IL)-1β and −6 and tumor necrosis factor-alpha (TNF-
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α). An ever-growing array of experimental, epidemiological, and clinical studies has revealed
an association between variations in the inflammatory responses, dietary factors, and the
progression of numerous serious disease states including MetS and CVD.5,6

GENE–ENVIRONMENT INTERACTIONS: INFLAMMATION AND METS
MetS is a constellation of abnormalities, generally considered to include abdominal obesity,
high blood glucose/impaired glucose tolerance, dyslipidemia, and high blood pressure, which
together increase the risk for overt type 2 diabetes and CVD.5,18 There is increasing evidence
from experimental and epidemiologic studies to suggest that at the heart of all these
abnormalities is a proinflammatory state.19 The involvement of chronic low-level
inflammation underlying the pathobiology of MetS is evident in the finding that as the number
of characteristics of MetS increases in a population, the plasma concentrations of
proinflammatory markers, high sensitivity C-reactive protein (CRP) and IL-6, increase,
whereas the concentration of adiponectin, an adipocyte-derived protein important in glucose
regulation and fatty acid (FA) catabolism, decreases.20,21 This article details the paradigm of
inflammatory involvement in MetS by highlighting some of the data that implicate gene–
environment interactions in defining susceptibility to MetS.

A number of gene–environmental interactions have been drawn from an ongoing genetic/diet
interaction study that examines how gene–environment interactions influence susceptibility to
developing MetS.22 Known as the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) study, its aim is to characterize the genetic basis of the variable response of
triglycerides (TGs) following two dietary challenges, one that raises TGs acutely through diet
(via fat load) and one that lowers TGs through drug therapy (via fenofibrate treatment), over
several weeks.22 Twelve hundred subjects, aged 18 to 92 years, have been recruited from two
genetically homogeneous and predominantly white centers (Salt Lake City and Minneapolis).
The subjects in this study have been separated into those with and without MetS and are
phenotypically distinct.23 For example, BMI, waist circumference, saturated FA content in
erythrocyte membrane, and notably, the levels of CRP, IL-6, and TNF-α, are all higher in
subjects with MetS compared to those without MetS (P <0.001). In contrast, levels for total
polyunsaturated FA (PUFA), (n-3) PUFA (particularly the marine-derived [n-3] PUFAs,
docosahexaenoic acid and eicosapentaenoic acid), and (n-6) PUFA in erythrocyte membranes
are lower in MetS than in non-MetS subjects (P <0.05). Most interestingly, a recently published
report23 identified an association not just between the levels of IL-1β and the risk for MetS,
but rather between the genetic variants, or alleles, of IL-1β and the risk for MetS. The human
IL-1β gene is a member of the IL-1 cluster on the long arm of chromosome 2 and is flanked
by the IL-1α and IL-1Ra genes.24 Once adjusted for age, gender, alcohol, smoking status, and
pharmaceutical treatment of confounding disorders, such as diabetes, hypertension, and
hypercholesterolemia, specific polymorphisms along the IL-1β gene among GOLDN
participants were significantly associated with an increased risk for developing MetS (SNP
6054G>A, OR = 2.22 for GG and 1.79 for GA versus 1.00 for AA; P = 0.004).23 Knowing
the existence of allelic associations with the risk for disease development, could environmental
interactions, such as diet, counter this increased risk? To test this, data for these same GOLDN
participants were stratified by PUFA erythrocyte membrane level, and, thus presumably PUFA
dietary intake level, where a high PUFA intake is associated with decreases in inflammatory
markers.25 Briefly, it was found that GG and GA subjects with low erythrocyte membrane
PUFA content (<5.6%) and presumably low PUFA dietary intake continued to have a
significantly increased MetS risk compared to AA subjects (OR = 3.29 for GG and 1.95 for
GA versus 1.00 for AA; P <0.0001). However, for those participants with high PUFA content
(>5.6%), the increased risk for MetS was not evident among any of these polymorphisms (OR
= 1.46 for GG and 1.58 for GA versus 1.00 for AA; P = 0.549).23 Clearly, the data suggest
that the increased genetic predilection toward the development of MetS could be eliminated
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by a diet rich in (n-3) PUFA, supporting the concept that more customized dietary
recommendations may be successfully used to prevent chronic diseases.

Another report20 derived from the GOLDN study investigated the impact of TG-lowering
fenofibrate treatment on risk factors for CVD. Fenofibrate is a peroxisome proliferator-
activated receptor-alpha (PPAR-α) agonist and is a member of the fibrate class commonly used
for the management of dyslipidemia. A wealth of data has suggested that fibrates target the
atherogenic “lipid triad” (high TGs and low high-density lipoprotein [HDL] with small and
dense LDL particles) and inflammation.26 Because both phenotypes are important components
of diabetes and MetS, potentially linking these two metabolic disorders to CVD,6 fibrates are
hypothesized to be candidates for treating the dyslipidemia associated with diabetes and MetS,
effectively reducing CVD risk in these high-risk populations.27 However, outcomes from
clinical studies for this family of lipid-lowering drugs have been mixed; a study28 showed that
genetic variants at genes involved in lipid metabolism modulate the lipid response to
fenofibrate. A recent study20 examined the role of CRP genetic variations on the anti-
inflammatory effect of fenofibrate. Specifically, the effects of common CRP polymorphisms
on baseline plasma CRP levels and the effect of these variants on the response of CRP to an
anti-inflammatory 3-week fenofibrate treatment in GOLDN participants with MetS were
investigated. Also, the role of CRP in atherogenesis has been well described.29 CRP integrates
the action of several activated cytokines and is a significant predictor of clinical cardiovascular
events in healthy individuals and patients with CVD, independent of traditional lipid-based
risk factors. Furthermore, CRP has been associated with multiple risk factors for CVD,
including obesity, insulin resistance, and hypertension, and is a predictor for the risk for MetS.
29 In GOLDN subjects, although plasma CRP levels displayed extensive interindividual
variability, SNP analyses showed that the CRP locus contributes to the levels of circulating
CRP as well as to the variation of response to fenofibrate treatment among subjects with MetS.
20 Specifically, carriers for the rare alleles represented byAor T of m301G>A>T exhibited
higher CRP levels than carriers of the common G allele. Furthermore, the rare allele of i178T>A
was associated with high CRP levels, whereas the rare allele of 3u2131C>T was associated
with low CRP levels. With regard to 3-week fenofibrate intervention among participants with
MetS, different CRP alleles had significantly different plasma CRP responses to treatment. For
example, G allele carriers for the m301G>A>T SNP displayed a greater reduction of CRP
levels than non-carriers. Similarly, TT individuals with the i178T>A SNP had a greater
reduction in CRP levels than TA and AA subjects. Clearly, in this gene–environment
interaction, the data suggest that resistance to the anti-inflammatory effect of the drug
fenofibrate is dependent on CRP allelic expression among subjects with MetS.

Similar to CRP, it was found that functional polymorphisms associated with the
proinflammatory IL-6 gene (e.g., IL6-174C>G) are responsible for modulating serum levels
of IL-6.21 However, owing to the fact that these factors are highly interrelated, these same
IL-6 polymorphisms also modulate various serum lipids levels associated with MetS, including
large HDL particle levels and TG levels (Fig. 2).21 The physiological significance of such
modulatory effects is great, because baseline TG levels are affected, as are postprandial TG
levels, whose elevated levels represent an emerging CVD risk factor.18 It was shown that the
minor G allele at IL6-174C>G was associated with a significantly greater postprandial response
of TG-rich lipoproteins, including chylomicrons and total very-low density lipoprotein
(VLDL), compared to noncarriers. 21 Together, these combined effects could be responsible
for the observed association of this genetic variant with increased CVD risk.

It is worth examining TG metabolism further, specifically the role of perilipins, which are a
family of proteins that coat intracellular lipid droplets of adipocytes. The expression of perilipin
seems primarily to be in adipocytes and steroidogenic cells, where its major role is in the
regulation of intracellular lipolysis in adipocytes by hormone-sensitive lipase, and it is a major
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candidate gene for obesity in humans, in which specific polymorphisms have been associated.
30 This is not surprising considering its role in defining the release of free FAs (FFAs), and it
was recently demonstrated that postprandial TG metabolism is modified by the presence of
genetic variation in the perilipin locus.31 Specifically, data from GOLDN participants showed
that minor C and A alleles at PLIN1 and PLIN4, respectively, are associated with a lower
postprandial response, which may result in a lower atherogenic risk for carriers. There are
dietary consequences to these findings, because similar perilipin gene variations were shown
to determine varied susceptibility to insulin resistance in Asian women when consuming a
high–saturated fat, low-carbohydrate diet.32 In a separate study,33 the association between
perilipin haplotypes and serum concentrations of lipid and inflammation-related markers (FFA,
TG, and adiponectin) was demonstrated. The perilipin locus is a significant determinant of
body weight, obesity risk, and other MetS-related traits. Because this locus is associated with
postprandial plasma lipid metabolism as well as markers of inflammation, it clearly can be
considered a significant gene–diet interaction that modulates the risk for MetS.

CONCLUSIONS
The evidence clearly demonstrates that a number of gene–environment interactions modulate
the risk for diabetes, MetS, and CVD through their associations with multiple risk factors, such
as obesity, lipid levels in the fasting and postprandial state, and markers of inflammation. Data
from numerous molecular and genetic epidemiological studies indicate that gene–environment
interactions, via dietary changes, can interact in ways that increase the risk for developing
chronic disease. This genetic predisposition or vulnerability toward MetS and other disorders
can be substantially decreased with targeted dietary advice and constitutes the basis of
nutrigenomics,34 a difficult, but not impossible, task of identifying the interplay between
human genetic variation and environmental factors, which ultimately may lead to the
identification of disease-causative genes and the influential role of nutrients.35
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Figure 1.
Distribution of cases with coronary infarct and control subjects by GPS. The subjects with
coronary infarct (red line) had a GPS distribution that skewed toward the higher values, whereas
the distribution of the control subjects (green line) was skewed toward lower values. Data from
Trichopoulou et al.17
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Figure 2.
Baseline lipid measurements are modulated by polymorphisms in IL-6. Polymorphisms
associated with the proinflammatory IL-6 gene (e.g., IL6-174C>G) are responsible for
modulating serum levels of IL-6. Additionally, these same polymorphisms modulate various
serum lipids levels associated with MetS, including large HDL particle levels and TG levels.
P values were adjusted for age, gender, BMI, physical activity, smoking, alcohol intake, drugs
for diabetes, hypertension and hypercholesterolemia, and hormone use in women. Data from
Shen et al.21
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