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Abstract
Evaluation of reproducibility is important in assessing whether a new method or instrument can
reproduce the results from a traditional gold standard approach. In this paper, we propose a measure
to assess measurement agreement for functional data which are frequently encountered in medical
research and many other research fields. Formulae to compute the standard error of the proposed
estimator and confidence intervals for the proposed measure are derived. The estimators and the
coverage probabilities of the confidence intervals are empirically tested for small to moderate sample
sizes via Monte Carlo simulations. A real data example in physiology study is used to illustrate the
proposed statistical inference procedures.
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1 Introduction
Evaluation of reproducibility is needed for many scientific research problems. For example,
when a new instrument is developed, it is of interest to assess whether the new instrument can
reproduce the results obtained by using a traditional gold standard criterion. Indeed, the need
to quantify agreement arises in many research fields when two approaches or two raters
simultaneously evaluate a response. There are some traditional criteria for measuring
agreement between two rating approaches, such as Pearson’s correlation coefficient and paired
t-test when the responses are continuous. Even though these criteria had been used in practice,
they fail to detect poor agreement in some situations (see, for example, Lin, 1989). Thus, the
topic of assessing agreement for measurements by two approaches has become an interesting
research topic. Lin, Hedayat, Sinha and Yang (2002) gives a review and comparison of various
measures of recent developments in this area. Some measures to evaluate reproducibility
include intraclass correlation (Fleiss, 1986, Quan and Shih, 1996) and within-subject
coefficient of variation (Lee, Koh and Ong, 1989). Lin (1989) introduced the concordance
correlation coefficient which assesses the linear relationship between two variables under the
constraint that the intercept is zero and the slope is one. This measure is more appropriate for
assessing reproducibility of continuous outcomes. King and Chinchilli (2001b) proposed a
generalized concordance correlation coefficient for categorical data and continuous data. They
also show that the generalized concordance correlation coefficient is actually equivalent to the
weighted kappa coefficient (Cohen, 1968) for ordinal data and equivalent to the kappa
coefficient (Cohen, 1960) for binary data.

The concordance correlation coefficient has been widely applied to various research fields
since its introduction. Several extensions have been proposed to address different problems
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recently. Extending Lin’s ideas, Chinchilli, Martel, Kumanyika and Lloyd (1996) suggested a
weighted concordance correlation coefficient for repeated measures design. Vonesh, Chinchilli
and Pu (1996) used the concordance correlation coefficient to assess goodness-of-fit for
generalized nonlinear mixed-effects models. King and Chinchilli (2001a) developed a robust
version of the concordance correlation coefficient. To accommodate covariate adjustment,
Barnhart and Williamson (2001) proposed a generalized estimating equations approach to
model the concordance correlation coefficient via three sets of estimating equations.

This paper deals with the problem when paired data of repeated measures are curves, and
proposes a measure to evaluate the reproducibility of repeated-paired curve data. Such data are
also called functional data. Image data and growth curve data are special cases thereof. Analysis
of functional data is becoming an important topic in the statistical literature. Many interesting
applications can be found in the excellent book by Ramsey and Silverman (1997) and references
therein. The method in this paper is developed to analyze an actual data set collected in the
Noll Physiological Research Center at The Pennsylvania State University (courtesy of Dr. W.
L. Kenney). This study was designed to assess agreement of measurement by two different
approaches to measure body core temperature.

Body core temperature refers to the temperature of tissues located at sufficient depth within
the body so that it is minimally affected by the environmental temperature. The core
temperature may be monitored by measuring the temperature at different locations in the body.
Both the esophageal temperature (Tes) and rectal temperature (Tre) have been used for
measuring indices of core temperature for research purposes. The Tes probe is a thermometer
sealed inside a plastic feeding tube, which is inserted into the esophagus via the nostril to the
level of the right atrium. The Tre probe is a thermometer sealed in soft vinyl tubing and is
inserted into the rectum 8–10 cm beyond the anal spincter. It is known that the Tes probe
includes the temperature of the saliva swallowed by the subject and changes with depth of the
probe in the esophagus and Tre has a slower response time than Tes in the case of rapid storage
of heat during intense thermal stress of a short duration. During this study, temperatures for
each subject were observed by the two approaches every minute over 90 minutes of an
experiment period. The researchers would like to have an overall index of agreement over the
whole time period. They also want to have an index which can summarize the degree of
agreement during different conditions. The experiment consists of using the two methods to
measure core temperature when the subjects will enter a chamber set at 36 degree Celsius and
50humidity. The subjects will sit quietly for 10 minutes and then exercise on a motor-driven
treadmill for 20 minutes. The experiment will end when the subject has undergone 3 cycles of
10-minute rest/20-minute exercise. To address the researcher’s need, we propose a measure of
agreement for repeated-paired curve data. We name it concordance correlation coefficient since
it is motivated by the concordance correlation coefficient proposed by Lin (1989) which is a
measure of agreement at a single time point. When the observations are taken over different
time points, the concordance correlation coefficient proposed by Lin (1989) cannot be used
for the data set. The weighted concordance correlation coefficient for repeated measures may
not be appropriate for this situation because an observation for each subject is very dense, more
like a pair of curves over time rather than a multi-dimensional vector or a set of repeated
measurements.

Since functional data arise frequently, there is strong need for a generalization of concordance
correlation coefficient for such data. In this paper, we deal with this problem and propose an
estimate for it. (Since Pearson correlation coefficient is such a frequently encountered
coefficient, we also provide a generalization of Pearson correlation coefficient for functional
data and propose an estimate for it.) The consistency and asymptotic normality of the proposed
estimator are established. Based on the asymptotic normality, we provide a formula to compute
the standard error of the resulting estimate. The small sample performance of the proposed
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standard error formula is investigated via Monte Carlo simulation, and we found that it is good
for practical use. Statistical inferences on the concordance correlation coefficient are also
discussed. A physiological data set is used to illustrate the proposed methodology.

This paper is organized as follows. In Section 2, we give the motivation and introduce a
concordance correlation coefficient for curve data and image data. We then propose an
estimator for the coefficient. The consistency and asymptotic normality of the proposed
estimator are established. Section 3 contains simulation results and illustration of the proposed
method by analyzing the physiology data set aforementioned. Conclusions are given in Section
4. Regularity conditions, technical lemmas and proof of Theorem 2.1 are given in the Appendix.

2 Concordance correlation coefficient for functional data
Let x and y denote scores from two raters or measurements from two instruments. Let us first
consider that both x and y are univariate. Suppose that (x1, y1), ···, (xn, yn) are independent and
identically distributed paired observations from (x, y). Denote x = (x1, ···, xn) and y = (y1, ···,
yn). It is said that x and y are in perfect agreement if xi = yi for i = 1, ···, n. Therefore, if x and
y are in perfect agreement, then the angle between x and y, denoted by θ(x, y), is 0, which
implies that cosθ = 1. It is well known that

where <·, ·> denotes the inner product, and || · || is the Euclidean norm in Rn. In other words,

, and  for any n-dimensional vectors x and y. However, cosθ is
not a good measure for agreement because for any positive constant c,

This implies that cosθ cannot detect a scale change on either x or y.

The sample correlation coefficient between x and y can be written as

where x̄ and ȳ are the sample means of x and y, respectively. If x and y are in perfect agreement,
then ρ(x, y) = 1. However, it cannot detect a location shift on either x or y and a scale change
on either x or y because for any constants a > 0 and b

The degree of concordance between x and y can be characterized by the expected value of the
squared difference E(x − y)2. Using this characterization, Lin (1989) proposed the concordance
correlation coefficient
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(2.1)

The concordance correlation coefficient strikes a balance between a correlation measure
insensitive to location differences and a measure of location discrepancy. It can be further
written as the product of the accuracy and the precision coefficients ρc = ρCb. The accuracy
coefficient Cb is a bias correction factor that measures how far the best-fit line deviates from

the identity line. , where  and
. Note that 0 < Cb ≤1. The further Cb, is from 1, the greater

the deviation from the identity line. The precision coefficient is the Pearson correlation
coefficient ρ. It measures how far are the observations from the best-fit line. See Lin (1989)
for more detailed discussion.

Evaluation of reproducibility for functional data is a frequently encountered practical problem.
In this section, we propose a concordance correlation coefficient for functional data to address
the problem. To get more insights into the concordance correlation coefficient and for ease of
presentation, we first concentrate on the case when data are collected over an interval of a real
line.

Suppose that X(t) and Y(t), t ∈ ℐ, a finite closed real interval, are measurements from two
instruments. Regard X(·) and Y(·) as two random elements in some probability functional space

. For the probability functional space , define an inner product

(2.2)

where w(·) is a weight function and takes non-negative values over ℐ.

Using the notion of inner product, define the correlation coefficient for two random elements
X and Y in  as:

(2.3)

where , both E(X) = EX(t) and E(Y) = EY(t) are functions of t.

Define a concordance correlation coefficient for X(·) and Y(·) to be

(2.4)

Both ρ and ρc depend on the weight function w(·). The weight function allows one to assign
importance to different parts of t. The choice of the weight function will be discussed in Section
2.2. No matter what the weight function is, the concordance correlation coefficient possesses
the following characteristics, same as those for ρc defined on two random variables (see Lin,
1989):
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a. |ρc| ≤ |ρ| ≤ 1. Also, ρc and ρ have the same sign.

b. ρc = ρ if and only if ||E(X) − E(Y)|| = 0 and ||X − E(X)|| = ||Y−E(Y)||.

c. ρc = 0 if and only if ρ = 0.

d. ρc = ±1 if and only if ρ = ±1, ||X − E(X)|| = ||Y−E(Y)||, and ||E(X) − E(Y)|| = 0.

Using the Cauchy-Schwarz inequality and the definition of ρc, the proofs of these
characteristics are straightforward and are omitted here.

2.1 Statistical inferences
In this section, we propose statistical inference procedures for ρ and ρc defined in (2.3) and
(2.4). Without loss of generality, we assume that the interval ℐ = [0,1]. For ease of presentation,
suppose that for subject i, i = 1, ···, n, (Xi(t), Yi(t)) was observed at t = tj, j = 1, ···, N with 0 ≤
t1 < ··· < tN ≤ 1 This implies that all subjects were observed at the same tj, j = 1, ···, N. In practice,
different subjects may be observed at different time t. In such a situation, one may use
interpolation to compute the sample means in (2.5) and (2.6) defined below. Thus, the proposed
estimation procedure is still applicable. See, for instance, Fan and Zhang (2000) for
implementation with linear interpolation. When sampling rate is high, the bias caused by the
approximation is small and asymptotically negligible.

Denote Δj = tj+1 − tj, the gap size between tj+1 and tj. Using the sample counterparts to estimate
ρ and ρc, we have

(2.5)

and

(2.6)

where  and  are the sample means of X(tj) and Y(tj),
respectively. We establish the asymptotic normality of the newly proposed estimator in the
following theorem, whose proof is given in Appendix.

Theorem 2.1—Suppose, that {(Xi(t), Yi(t)), t = tj, j = 1, ···, N, i = 1, ···, n} is a random
realization from {(X(t), Y(t))} at t = tj, j = 1, ···, N. If Conditions (A)—(D) given in the Appendix
hold, then ρ̂c is a consistent estimator for ρc, and when |ρc| < 1,  has an asymptotic

normal distribution with zero mean and variance , where

(2.7)

and
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(2.8)

To estimate the standard error of ρ̂c, we estimate  by its sample counterparts:

where â and Σ^ are the corresponding sample counterparts. Thus, using Theorem 2.1, standard
error formulae for ρ̂c is

(2.9)

where we use the factor  rather than  for small sample correction in practice.
The accuracy of these two standard error formulae for small to moderate sample sizes will be
examined in Section 3, and we find that they perform well even for small sample sizes.

Since the range of ρc is [−1,1], one can improve upon the normal approximation by using
Fisher’s Z-transformation. That is,

Using the δ-method, it can be shown that  has asymptotic normal distributions
with zero means and variance

Thus,

Furthermore, asymptotic 100(1 − α)% confidence intervals for Zc = 2−1 ln{(1 + ρc)/(1 − ρc)}
is

(2.10)

Li and Chow Page 6

J Multivar Anal. Author manuscript; available in PMC 2009 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Using (2.10), we may construct asymmetric confidence intervals for ρc. The performance of
the standard error formula will be examined in Section 3.

Remark—The consistence and asymptotic normality of ρ̂ can be derived in the same manner
as those of ρ̂c. Furthermore, standard error formula can be derived and confidence interval for
ρ can be constructed in the same approach as those for ρc. See Li and Chow (2001) for details.

2.2 Choice of weight function
The definition of inner product (2.2) over the probability space  involves a weight function.
In this section, we briefly discuss how to determine the weight function for the proposed
procedures.

The weight function allows us to assign importance to different time t. Therefore, when some
prior information on the importance of different time intervals is available, one may determine
the weight function accordingly. We call this kind of approach subjective approach because it
is based on experience of data analysts or prior information.

In some pilot studies, there is no prior information, and hence a data-driven approach to
choosing the weight function is desirable. We refer to this type of approach as objective
approach. The points t1, ···, tN at which data were collected are regarded as realizations of a
random variable. In other words, regard t as a random variable defined on ℐ. We choose the
density function of t as the weight function. Thus, the inner product defined in (2.2) is indeed
an expectation of XY, which is consistent with the definition of an inner product in a probability
space. Thus, to estimate the weight function, we need to estimate the density of t based on the
data t1, ···, tN. There are a large amount of literature on the topic of density estimation. See the
reference book, for example, Silverman (1986) for details. Here we estimate the density
function via a kernel estimator:

where K(·) is a kernel density function, such as the Gaussian density function, and h is a
bandwidth to be chosen. A rule of thumb suggests taking h = 1.06stN−1/5 for the Guassian
kernel, where st is the sample standard deviation of t1, ··· tN.

In many case studies, such as the example in Section 3.2, the data were evenly collected over
time. Without subjective information, the objective approach implies taking a uniform weight
function. This will be implemented in Section 3.

2.3 Concordance correlation coefficient for image data
Suppose that X(t) and Y(t), t ∈ I, a closed rectangle of the plane R2, are image data produced
by two instruments. Let X(t) and Y(t) be two elements in a probability functional space , and
define an inner product for  as:

Thus, we can define a correlation coefficient and a concordance correlation coefficient in the
same manner as (2.3) and (2.4).
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(2.11)

and

(2.12)

The characteristics of ρc in Section 2 are still valid.

Here we focus on the estimation of ρ and ρc. Without loss of generality, it is assumed that the
rectangle I = [0,1]2. Suppose that Xi(t), Yi(t) was observed at tkl = (t1k, t2l), k = 1, ···, K and l =
1, ···, L with 0 ≤ t11 < ··· < t1K ≤ 1 and 0 < t21 < ··· < t2L ≤ 1. Define N = KL and Δkl =
(t1,k+1−t1,k) (t2,j+1−t2,j. Using the sample counterparts to estimate ρ and ρc, we have

(2.13)

and

(2.14)

Similar to Theorem 2.1, ρ̂c is consistent and has an asymptotic normal distribution.

Theorem 2.2—Suppose that {(Xi(tkl), Yi(tkl))}, i = l, ···, n, k= 1, ···, K, l = 1, ··· L is a random
sample from {X(t), Y(t)} at tkl for k = 1, ···, K, l = 1, ···, L. If Conditions (A), (B), (C′) and (D
′) given in the Appendix hold, then the ρ ̂c, defined in (2.14), is a consistent estimator for ρc,
and  has an asymptotic normal distribution with zero mean and variance

, where

(2.15)

and
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(2.16)

Proof—Using Lemma A.2 in the Appendix, Theorem 2.2 follows by similar arguments in the
proof of Theorem 2.1.

As discussed in Section 2, we may apply the Fisher Z-transformation for ρ̂ and ρ̂c to obtain a
better normal approximation. Furthermore, one may construct an asymptotic confidence
interval using the asymptotic properties in Theorem 2.1.

3 Simulation study and applications
In this section, we investigate the small sample performance of the proposed estimators and
test the accuracy of proposed standard error formulae in (2.9) when the sample size is small.
We also investigate the performance of the confidence interval in (2.10) in terms of coverage
probability via Monte Carlo simulations. We then apply the proposed method to a real data
set. In our simulations and analysis of the real data set, the weight function w(t) involved in
the definition of ρ and ρc is taken to be 1.

3.1 Simulation study
To assess the performance of proposed estimators in (2.5) and (2.6) and their standard error
formulae, a Monte Carlo simulation was conducted for four underlying K-dependent Gaussian
processes (see Li and Chow (2001) for an algorithm to generate the simulated data) and four
underlying K-dependent non-Gaussian processes (X(t), Y(t)) with mean (μx(t), μy(t)), variance

 and covariance cov(X(t), Y(t)) = σxy(t). For the non-Gaussian processes, both X
(t) and Y(t) are generated from a t-distribution with 10 degrees of freedom with a location shift
and a scale change. For each of the K-dependent process, we take K = 20,40 and set the sample
size n = 10, 20. We generate N = 50,100 sample points over a period of time [0,1]. Thus, for
each case of 64(= 2×4×2×2×2) situations, we conduct 1000 Monte Carlo simulations using
MATLAB.

Case 1—In this case, μx(t) = μy(t) = 0,  and σxy = 0.95. In this setting, ρ = ρc =
0.95 with no difference in location and scale parameters.

Case 2—Let  and σxy(t) = 0.95. In this case, both
the pointwise correlation coefficient and the pointwise concordance correlation coefficient are
close to 1. Moreover, ρ = 0.95 and ρc = 0.9048 with a slight location shift.

Case 3—Let , σxy(t) = 1.1 × 0.9 × {sin
(2πt) + 1}/2. In this example, ρ = 0.5 and ρc = 0.4670 with slight constant differences in both
locations and variance and a varying covariance function. Furthermore, both the pointwise
correlation coefficient and the pointwise concordance correlation coefficient vary between 0
to 1.

Case 4—Let , and σxy = 1.1 × 0.9 × {sin
(2πt) + 3}/4. In this case, the difference in location and covariance between X(t) and Y(t) are
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varying in t, but the difference in variance is a constant. In the example, we have ρ = 0.75 and
ρc = 0.7005. The pointwise correlation coefficient and the pointwise concordance correlation
coefficient vary between 0.5 and 1.

These four simulation settings were motivated by actual situations that arise in practice. Cases
1 and 2 correspond to highly correlated and highly agreed paired functional data and were
motivated from the real example studied in Li and Chow (2001); and the means and variances
in Cases 3 and 4 were taken the same as those of Cases 3 and 4 in Lin (1989). The pointwise
correlation function in Cases 3 and 4 periodically changes over time, which was also motivated
by the actual data example in Section 3.2. Table 1 summarizes the simulation results of the
case in which the (X(t), Y(t)) is K-Guassian process with K = 20, N = 50 and n = 10. The
simulation results for some other cases are similar. See Li and Chow (2001) for more simulation
results.

From Table 1, we can see that the averages of estimates of ρ̂, Ẑ, ρ̂c and Ẑc are very close to the
true values, although we notice that ρ̂c slightly underestimate ρc. The average of estimated
standard errors (SE) is very close to the standard deviation of 1000 estimates, which can be
regarded as the true value of the standard deviation of ρ̂ and ρ̂c. The difference between the
average of the estimated standard errors and the true value is less than half standard deviation
of the estimated standard errors. This implies that the standard error formulae proposed in (2.9)
are fairly accurate even for small sample sizes. We also notice that the SE is always less than
the true standard deviation. This may imply that the standard error formulae proposed in (2.9)
slightly underestimate the true standard error. Note that the Monte Carlo standard error for the
coverage probability is 0.0069. It can be seen from the last column of Table 1 that most of the
coverage probabilities are very close to the true probability 0.95. This implies that the proposed
confidence interval formula in (2.10) work well even for small sample sizes.

3.2 An Application
Example—In this example, we illustrate the proposed method in Section 2 by application to
an actual data set collected in the Noll Physiological Research center at the Pennsylvania State
University. The researchers of study is interested in measuring body core temperature and to
compare agreement of measurement by two different methods under the active heating
condition. Data had been collected to compare the temperature recorded by the esophageal
temperature (Tes) approach and the rectal temperature (Tre) approach. There are 12 subjects
in this study. During this study, temperatures for each subject were observed by the two
approaches every minute over one and half hour of an experiment period. The subjects will sit
quietly for 10 minutes and then exercise on a motor-driven treadmill for 20 minutes. The
subjects will alternate rest with exercise on a treadmill for 3 cycles in an environmental
chamber. Figure 1(a), (b) display the sample mean and standard deviation curves of subjects
under the active heating condition, from which we can see that the two means and standard
deviation functions do not agree with each other well. The sample mean curves have tended
to increase over time since the experiment was performed under the active heating condition.
The effect of the three rest and exercise cycles was shown clearly in the sample mean curve.
The pointwise concordance correlation coefficient, depicted in Figure 1(c), changes over time
dramatically. That coincides with the researchers’ expectation since Tre has a slower response
time than Tes during the heating condition. Furthermore, the time points where the
concordances are high or low roughly correspond to the changing points in the sample mean
curve. Again this is as expected since the response time to temperature change of the two
instruments are different.

We further computed the windowed version of concordance correlation coefficient at time t,
using all datum points between t − h and and t + h. The idea is similar to that of moving average,
and h is referred to as the window size. Figure 1(d) depicts a windowed version concordance
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correlation coefficient, using h = 9. Such a window size is decided such that we use about 20%
datum points around time t to estimate concordance correlation coefficient at time t. We also
computed the concordance correlation coefficient using about 10% and 30% datum points
around t. The shape of concordance correlation coefficient is similar to that in Figure 1(d). We
further construct a confidence interval for the windowed version concordance correlation
coefficient using bootstrap method. Here we bootstrap 1000 subject-based samples rather than
observations-based samples. The dotted lines are the 2.5th and 97.5th percentiles of the 1000
bootstrap estimates and provide us a 95% confidence interval. One may construct an asymptotic
pointwise confidence interval for pointwise concordance correlation coefficient (see Lin,
1989), but the confidence interval depicted in Figure 1(c) is the bootstrap confidence interval
due to the small sample size.

Figure 1(e) and (f) display the scatter plot at two typical time points: t = 10 and t = 80. To
assess overall agreement of these two approaches, we compute ρ̂ and ρ̂c and obtain that ρ̂ =
0.8637 with standard error 0.0574, and ρ̂c = 0.6162 with standard error 0.1222. Although the
correlation coefficient is pretty high, the low value of ρ̂c implies the the measurements by the
two approaches do not agree with each other. This is also evidenced by Figure 1(a), (b), (e)
and (f). This example shows that ρc is more effective than ρ in detecting non-agreement of
measurement.

We now employ bootstrap samples to estimate the sampling distributions of ρ̂ and ρ̂c. Figure
2 depicts the densities of ρ̂ and ρ̂c using kernel density estimation with Guassian kernel and
bandwidth chosen using the plug-in method proposed by Sheather and Jones (1991). The
sample mean and standard deviation of the 1000 bootstrap estimate for ρ̂c are 0.5819 and
0.1140, respectively. They approximately equal to the estimate and standard error of ρc. Result
for ρ̂ is similar. Based on the 1000 bootstrap estimates, a 95% confidence interval for ρ̂c and
ρ̂ is [0.3261,0.7803] and [0.7011,0.9481], respectively. Since the sampling distributions for
ρ̂c and ρ̂ are skew, the sample means are not the center of the confidence intervals.

4 Conclusions
In this paper, we proposed a concordance correlation coefficient for curve data and image data.
Its characteristics have been investigated. We proposed an estimator for the concordance
correlation coefficient and established the asymptotic normality of the proposed estimator. A
standard error formula for the resulting estimate is derived and empirically tested. An
application to an actual data set illustrates the proposed methodology.
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Appendix
We first present the regularity conditions for Theorem 2.1.

Definition A.1
Let 0 = t0 < ··· < tl = 1 be any partition  of [0,1], and f(t) be a real function defined on [0,1].
If the variation

has an upper bound which is independent of the choice of , then f is called a function of
bounded variation. The least upper bound of V

is called the total variation of f and is denoted by V(f).

For a function of bounded variation, it has been shown that

Li and Chow Page 12

J Multivar Anal. Author manuscript; available in PMC 2009 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.stat.psu.edu/~rli/research/reprod_tech.pdf


(A.1)

See, for example, Theorem 5.3 of Hua and Wang (1981).

The equation (A.1) tells us how to impose assumptions on V(f) and max0≤j≤N−1 |tj+1 − tj| in a
natural way. Let  and  denote the space consisting of paths X(·) and Y(·). Further, define

Conditions
A. For ℱ = , ,  i, i = 1, 2 and 3,

(A.2)

B. The weight function w(t) is a function of bounded variation.

C. There exists a constant Δ such that

and  as n → ∞.

D.

To prove Theorem 2.1, we need the following lemma.

Lemma A.1
Under the conditions of Theorem 2.1, we. have

(A.3)
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(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

Proof
Denote

Since w(t) is a function of bounded variation, using (A.2), it can be shown that

Thus, by Condition (C), it follows that
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So (A.3) follows. Along the same lines as the proof of (A.3), it can be shown that (A.4) to (A.
8) hold. This completes the proof of Lemma A.1.

Proof of Theorem 2.1
Denote

Using Lemma A.1 in the Appendix, it follows that

Since

and

we have

(A.9)

which tends to E ∫ℐ{X(t) − EX(t)}{Y(t) − EY(t)}w(t) dt in probability by the weak law of large
numbers and N → ∞. Similarly, we can show that all other terms involved in ρ̂c are convergent
in probability, and therefore ρ̂c is consistent.

To establish the asymptotic normality of ρ̂c, we rewrite ρ̂c as
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Denote

and

By straightforward calculation, we have

Next we deal with Dn. It is not difficult to show that

which equals

This is equal to

Define Vn = (An, Bn, Cn, Dn)T and
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By Condition (C), the multivariate central limit theorem and the Slutsky theorem,
 has an asymptotic normal distribution with mean zero and variance Σ given by

(2.8).

Define h(v1, v2, v3, v4) = 2v1/(v2 + v3 − 2v4). Thus, ρ̂c = h(An, Bn, Cn, Dn). Using the delta
method,  has an asymptotic normal distribution with mean zero and variance
aTΣa, where a and Σ are defined in (2.7) and (2.8), respectively. This completes the proof.

Let us present the regularity conditions for Theorem 2.2.

Definition A.3
Let 0 = t10 < ···< t1m1 = 1 and 0 = t20 < ··· <t2m2 = 1 be any partition of [0,1]2, and f(t1, t2) be
a real function defined on [0,1]2. Define

If the variation

has an upper bound which is independent of the choice , then f is called a function of bounded
variation (see, for example, Hua and Wang, 1981). The least upper bound of V

is called the total variation of f and is denoted by V(f).

Condition
(C′) There exists Δ1 and Δ2 such that

and

Further,  as n → ∞, where N = KL.

(D′)
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Lemma A.2
Under the conditions of Theorem 4.1, we. have

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

Proof
The proof is similar to that of Lemma A.1. We omit it here. A rigorous proof is given in Li and
Chow (2001).
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Figure 1.
Plots for Example 1. (a) and (b) are plots of the sample mean and standard deviation curves,
respectively. The solid line stands for the Tes, and the dash-dotted line for the Tre. In (c) and
(d), the solid line is plot of pointwise and windowed version concordance correlation
coefficient, respectively, and dotted lines are the 2.5th and 97.5th percentiles of 1000 bootstrap
estimates, respectively, (e) and (f) are scatter plots at t = 10 and 80, respectively.
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Figure 2.
Plot of Estimated Densities of ρ̂ and ρ̂c Based on 1000 Bootstrap Estimates.
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