
Variable Selection using MM Algorithms

David R. Hunter and
Department of Statistics, The Pennsylvania State University University Park, Pennsylvania 16802–
2111, E-mail: dhunter@stat.psu.edu

Runze Li
Department of Statistics, The Pennsylvania State University University Park, Pennsylvania 16802–
2111 E-mail: rli@stat.psu.edu

Abstract
Variable selection is fundamental to high-dimensional statistical modeling. Many variable selection
techniques may be implemented by maximum penalized likelihood using various penalty functions.
Optimizing the penalized likelihood function is often challenging because it may be nondifferentiable
and/or nonconcave. This article proposes a new class of algorithms for finding a maximizer of the
penalized likelihood for a broad class of penalty functions. These algorithms operate by perturbing
the penalty function slightly to render it differentiable, then optimizing this differentiable function
using a minorize-maximize (MM) algorithm. MM algorithms are useful extensions of the well-known
class of EM algorithms, a fact that allows us to analyze the local and global convergence of the
proposed algorithm using some of the techniques employed for EM algorithms. In particular, we
prove that when our MM algorithms converge, they must converge to a desirable point; we also
discuss conditions under which this convergence may be guaranteed. We exploit the Newton-
Raphson-like aspect of these algorithms to propose a sandwich estimator for the standard errors of
the estimators. Our method performs well in numerical tests.
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1. Introduction
Fan and Li (2001) discuss a family of variable selection methods that adopt a penalized
likelihood approach. This family includes well-established methods such as AIC and BIC as
well as more recent methods such as bridge regression (Frank and Friedman, 1993), LASSO
(Tibshirani, 1996), and SCAD (Antoniadis and Fan, 2001). What all of these methods share is
the fact that they require the maximization of a penalized likelihood function. Even when the
log-likelihood itself is relatively easy to maximize, the penalized version may present
numerical challenges. For example, in the case of SCAD or LASSO or bridge regression, the
penalized log-likelihood function is nondifferentiable; with SCAD or bridge regression, the
function is also nonconcave. To perform the maximization, Fan and Li (2001) propose a new
and generic algorithm based on local quadratic approximation (LQA). In this article, we
demonstrate and explore a connection between the LQA algorithm and minorization-
maximization (MM) algorithms (Hunter and Lange, 2000), which shows that many different
variable-selection techniques may be accomplished using the same algorithmic techniques.

MM algorithms exploit an optimization technique that extends the central idea of EM
algorithms (Dempster et al., 1977) to situations not necessarily involving missing data nor even
maximum likelihood estimation. The connection between LQA and MM enables us to analyze
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the convergence of the local quadratic approximation algorithm using techniques related to
EM algorithms (Wu, 1983; Meng, 1994; Lange, 1995; Meng and Van Dyk, 1997). Furthermore,
we extend the local quadratic approximation idea here by forming a slightly perturbed objective
function to maximize. This perturbation solves two problems at once. First, it renders the
objective function differentiable, which allows us to prove results regarding the convergence
of the MM algorithms discussed here. Second, it repairs one of the drawbacks that the LQA
algorithm shares with forward variable selection: Namely, if a covariate is deleted at any step
in the LQA algorithm, it will necessarily be excluded from the final selected model. We discuss
how to decide a priori how large a perturbation to choose when implementing this method and
make specific comments about the price paid for using this perturbation.

The new algorithm we propose retains virtues of the Newton-Raphson algorithm, which among
other things allows us to compute a standard error for the resulting estimator via a sandwich
formula. It is also numerically stable and is never forced to delete a covariate permanently in
the process of iteration. The general convergence results known for MM algorithms imply
among other things that the newly proposed algorithm converges correctly to the maximizer
of the perturbed penalized likelihood whenever this maximizer is the unique local maximum.
The linear rate of convergence of the algorithm is governed by the largest eigenvalue of the
derivative of the algorithm map.

The rest of the article is organized as follows. Section 2 briefly introduces the variable selection
problem and the penalized likelihood approach. After providing some background on MM
algorithms, Section 3 explains their connection to the LQA idea, then provides a modification
to LQA that may be shown to be an MM algorithm for maximizing a perturbed version of the
penalized likelihood. Various convergence properties of this new MM algorithm are also
covered in Section 3. Section 4 describes a method of estimating covariances and presents
numerical tests of the algorithm on a set of four diverse problems. Finally, Section 5 discusses
the numerical results and offers some broad comparisons among the competing methods
studied in Section 4. Some proofs appear in the Appendix.

2. Variable selection via maximum penalized likelihood
Suppose that {(xi, yi): i = 1, …, n} is a random sample with conditional log-likelihood

 givenxi. Typically, the yi are response variables that depend on the
predictors x i through a linear combination , andφ is a dispersion parameter. Some of the
components of β may be zero, which means that the corresponding predictors do not influence
the response. The goal of variable selection is to identify those components of β that are zero.
A secondary goal in this article will be to estimate the nonzero components of β.

In some variable selection applications, such as standard Poisson or logistic regression, no
dispersion parameter φ exists. In other applications, such as linear regression, φ is to be
estimated separately after β is estimated. Therefore, the penalized likelihood approach does
not penalize φ, so we simplify notation in the remainder of this article by eliminating explicit
reference to φ. In particular, ℓi(β, φ) will be written ℓi(β). This is standard practice in the variable
selection literature; see, for example, Frank and Friedman (1993), Tibshirani (1996), Fan and
Li (2001) or Miller (2002).

Many variable selection criteria arise as special cases of the general formulation discussed in
Fan and Li (2001), where the penalized likelihood function takes the form
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(2.1)

In equation (2.1), the pj(·) are given nonnegative penalty functions, d is the dimension of the
covariate vector xi, and the λj are tuning parameters controlling model complexity. The selected
model based on the maximized penalized likelihood (2.1) satisfies pj(|βj|) = 0 for certain βj’s,
which accordingly are not included in this final model, and so model estimation is performed
at the same time as model selection. Often, the λj may be chosen by a data-driven approach
such as cross-validation or generalized cross-validation (Craven and Wahba, 1979).

The penalty functions pj(·) and the tuning parameters λj are not necessarily the same for all j.
This allows one to incorporate hierarchical prior information for the unknown coefficients by
using different penalty functions and taking different values of λj for the different regression
coefficients. For instance, one may not be willing to penalize important factors in practice. For
ease of presentation, we assume throughout this article that the same penalization is applied to
every component of β and write λjpj(|βj|) as pλ (|βj|), which implies that the penalty function is
allowed to depend on λ. Extensions to situations with different penalty functions for each
component of β do not involve any extra difficulties except more tedious notation.

Many well-known variable selection criteria are special cases of the penalized likelihood of
equation (2.1). For instance, consider the L0 penalty pλ(|β|) = 0.5λ2I (|β| ≠ 0), also called the
entropy penalty in the literature, where I(·) is an indicator function. Note that the dimension or
the size of a model equals ΣjI (|βj| ≠ 0), the number of nonzero regression coefficients in the
model. In other words, the penalized likelihood (2.1) with the entropy penalty can be rewritten
as

where |M| = ΣjI (|βj| ≠ 0), the size of the underlying candidate model. Hence, several popular
variable selection criteria can be derived from the penalized likelihood (2.1) by choosing
different values of λ. For instance, the AIC (or Cp) and BIC criteria correspond to  and

, respectively, although these criteria were motivated from different principles.
Similar in its effect to the entropy penalty function is the hard thresholding penalty function
(see Antoniadis, 1997) given by

Recently, many authors have been working on penalized least squares with the Lq penalty pλ
(|β|) = λ|β|q. Indeed, bridge regression is the solution of penalized least squares with the Lq
penalty (Frank and Friedman, 1993). It is well known that ridge regression is the solution of
penalized likelihood with the L2 penalty. The L1 penalty results in LASSO, proposed by
Tibshirani (1996). Finally, there is the smoothly clipped absolute deviation (SCAD) penalty
of Fan and Li (2001). For fixed a > 2, the SCAD penalty is the continuous function pλ (·) defined
by pλ (0) = 0 and, for β ≠ 0,
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(2.2)

where throughout this article  denotes the derivative of pλ (·) evaluated at |β|.

Letting  denote the limit of  as x → |β| from above, the MM algorithms introduced
in the next section are shown to apply to any continuous penalty function pλ (β) that is
nondecreasing and concave on (0, ∞) such that . The previously mentioned penalty
functions that satisfy these criteria are hard thresholding, SCAD, LASSO, and Lq with 0 < q ≤
1. Therefore, the methods presented in this article enable a wide range of variable selection
algorithms.

Nonetheless, there are some common penalty functions that do not meet our criteria. The
entropy penalty is excluded because it is discontinuous, and in fact maximizing the AIC- or
BIC-penalized likelihood in cases other than linear regression often requires exhaustive fitting
of all possible models. For q > 1, the Lq penalty is excluded because it is not concave on (0,
∞); however, the fact that pλ(|β|) = |β|q is everywhere differentiable suggests that the penalized
likelihood function may be susceptible to gradient-based methods and hence alternatives such
as MM may be of limited value. In particular, the special case of ridge regression (q = 2) admits
a closed-form maximizer, a fact we allude to following equation (3.17). But there is a more
subtle reason for excluding Lq penalties with q > 1. Note that  for any of our
nonexcluded penalty functions. As Fan and Li (2001) point out, this fact (which they call
singularity at the origin because it implies a discontinuous derivative at zero) ensures that the
penalized likelihood has the sparsity property: The resulting estimator is automatically a
thresholding rule that sets small estimated coefficients to zero, thus reducing model complexity.
Sparsity is an important property for any penalized likelihood technique that is to be useful in
a variable selection setting.

3. Maximized penalized likelihood via MM
It is sometimes a challenging task to find the maximum penalized likelihood estimate. Fan and
Li (2001) propose a local quadratic approximation for the penalty function: Suppose that we

are given an initial value β(0). If  is very close to 0, then set β ̂j = 0; otherwise, the penalty
function is locally approximated by a quadratic function using

when . In other words,

(3.1)
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for . With the aid of this local quadratic approximation, a Newton-Raphson algorithm
(for example) can be used to maximize the penalized likelihood function, where each iteration
updates the local quadratic approximation.

In this section, we show that this local quadratic approximation idea is an instance of an MM
algorithm. This fact enables us to study the convergence properties of the algorithm using
techniques applicable to MM algorithms in general. Throughout this section, we refrain from
specifying the form of pλ(·), since the derivations apply equally to any one of hard thresholding,
LASSO, bridge regression using Lq with 0 < q ≤ 1, SCAD, or any other method with penalty
function pλ(·) satisfying the conditions of Proposition 3.1.

3.1. Local Quadratic Approximation as an MM algorithm
MM stands for Majorize-Minimize or Minorize-Maximize, depending on the context (Hunter
and Lange, 2000). EM algorithms (Dempster et al., 1977), in which the E-step may be shown
to be equivalent to a minorization step, are the most famous examples of MM algorithms,
though there are many examples of MM algorithms that involve neither maximum likelihood
nor missing data. Heiser (1995) and Lange et al. (2000) give partial surveys of work in this
area. The apparent ambiguity in allowing MM to have two different meanings is harmless,
since any maximization problem may be viewed as a minimization problem by changing the
sign of the objective function.

Consider the penalty term −n Σjpλ(|βj|) of equation (2.1), ignoring its minus sign for the moment.
Mimicking the idea of Equation (3.1), we define the function

(3.2)

We assume that pλ(·) is piecewise differentiable so that  exists for all θ. Thus, Φθ0(θ)
is a well-defined quadratic function of θ for all real θ0 except for θ0 = 0. Section 3.2 remedies
the problem that Φθ0(θ) is undefined when θ0 = 0.

We are interested in penalty functions pλ(θ) for which

(3.3)

A function Φθ0(θ) satisfying condition (3.3) is said to majorize pλ(|θ|) at θ0. If the direction of
the inequality in condition (3.3) were reversed, then Φθ0(θ) would be said to minorize pλ(|θ|)
at θ0.

The driving force behind an MM algorithm is the fact that condition (3.3) implies

which in turn gives the descent property
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(3.4)

In other words, if θ0 denotes the current iterate, any decrease in the value of Φθ0(θ) guarantees
a decrease in the value of pλ(|θ|). If θk denotes the estimate of the parameter at the kth iteration,
then an iterative minimization algorithm would exploit the descent property by constructing
the majorizing function Φθk(θ), then minimizing it to give θk+1 — hence the name “majorize-
minimize algorithm”. Proposition 3.1 gives sufficient conditions on the penalty function pλ(·)
in order that Φθ0(θ) majorizes pλ (|θ|). Several different penalty functions that satisfy these
conditions are depicted in Figure 1 along with their majorizing quadratic functions.

Proposition 3.1—Suppose that on (0, ∞), pλ (·) is piecewise differentiable, nondecreasing,
and concave. Furthermore, pλ (·) is continuous at 0 and . Then for all θ0 ≠ 0 ,
Φθ0(θ) as defined in equation (3.2) majorizes pλ(|θ|) at the points ±|θ0|. In particular, conditions
(3.3) and (3.4) hold.

Next, suppose that we wish to employ the local quadratic approximation idea in an iterative

algorithm, where  denotes the value of β at the kth iteration. Appending

negative signs to pλ(|βj|) and  to turn majorization into minorization, we obtain the
following corollary from Proposition 3.1 and equation (2.1):

Corollary 3.1: Suppose that  for all j and that pλ(θ) satisfies the conditions given in
Proposition 3.1. Then

(3.5)

minorizes Q(β) atβ(k).

By the ascent property — the analogue, for minorizing functions, of the descent property (3.4)
— Corollary 3.1 suggests that given β(k), we should defineβ(k+1) to be the maximizer of
Sk(β), thereby ensuring that Q(β(k+1))> Q(β(k)). The benefit of replacing one maximization
problem by another in this way is that Sk(β) is susceptible to a gradient-based scheme such as
Newton-Raphson, unlike the non-differentiable function Q(β). Since the sum in equation (3.5)
is a quadratic function of β — in fact, the Hessian matrix of this sum is a diagonal matrix —
this sum presents no difficulties for maximization. Therefore, the difficulty of maximizing
Sk(β) is determined solely by the form of ℓ(β). For example, in the special case of a linear
regression model with normally distributed errors, the log-likelihood function ℓ(β) is itself
quadratic, which implies that Sk(β) may be maximized analytically.

If some of the components of β(k) equal zero (or in practice, if some of them are close to zero),
the algorithm proceeds by simply setting the final estimates of those components to be zero,
deleting them from consideration, then defining the function Sk(β̃) as in equation (3.5),
whereβ̃ is the vector composed of the nonzero components of β. The weakness of this scheme
is that once a component is set to zero, it may never reenter the model at a later stage of the
algorithm. The modification proposed in Section 3.2 eliminates this weakness.
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3.2. An improved version of local quadratic approximation
The drawback of Φθ0(θ) in equation (3.2) is that when θ0 = 0, the denominator 2|θ0| makes
Φθ0(θ) undefined. We therefore replace 2|θ0| by 2(ε + |θ0|) for some ε > 0. The resulting
perturbed version of Φθ0(θ), which is defined for all real θ0, is no longer a majorizer of pλ(θ)
as required by the MM theory. Nonetheless, we may show that it majorizes a perturbed version
of pλ(θ), which may therefore be used to define a new objective function Qε(β) that is similar
to Q(β). To this end, we define

(3.6)

and

(3.7)

The next proposition shows that an MM algorithm may be applied to the maximization of
Qε(β) and suggests that a maximizer of Qε(β) should be close to a maximizer of Q(β) as long
as ε is small and Q(β) is not too flat in the neighborhood of the maximizer.

Proposition 3.2—Suppose that pλ (·) satisfies the conditions of Proposition 3.1. For ε > 0,
define

(3.8)

Then (a) For any fixed ε >0,

(3.9)

minorizes Qε (β)atβ(k).

(b) As ε↓ 0, |Qε (β) − Q(β)| → 0 uniformly on compact subsets of the parameter space.

Note that when the MM algorithm converges and Sk,ε (β) is maximized by β(k), it follows by
straightforward differentiation that
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Thus, when ε is small, the resulting estimator β ̂ approximately satisfies the penalized likelihood
equation

(3.10)

Suppose that β ̂ε denotes a maximizer of Qε(β) and β ̂0 denotes a maximizer of Q(β). In general,
it is impossible to bound ||β ̂ε − β ̂0|| as a function of ε because Q(β) may be quite flat near its
maximum. However, suppose that Qε(β) is upper compact, which means that {β: Qε(β) ≥ c}
is a compact subset of Rd for any real constant c. In this case, then we may obtain the following
corollary of Proposition 3.2(b).

Corollary 3.2: Suppose thatβ̂ε denotes a maximizer of Qε(β). If Qε(β)is upper compact for
all ε ≥ 0, then under the conditions of Proposition 3.1, any limit point of the sequence{β̂ε}ε↓0
is a maximizer of Q(β).

Both Proposition 3.2(a) and Corollary 3.2 give results as ε ↓ 0, which suggests the use of an
algorithm in which ε is allowed to go to zero as the iterations progress. Certainly it would be
possible to implement such an algorithm. However, in this article we interpret these results
merely as theoretical justification for using the ε perturbation in the first place, and instead we
hold ε fixed throughout the algorithms we discuss. The choice of this fixed ε is the subject of
the next subsection.

3.3. Choice of ε
Essentially, we want to solve the penalized likelihood equation (3.10) for β ̂j ≠ 0 (recall that
pλ(βj) is not differentiable at βj = 0). Suppose, therefore, that convergence is declared in a
numerical algorithm whenever |∂Q(β ̂)/∂βj| < τ for a predetermined small tolerance τ. Our
algorithm accomplishes this by declaring convergence whenever |∂Qε(β ̂)/∂βj| < τ/2, where
satisfies

(3.11)

Since  is nonincreasing on (0, ∞), equation (3.6) implies

forβ ̂j ≠ 0. Thus, to ensure that inequality (3.11) is satisfied, simply take
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This may of course lead to a different value of ε each time β changes; therefore, in our
implementations we fix

(3.12)

When the algorithm converges, if |∂Q(β ̂)/∂βj| < τ, βj is presumed to be zero. In the numerical
examples of Section 4, we take τ = 10−8.

3.4. The algorithm
By the ascent property of an MM algorithm, β(k+1) should be defined at the kth iteration so that

(3.13)

Note that if β(k+1) satisfies inequality (3.13) without actually maximizing Sk,ε(β), we still refer
to the algorithm as an MM algorithm, even though the second M –for “maximize” – isn’t quite
accurate. Alternatively, we could adopt the convention used for EM algorithms by Dempster
et al (1977) and refer to such algorithms as generalized MM, or GMM, algorithms; however,
in this article we prefer to require extra duty of the label MM and avoid further crowding the
field of acronym-named algorithms.

From equation (3.9) we see that Sk,ε (β) consists of two parts, ℓ(β) and the sum of quadratic

functions  of the components of β. The latter part is easy to maximize directly; thus,
the difficulty of maximizing Sk,ε(β), or at least attaining inequality (3.13), is solely determined
by the form of ℓ(β). In general, when ℓ(β) is easy to maximize then so is Sk,ε(β), which
distinguishes Sk,ε(β) from the (ε-perturbed) penalized likelihood Qε(β). Even if ℓ(β) is not easily
maximized, at least if it is differentiable then so is Sk,ε(β), which means inequality (3.13) may
be attained using standard gradient-based maximization methods such as Newton-Raphson.
The function Qε(β), though differentiable, is not easily optimized using gradient-based methods
because it is very close to the nondifferentiable function Q(β).

Although it is impossible to detail all possible forms of likelihood functions ℓ(β) to which these
methods apply, we begin with the completely general Newton-Raphson-based algorithm

(3.14)

where ∇2Sk,ε(·) and ∇Sk,ε(·) denote the Hessian matrix and gradient vector, respectively, and
αk is some positive scalar. Using the definition (3.9) of Sk,ε(β), algorithm (3.14) becomes

(3.15)

where Ek is the diagonal matrix with (j, j)th entry . We take the ordinary
maximum likelihood estimate to be the initial value β(0) in the numerical examples of section
4.
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There are some important special cases. First, we consider perhaps the simplest case but by far
the most important case because of its ubiquity — the linear regression model with normal
homoscedastic errors, for which

(3.16)

where X = (x1, ···, xn)T, the design matrix of the regression model, and y is the response vector
consisting of yi. As pointed out at the beginning of Section 2, we omit mention of the error
variance parameter σ2 here because this parameter is to be estimated using standard methods
once β has been estimated. In this case, equation (3.15) with αk = 1 gives a closed-form
maximizer of Sk,ε(β) because Sk,ε(β) is exactly a quadratic function. The resulting algorithm

(3.17)

may be viewed as iterative ridge regression. In the case of LASSO, which uses the L1 penalty,
this algorithm is guaranteed to converge to the unique maximizer of Qε(β) (see Corollary 3.3).

The slightly more general case of generalized linear models with canonical link includes
common procedures such as logistic regression and Poisson regression. In these cases, the
Hessian matrix is

where V is a diagonal matrix whose (i, i)th entry is given by  and v(·) is the variance
function. Therefore, the Hessian matrix is negative definite provided that X is of full rank. This
means that the vector −[∇2Sk,ε(β(k))−1 ∇Sk,ε(β(k)) in equation (3.14) is a direction of ascent
(unless of course ∇Sk,ε(β(k)) = 0), which guarantees the existence of a positive αk such that
β (k+1) satisfies inequality (3.13). A simple way of determining αk is the practice of step-halving:
Try αk = 2−ν for ν = 0, 1, 2, … until the resulting β(k+1) satisfies inequality (3.13). For large
samples in practice, ℓ(β) tends to be nearly quadratic, particularly in the vicinity of the MLE
(which is close to the penalized MLE for large samples), so step-halving does not need to be
employed very often. Nonetheless, in our experience it is always wise to check that inequality
(3.13) is satisfied; even when the truth of this inequality is guaranteed as in the linear regression
model, checking the inequality is often a useful debugging tool. Indeed, whenever possible it
is a good idea to check that the objective function itself satisfies Qε(β(k+1)) > Qε(β(k)); for even
though this inequality is guaranteed theoretically by inequality (3.13), in practice many a
programming error is caught using this simple check.

In still more general cases, the Hessian matrix ∇2ℓ(β) may not be negative definite or it may
be difficult to compute. If the Fisher information matrix I(β) is known, then −nI(β) may be
used in place of ∇2ℓ(β). This leads to
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and the positive definiteness of the Fisher information will ensure that step-halving will always
lead to an increase in Sk,ε(β).

Finally, we mention the possibility of applying an MM algorithm to a penalized partial
likelihood function. Consider the example of the Cox proportional hazards model (Cox,
1975), which is the most popular model in survival data analysis. The variable selection
methods of Section 2 are extended to the Cox model by Fan and Li (2002). Let Ti, Ci and xi
be respectively the survival time, the censoring time and the vector of covariates for the ith
individual. Correspondingly, let Zi = min{Ti, Ci} be the observed time and δi = I(Ti ≤ Ci) be
the censoring indicator. It is assumed that Ti and Ci are conditionally independent given xi and
that the censoring mechanism is noninformative. Under the proportional hazards model, the
conditional hazard function h(ti|xi) of Ti given xi is given by

where h0(t) is the baseline hazard function. This is a semiparametric model with parameters
h0(t) and β. Denote the ordered uncensored failure times by , and let (j) provide

the label for the item falling at  so that the covariates associated with the N failures are x(1),

···, x(N). Let  denote the risk set right before the time . A partial likelihood is
given by

Fan and Li (2002) consider variable selection via maximization of the penalized partial
likelihood

It can be shown that the Hessian matrix of ℓP(β) is negative definite provided that X is of full
rank. Under certain regularity conditions, it can further be shown that in the neighborhood of
a maximizer, the partial likelihood is nearly quadratic for large n.

3.5. Convergence
It is not possible to prove that a generic MM algorithm converges at all, and when an MM
algorithm does converge, there is no guarantee that it converges to a global maximum. For
example, there are well-known pathological examples in which EM algorithms — or
generalized EM algorithms, as discussed following inequality (3.13) — converge to saddle
points or fail to converge (McLachlan and Krishnan, 1997). Nonetheless, it is often possible
to obtain convergence results in specific cases.

We define a stationary point of the function Qε(β) to be any point β at which the gradient vector
is zero. Because the differentiable function Sk,ε(β) is tangent to Qε(β) at the point β(k) by the
minorization property, the gradient vectors of Sk,ε(β) and Qε(β) are equal when evaluated
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atβ(k). Thus, when using the method of Section 3.4 to maximize Sk,ε(β), we see that fixed points
of the algorithm—i.e., points with gradient zero— coincide with stationary points of Qε(β).
Letting M(β) denote the map implicitly defined by the algorithm that takes β(k) to β(k+1) for
any point β(k), inequality (3.13) states that Sk,ε{M (β)} > Sk,ε(β). The limit points of the set
{β(k): k = 0, 1, 2, …} are characterized by the following slightly modified version of Lyapunov’s
theorem (Lange, 1995).

Proposition 3.3—Given an initial valueβ(0), letβ(k) = Mk(β(0)). IfQε(β) = Qε{M (β)} only
for stationary pointsβofQεand ifβ*is a limit point of the sequence {β(k)}such that M(β)is
continuous atβ*,thenβ*is a stationary point of Qε (β).

Equation (3.14) with αk = 1 gives

(3.18)

where equation (3.18) uses the fact that ∇Sk,ε(β(k)) = ∇Qε(β(k)). As discussed in Lange
(1995) and Lange et al. (2000), the derivative of M(β) gives insight into the local convergence
properties of the algorithm. Suppose that ∇Qε(β(k)) = 0, so β(k) is a stationary point. In this case,
differentiating equation (3.18) gives

It is possible to write ∇2Sk,ε(β(k)) − ∇2Qε(β(k)) in closed form as nAk, where

 and

Under the conditions of Proposition 3.2,  and thus nAk is negative semidefinite, a
fact that may also be interpreted as a consequence of the minorization of Qε (β) by Sk,ε (β).
Furthermore, ∇2ℓ(β(k)) is often negative definite, as pointed out in Section 3.4, which implies
that ∇2Sk,ε (β(k)) is negative definite. This fact, together with the fact that ∇2Sk,ε(β(k)) −
∇2Qε(β(k)) is negative semidefinite, implies that the eigenvalues of ∇M(β(k)) are all contained
in the interval [0, 1) (Hestenes, 1981). Ostrowski’s theorem (Ortega, 1990) thus implies that
the MM algorithm defined by equation (3.18) is locally attracted to β(k) and that the rate of
convergence to β(k) in a neighborhood of β(k) is linear with rate equal to the largest eigenvalue
of M(β(k)). In other words, if β* is a stationary point and ρ < 1 is the largest eigenvalue of ∇M
(β*), then for any δ > 0 such that ρ + δ < 1, there exists a neighborhood Nδ containing β* such
that for all β ∈ Nδ,

Further details about the rate of convergence for similar algorithms may be found in Lange
(1995) and Lange et al. (2000).
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Lyapunov’s theorem (Proposition 3.3) gives a necessary condition for a point to be a limit point
of a particular MM algorithm. To conclude this section, we consider a sufficient condition for
the existence of a limit point. Suppose that the function Qε(β) is upper compact, as defined in
Section 3.2. Then given the initial parameter vector β(0), the set B = {β ∈ Rd: Qε(β) ≥ Q
(β(0))} is compact; furthermore, by equations (3.6) and (3.7), Qε(β) ≥ Q(β) so that B contains
the entire sequence . This guarantees that the sequence has at least one limit point,
which must therefore be a stationary point of Qε(β) by Proposition 3.3. If in addition there is
no more than one stationary point — for example, if Qε(β) is strictly concave — then we may
conclude that the algorithm must converge to the unique stationary point.

Upper compactness of Qε(β) follows as long as Qε(β) → −∞ whenever ||β|| → ∞; this is often
not difficult to prove for specific examples. In the particular case of the L1 penalty (LASSO),
strict concavity also holds as long as ℓ (β) is strictly concave, which implies the following
corollary.

Corollary 3.3: If pλ(|θ|) = λ |θ|and ℓ(β) is strictly concave and upper compact, then the MM
algorithm ofequation (3.15) gives a sequence {β(k)} converging to the unique maximizer
ofQε(β) for anyε > 0.

In particular, Corollary 3.3 implies that using our algorithm with the ε-perturbed LASSO
penalty guarantees convergence to the maximum penalized likelihood estimator for any full-
rank generalized linear model or (say) Cox proportional hazards model. However, strict
concavity of Qε(β) is not typical for other penalty functions presented in this article in light of
the requirement in Proposition 3.2 that pλ(·) be concave — and hence that −pλ(·) be convex —
on (0, ∞). This fact means that when an MM algorithm using some penalty function other than
L1 converges, then it may converge to a local, rather than a global, maximizer of Qε(β). This
can actually be an advantage, since one might like to know if the penalized likelihood has
multiple local maxima.

4. Numerical Examples
Since Fan and Li (2001) have already compared the performance of LASSO with SCAD using
a local quadratic approximation and other existing methods, in the following four numerical
examples we focus on assessing the performance of the proposed algorithms using the SCAD
penalty (2.2). Namely, we compare the unmodified LQA to our modified version (both using
SCAD), where ε is chosen according to equation (3.12) with τ = 10−8. For SCAD, ,
and this tuning parameter λ is chosen using generalized cross-validation, or GCV (Craven and
Wahba, 1979). As suggested by Fan and Li (2001), we take a = 3.7 in the definition of SCAD.

The Newton-Raphson algorithm (3.15) enables a standard error estimate via a sandwich
formula:

(4.1)

where
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Naturally, another estimate may be formed if −nI(β ̂) is substituted for ∇ℓ(β ̂) in equation (4.1).
Fan and Peng (2004) establish the consistency of this sandwich formula for related problems,
and their method of proof may be adapted to this situation, though we do not do so in this
article.

For the simulated examples, Examples 1 through 3, we compare the performance of the
proposed procedures along with AIC and BIC in terms of model error and model complexity.
With μ(x) = E(Y|x), model error (ME) is defined as E{μ̂(x) − μ(x)}2, where the expectation is
taken with respect to a new observation x. The ME’s of the underlying procedures are divided
by that of the ordinary maximum likelihood estimate, so we report relative model error (RME).

Example 1 (Linear regression)
In this example, we generated 500 data sets, each of which consists of 100 observations from
the model

where β is a 12-dimensional vector whose first, fifth and ninth components are 3, 1.5 and 2
respectively, and whose other components equal 0. The components of x and ε are standard
normal and the correlation between xi and xj is taken to be ρ. In our simulation, we consider
three cases: ρ = 0.1, ρ = 0.5, and ρ = 0.9. In this case, there is a closed form for the model error,
namely ME(β ̂) = (β ̂−β)T cov(x)(β ̂−β). The median of the relative model error (RME) over 500
simulated data sets is summarized in Table 1. The average number of 0 coefficients is also
reported in Table 1, in which the column labelled “C” gives the average number of coefficients,
of the nine true zeros, correctly set to zero and the column labelled “I” gives the average number
of the three true nonzeros incorrectly set to zero.

In Table 1, New and LQA refer to the newly proposed algorithm and the local quadratic
approximation algorithm of Fan and Li (2001). AIC and BIC stand for the best subset variable
selection procedures that minimize AIC scores and BIC scores. Finally, “Oracle” stands for
the oracle estimate computed by using the true model y = β1x1 + β5x5 + β9x9 + ε. When the
correlation among the covariates is small or moderate, we see that the new algorithm performs
the best in terms of model error and LQA also performs very well; their RMEs are both very
close to those of the oracle estimator. When the covariates are highly correlated, the new
algorithm outperforms LQA in terms of both model error and model complexity. The
performance of BIC and AIC remains almost the same for the three cases in this example;
Table 1 indicates that BIC performs better than AIC.

We now test the accuracy of the proposed standard error formula. The standard deviation of
the estimated coefficients for the 500 simulated data sets, denoted by SD, can be regarded as
the true standard deviation except for Monte Carlo error. The average of the estimated standard
errors for the 500 simulated data sets, denoted by SE, and their standard deviation, denoted by
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std(SE), gauge the overall performance of the standard error formula. Table 2 only presents
the SD, SE, std(SE) of β1. The results for other coefficients are similar. In Table 2, LSE stands
for the ordinary least squares estimate; other notation is the same as that in Table 1. The
differences between SD and SE are less than twice std(SE), which suggests that the proposed
standard error formula works fairly well. However, the SE appears to consistently
underestimate the SD, a common phenomenon (see Kauermann and Carroll, 2001), so it may
benefit from some slight modification.

Example 2 (Logistic regression)
In this example, we assess the performance of the proposed algorithm for a logistic regression
model. We generated 500 data sets, each of which consists of 200 observations, from the
logistic regression model

(4.2)

where β is a 9-dimensional vector whose first, fourth and seventh components are 3, 1.5 and
2 respectively, and whose other components equal 0. The components of x are standard normal,
where the correlation between xi and xj is ρ. In our simulation, we consider two cases, ρ = 0.25
and ρ = 0.75. Unlike the model error for linear regression models, there is no closed form of
ME for the logistic regression model in this example. The ME, summarized in Table 3, is
estimated by 50,000 Monte Carlo simulations. Notation in Table 3 is the same as that in Table
1. It can be seen from Table 3 that the newly proposed algorithm performs better than LQA in
terms of model error and model complexity. We further test the accuracy of the standard error
formula derived by using the sandwich formula (4.1). The results are similar to those in Table
2 — the proposed standard error formula works fairly well — so they are omitted here.

Best variable subset selection using the BIC criterion is seen in Table 3 to perform quite well
relative to other methods. However, best subset selection in this example requires an exhaustive
search over all possible subsets, and therefore it is computationally expensive. The methods
we propose can dramatically reduce computational cost. To demonstrate this point, random
samples of size 200 were generated from model (4.2) with β being a d-dimensional vector
whose first, fourth and seventh components are 3, 1.5 and 2 respectively, and whose other
components equal 0. Table 4 depicts the average computing time for each simulation with d =
8,···, 11 and indicates that computing times for the BIC and AIC criteria increase exponentially
with the dimension d, making these methods impractical for parameter sets much larger than
those tested here. Given the increasing importance of variable selection problems in fields like
genetics and data mining where the number of variables is measured in the hundreds or even
thousands, efficiency of algorithms is an important consideration.

Example 3 (Cox model)
We investigate the performance of the proposed algorithm for the Cox proportional hazard
model in this example. We simulated 500 data sets each for sample sizes n = 40, 50 and 60
from the exponential hazard model

(4.3)

where β = (0.8, 0, 0, 1, 0, 0, 0.6, 0)T. This model is used in the simulation study of Fan and Li
(2002). The xu’s were marginally standard normal and the correlation between xu and xv was
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ρ|u−v| with ρ = 0.5. The distribution of the censoring time is an exponential distribution with
mean U exp(xTβ0), where U is randomly generated from the uniform distribution over [1,3]
for each simulated data set so that 30% of the data are censored. Here β0 = β is regarded as a
known constant so that the censoring scheme is noninformative. The model error E{μ̂(x) − μ
(x)}2 is estimated by 50,000 Monte Carlo simulations and is summarized in Table 5. The
performance of the newly proposed algorithm is similar to that of LQA. Both the new algorithm
and LQA perform better than best subset variable selection with the AIC or BIC criteria. Note
that the BIC criterion is a consistent variable selection criterion. Therefore, as the sample size
increases, its performance becomes closer to that of the nonconcave penalized partial likelihood
procedures. We also test the accuracy of the standard error formula derived by using the
sandwich formula (4.1). The results are similar to those in Table 2; the proposed standard error
formula works fairly well.

As in Example 2, we take β to be a d-dimensional vector whose first, fourth and seventh
components are nonzero (0.8, 1.0, and 0.6, respectively) and whose other components equal
0. Table 6 shows that the proposed algorithm and LQA can dramatically save computing time
compared with AIC and BIC.

As a referee pointed out, it is of interest to investigate the performance of variable selection
algorithms when the “full” model is misspecified. Model misspecification is a concern for all
variable selection procedures, not merely those discussed in this article. To address this issue,
we generated a random sample from model (4.3) with β = (0.8, 0, 0, 1, 0, 0, 0.6, 0, β9, β10)T,
where β9 = β10 = 0.2 or 0.4. The first 8 components of x are the same as those in the above
simulation. We take , and . In our model fitting, our “full”
model only uses the first 8 components of x. Thus, we misspecified the full model by ignoring
the last two components. Based on the “full” model, variable selection procedures are carried
out. The oracle procedure uses (x1, x4, x7, x9, x10)T to fit the data. The model error E{μ̂(x)−μ
(x)}2, where μ(x) is the mean function of the true model including all 10 components of x, is
estimated by 50,000 Monte Carlo simulations and is summarized in Table 7, from which we
can see that all variable selection procedures outperform the full model. This implies that
selecting significant variables can dramatically reduce both model error and model complexity.
From Table 7, we can see that both the newly proposed algorithm and LQA significantly reduce
the model error of best subset variable selection using AIC or BIC.

Example 4 (Environmental data)
In this example, we illustrate the proposed algorithm in the context of analysis of an
environmental data set. This data set consists of the number of daily hospital admissions for
circulation and respiration problems and daily measurements of air pollutants. It was collected
in Hong Kong from January 1, 1994 to December 31, 1995 (courtesy of T. S. Lau). Of interest
is the association between levels of pollutants and the total number of daily hospital admissions
for circulatory and respiratory problems. The response is the number of admissions and the
covariates X1 to X3 are the levels (in μg/m3) of the pollutants sulfur dioxide, nitrogen dioxide,
and dust. Because the response is count data, it is reasonable to use a Poisson regression model
with mean μ(x) to analyze this data set. To reduce modeling bias, we include all linear, quadratic
and interaction terms among the three air pollutants in our full model. Since empirical studies
show that there may be a trend over time, we allow an intercept depending on time, the date
on which observations were collected. In other words, we consider the following model:

Hunter and Li Page 16

Ann Stat. Author manuscript; available in PMC 2009 April 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We further parameterize the intercept function by a cubic spline

where the knots kj are chosen to be the 10th, 25th, 50th, 75th and 90th percentiles of t. Thus,
we are dealing with a Poisson regression model with 18 variables. To avoid numerical
instability, the time variable and the air pollutant variables are standardized.

Generalized cross-validation is used to select the tuning parameter λ for the new algorithm
using SCAD. The plot of the GCV scores against λ is depicted in Figure 2(a), and the selected
λ equals 0.1933. In Table 8, we see that all linear terms are very significant, whereas the
quadratic terms of SO2 and dust and the SO2 × dust interaction are not significant. The plot of
the estimated intercept function β0(t) is depicted in Figure 2(b) along with the estimated
intercept function under the full model. The two estimated intercept functions are almost
identical and capture the time trend very well, but the new algorithm saves two degrees of
freedom by deleting the t3 and  terms from the intercept function.

For the purpose of comparison, SCAD using the LQA is also applied to this data set. The plot
of the GCV scores against λ is also depicted in Figure 2(a), and the selected again equals 0.1933.
In this case, not only the t3 and  terms but also the t and t2 terms are deleted from the
intercept function. The estimated intercept function is the dash-dotted curve in Figure 2(b),
and now the resulting estimated intercept function looks dramatically different from the one
estimated under the full model, and furthermore it appears to do a poor job of capturing the
overall trend. The LQA estimates shown in Table 8 are quite different from those obtained
using the new algorithm, even though they both use the same tuning parameter. Recall that
LQA suffers the drawback that once a parameter is deleted, it cannot reenter the model, which
appears to have had a major impact on the LQA model estimates in this case. Standard errors
in Table 8 are available for the deleted coefficients in the new model but not LQA because the
two algorithms use different deletion criteria.

5. Discussion
We have shown how a particular class of MM algorithms may be applied to variable selection.
In modifying previous work on variable selection using penalized least squares and penalized
likelihood by Fan and Li (2001, 2002, 2004) and Cai, et al (2004), we have shown how a slight
perturbation of the penalty function can eliminate the possibility of mistakenly excluding
variables too soon while simultaneously enabling certain convergence results. While the
numerical tests given here deal with four very diverse models, the range of possible applications
of this method is even broader. Generally speaking, the MM algorithms of this article may be
applied to any situation where an objective function — whether a likelihood or not — is
penalized using a penalty function such as the one in equation (2.1). If the goal is to maximize
the penalized objective function and pλ(·) satisfies the conditions of Proposition 3.1, then an
MM algorithm may be applicable. If the original (unpenalized) objective function is concave,
then the modified Newton-Raphson approach of Section 3.4 holds promise. In Section 2, we
list several distinct classes of penalty functions in the literature that satisfy the conditions of
Proposition 3.1, but there may also be other useful penalties to which our method applies.

The numerical tests of Section 4 indicate that the modified SCAD penalty we propose performs
well on simulated data sets. This algorithm has comparable relative model error (sometimes
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quite a bit better, sometimes slightly worse) to BIC and the unmodified SCAD penalty
implemented using LQA, and it consistently outperforms AIC. Our proposed algorithm tends
to result in more parsimonious models than the LQA algorithm, typically identifying more
actual zeros correctly but also eliminating too many nonzero coefficients. This fact is surprising
in light of the drawback that LQA can exclude variables too soon during the iterative process,
a drawback that our algorithm corrects. The particular choice of ε, addressed in Section 3.3,
may warrant further study because of its influence on the complexity of the final model chosen.

An important difference between our algorithm and both AIC and BIC is the fact that the latter
two methods are often not computationally efficient, with computing time scaling
exponentially in the number of candidate variables whenever it becomes necessary to search
exhaustively over the whole model space. This means that in problems with hundreds or
thousands of candidate variables, AIC and BIC can be difficult if not impossible to implement.
Such problems are becoming more and more prevalent in the statistical literature as topics such
as microarray data and data mining increase in popularity.

Finally, we have seen in one example involving the Cox proportional hazards model that both
our method and LQA perform well when the model is misspecified, even outperforming the
oracle method for samples of size 40. Although questions of model misspecification are largely
outside the scope of this article, it is useful to remember that although simulation studies can
aid our understanding, the model assumed for any real dataset is only an approximation of
reality.
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Appendix: Proofs of some results in Section 3

Proof of Proposition 3.1
The proof uses the following Lemma:

Lemma A.1

Under the assumptions of Proposition 3.1,  is a nonincreasing function of θ for
any nonnegative ε.

The proof of the lemma is immediate: Both  and (ε + θ)−1 are positive and nonincreasing
on (0, ∞), so their product is nonincreasing. For any θ > 0, we see that

(A.1)

Furthermore, since pλ(·) is nondecreasing and concave on (0, ∞) (and continuous at 0), it is
also continuous on [0, ∞). Thus, Φθ0(θ) − pλ(|θ|) is an even function, piecewise differentiable
and continuous everywhere. Taking ε = 0 in Lemma A.1, equation (A.1) implies that Φθ0(θ)
− pλ(|θ|) is nonincreasing for θ ∈ (0, |θ0|) and nondecreasing for θ ∈ (|θ0|, ∞); this function is
therefore minimized on (0, ∞) at |θ0|. Since it is clear that Φθ0(|θ0|) = pλ(|θ0|) and Φθ0(−|θ0|) =
pλ (−|θ0|), condition (3.3) is satisfied for θ0 = ±|θ0|.

Proof of Proposition 3.2
For part (a), it suffices to show that Φθ0,ε (θ) majorizes pλ, ε(|θ|) at θ0. It follows by definition
that Φθ0,ε (θ0) = pλ, ε (|θ0|). Furthermore, Lemma A.1 shows as in Proposition (3.1) that the
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even function Φθ0,ε(θ) − pλ, ε (|θ|) is decreasing on (0, |θ0|) and increasing on (|θ0|, ∞), giving
the desired result.

To prove part (b), it is sufficient to show that |pλ, ε(|θ|) − pλ(|θ|)| → 0 uniformly on compact
subsets of the parameter space as ε ↓ 0. Since  is nonincreasing on (0, ∞),

and because , the right side of the above inequality tends to 0 uniformly on compact
subsets of the parameter space as ε ↓ 0.

Proof of Corollary 3.2
Let β ̂ denote a maximizer of Q(β) and put B = {β ∈ Rd:Qε0(β) ≥ Q(β ̂)} for some fixed ε0 > 0.
Then B is compact and contains all β ̂ε for 0 ≤ ε < ε0. Thus, Proposition 3.2 shows that for ε <
ε0,

If β* is a limit point of {β ̂ε}ε↓ 0, then by the continuity of Q(β), |Q(β*)− Q(β ̂)| = 0 and so β* is
a maximizer of Q(β).

Proof of Proposition 3.3
Given an initial value β(0), let β(k) = Mk(β(0)) for k ≥ 1; i.e., {β(k)} is the sequence of points that
the MM algorithm generates starting from β(0). Let Λ denote the set of limit points of this
sequence. For any β* ∈ Λ, passing to a subsequence we have β(kn) → β*. The quantity
Qε(β(kn)), since it is increasing in n and bounded above, converges to a limit as n → ∞. Thus,
taking limits in the inequalities

gives Qε (β*) = Qε{limn →∞ M (βkn)}, assuming this limit exists. Of course, if M (β) is
continuous at β*, then we have Qε(β*) = Qε{M (β*)}, which implies that β* is a stationary point
of Qε(β).

Note that Λ is not necessarily nonempty in the above proof. However, we know that each
β(k) lies in the set {β: Qε(β) ≥ Qε(β1)}, so if this set is compact, as is often the case, we may
conclude that is indeed nonempty.
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Fig. 1.
Majorizing functions Φθ0 (θ) for various penalty functions are shown as dotted curves; the
penalty functions are shown as solid curves. The four penalties are (a) hard thresholding with
λ = 2; (b) L1 with λ = 1; (c) L0.5 with λ = 1; and (d) SCAD with a = 2.1 and λ = 1. In each case,
θ0 = 1.
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Fig. 2.
In (a), the solid line indicates the GCV scores for SCAD using the new algorithm, and the
dashed line indicates the same thing for the LQA algorithm. In (b), the solid and thick dashed
lines that nearly coincide indicate the estimated intercept functions for the new algorithm and
the full model, respectively; the dash-dotted line is for LQA. The dots are the full-model
residuals log(y) − xTβ ̂ MLE
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Table 8
Estimated Coefficients and their Standard Errors

Covariate MLE New LQA

SO2 0.0082 (0.0041) 0.0043 (0.0024) 0.0090 (0.0029)

NO2 0.0238 (0.0051) 0.0260 (0.0037) 0.0311 (0.0033)

Dust 0.0195 (0.0054) 0.0173 (0.0037) 0.0043 (0.0026)

SO2
2 −0.0029 (0.0013) 0 (0.0009) −0.0025 (0.0010)

N O2
2 0.0204 (0.0043) 0.0118 (0.0029) 0.0157 (0.0031)

Dust2 0.0042 (0.0025) 0 (0.0015) 0.0060 (0.0018)

SO2 × NO2 −0.0120 (0.0039) −0.0050 (0.0021) −0.0074 (0.0022)

SO2 × Dust 0.0086 (0.0047) 0 (< 0.00005) 0 (NA)

NO2 × Dust −0.0305 (0.0061) −0.0176 (0.0037) −0.0262 (0.0041)

Note: NA stands for “Not available”.
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