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ABSTRACT

We propose a novel approximate-likelihood method to fit demographic models to human genomewide
single-nucleotide polymorphism (SNP) data. We divide the genome into windows of constant genetic map
width and then tabulate the number of distinct haplotypes and the frequency of the most common
haplotype for each window. We summarize the data by the genomewide joint distribution of these two
statistics—termed the HCN statistic. Coalescent simulations are used to generate the expected HCN
statistic for different demographic parameters. The HCN statistic provides additional information for
disentangling complex demography beyond statistics based on single-SNP frequencies. Application of our
method to simulated data shows it can reliably infer parameters from growth and bottleneck models, even
in the presence of recombination hotspots when properly modeled. We also examined how practical
problems with genomewide data sets, such as errors in the genetic map, haplotype phase uncertainty, and
SNP ascertainment bias, affect our method. Several modifications of our method served to make it robust
to these problems. We have applied our method to data collected by Perlegen Sciences and find evidence
for a severe population size reduction in northwestern Europe starting 32,500–47,500 years ago.

A major goal of evolutionary genetics is to infer the
demographic history of a population. This is

traditionally done by fitting a population genetic model
to sequence data taken from a sample of individuals.
The population genetic model often includes param-
eters allowing for changes in population size or
population structure with or without migration. Such
parameters are interesting in their own right, but are
critical to define a proper ‘‘null model’’ that can be
used to find ‘‘unusual’’ genes that may be targets of
positive or negative selection (Jensen et al. 2005).
Additionally, a proper demographic model is important
for assessing genomewide patterns of positive and
negative selection (Boyko et al. 2008; Lohmueller

et al. 2008).
Methods have been developed that make full use

of sequence data to infer demographic parameters
(Griffiths and Tavaré 1994; Kuhner et al. 1995). These
methods are computationally intensive and are imprac-
tical for all but the smallest data sets. Thus, researchers
have turned to methods based on summary statistics
(reviewed in Marjoram and Tavaré 2006). Summary
statistics can be quickly calculated from the data and
then be used to infer model parameters using either a

likelihood or approximate Bayesian computation (ABC)
framework (for example, Wall 2000a; Fagundes et al.
2007). The key for successful application of this approach
is to find summaries of the data that contain enough
information about the demographic parameters of in-
terest. One of the most successfully used summary
statistics for population genetic inference, the site
frequency spectrum (SFS) (Nielsen 2000; Adams and
Hudson 2004; Caicedo et al. 2007; Hernandez et al.
2007b), is a sufficient statistic for the full data if the single-
nucleotide polymorphisms (SNPs) are unlinked. How-
ever, in reality, all SNPs are not unlinked. The amount of
information in the data lost by ignoring the correlations
among SNPs, or linkage disequilibrium (LD), in de-
mographic inference is an open question, but recent
theoretical work suggests that it may be nonnegligible
(Myers et al. 2008).

An additional complication to using the SFS for
demographic inference is that many genomewide ge-
netic variation data sets in humans contain SNPs that
were discovered through sequencing a small number of
individuals. The discovered SNPs were then genotyped
in a larger set of individuals, sometimes in a different
population than was used for SNP discovery. Since this
SNP discovery process will lead to preferential sampling
of intermediate-frequency alleles, the SFS computed
from SNP genotype data will differ substantially from
the true SFS (Nielsen et al. 2004; Clark et al. 2005).
Progress has been made to analytically correct the SFS
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for ascertainment bias when the SNP discovery process is
known (Nielsen et al. 2004), but often this is not the case.
More problematic is the situation where SNPs were
discovered by resequencing individuals in one popula-
tion, but then are genotyped in a second population. It
remains an open question as to how well the SNPs
discovered in the first population are representative of
genetic diversity in the second population. Several
authors have suggested that statistics based on combina-
tions of multiple SNPs, or haplotypes, will be less
susceptible to ascertainment bias than single-SNP fre-
quencies or heterozygosities (Conrad et al. 2006). How-
ever, while this suggestion is encouraging, as yet there has
not been extensive investigation into the precise ascer-
tainment conditions under which this is true.

It is known that haplotype patterns and LD can be
affected by both recombination and demographic
history (Pritchard and Przeworski 2001), making
these measures useful statistics for inference. Many
recent studies have assumed a demographic model
(often the standard neutral model) and then used
either LD or haplotype patterns to estimate recombina-
tion rates (Wall 2000a; Hudson 2001; Li and Stephens

2003; McVean et al. 2004; Myers et al. 2005). Other
studies have taken the opposite approach and assumed
that the recombination rate is known and then used LD
or haplotype patterns to estimate demographic param-
eters (Reich et al. 2001; Innan et al. 2005; Voight et al.
2005; Schaffner et al. 2005; Leblois and Slatkin 2007;
Tenesa et al. 2007). The way in which haplotype in-
formation has been used for demographic inference is
quite variable among studies. For example, Reich et al.
(2001) examined how well several different demo-
graphic models predicted the observed decay of pair-
wise LD in humans, rather than estimating the model
parameters. Francois et al. (2008) and Thornton and
Andolfatto (2006) used ABC to estimate model
parameters in Arabidopsis and Drosophila, respectively.
However, summaries based on the distribution of the
number of haplotypes were only one of several summary
statistics considered, and it is unclear how much in-
formation came from the haplotype information vs. the
other single-SNP diversity measures. While Anderson

and Slatkin (2007) and Leblois and Slatkin (2007)
developed methods that use haplotype information
exclusively to fit a population split followed by growth
model, their model is quite restrictive and allows
inference only of one free parameter, the number of
founding lineages. Thus, there has not been a system-
atic investigation as to the utility of haplotype informa-
tion for inference in general, parameter-rich models,
such as those involving population expansions and
bottlenecks.

In this article we propose an approximate-likelihood
method to estimate parameters in complex demo-
graphic models from genomewide SNP genotype
(rather than full resequencing) data, using the joint

distribution of the number of haplotypes and frequency
of the most common haplotype in windows across the
genome. We provide extensive simulations evaluating
the performance of our method for growth and
bottleneck models. These results indicate that a great
deal of information regarding demographic history is
captured by these two summary statistics. We also
extensively test the robustness of our method to many
practical problems with genetic data sets in humans.
Specifically, we show that for many realistic SNP discov-
ery protocols and levels of population divergence, our
method is relatively robust to SNP ascertainment bias.
We also found that our method is sensitive to recombi-
nation rate variation across the genome (as many
haplotype-based summaries will be), and we incorpo-
rate a model of recombination rate variation into the
inference scheme. Finally, since haplotype phase is
often ambiguous, we provide a practical approach to
circumvent this problem. We applied our method to
genomewide SNP genotype data generated by Perlegen
Sciences (Hinds et al. 2005). Using the CEU sample
(consisting of individuals from Utah with northwestern
European ancestry), we find evidence for a recent
population bottleneck in northwestern Europe.

METHODS

Summary statistics: We summarize the genomewide
data by the joint distribution of two haplotype statistics
calculated from windows across the genome. Our
method requires that we have a genetic map of the
organism in question. Using this map, we divide the
genome into windows of fixed genetic map distance,
cwindow. The parameter cwindow is tunable to the diversity
and recombination rates of the organism under study.
We chose to divide the genome into nwindow nonover-
lapping windows using genetic map distance so that
each window will have the same expected amount of
recombination within it and, consequently, the same
expected number of haplotypes (Wall 2000a).

In many genomewide SNP data sets, some parts of the
genome will have a small number of SNPs while other
areas will contain many SNPs. In principle, while this
could be due to mutation rate variation across the
genome, variations in the time to the most recent
common ancestor, or random chance, another likely
explanation is ascertainment bias—some parts of the
genome were more extensively screened for SNPs than
others and consequently have more SNPs. Thus, we do
not want our method to use any information about the
number of SNPs within a given window. To ensure that
all windows of the genome have the same number of
SNPs, we select a subset of nsnp SNPs for each window of
the genome. Again, nsnp is a function of the size of the
windows as well as the SNP density. Another complicat-
ing factor is that SNPs may not have been discovered
from the population under study, but instead from a
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second population. Since rare SNPs are more likely to
be population specific, and consequently not equally
ascertained in all populations, we include only those
SNPs with minor allele frequency (MAF) $10%.

Having selected a subset of intermediate-frequency
SNPs from each window, we can compute the number
of distinct haplotypes as well as the count of the most
common haplotype in a sample of n chromosomes.
The HCN statistic is the genomewide joint distribu-
tion of these two statistics. Specifically, let X ¼
ðX1;1;X1;2; . . . ;X1;l ;X2;1; . . . ;X2;l ; . . . ;Xk;1; . . . ;Xk;lÞ,
where Xij denotes the number of windows having i
haplotypes where the most common haplotype has
count j out of n. In principle, k ¼ l ¼ n; however, in
practice, we bin intervals in the HCN statistic for the
inference so that fewer simulation replicates will be
needed to obtain an accurate estimate of the expected
HCN (see below), and thus there are fewer than n2 bins
in the HCN statistic. Ideally, we wish to integrate over all
possible sets of nsnp SNPs within each window when
constructing the HCN statistic. However, this is not

computationally feasible, so we generate 10 random
matrices, each using a different randomly selected set of
nsnp SNPs from each window. We then average these 10
matrices as our final X matrix to be used for inference.
This is done to reduce Monte Carlo variance resulting
from selecting a single set of SNPs. An example of the
HCN statistic for several demographic models is shown
in Figure 1.

We chose to use the number of haplotypes as a
summary statistic because it is a sufficient statistic for
the population mutation rate ðuÞ in the infinite-alleles
model (Ewens 1972) and has been shown by simulation
to be informative about population history (Depaulis

and Veuille 1998; Innan et al. 2005). The count of the
most common haplotype was also suggested as a test
statistic in the infinite-alleles model (Ewens 1973) and
has been found to be correlated with haplotype homo-
zygosity (Zeng et al. 2007 and data not shown). The joint
distribution of these two statistics performs better at
distinguishing among demographic models than using
either summary on its own (Figure 1). For example, the

Figure 1.—Examples of the HCN statistic for
different demographic models. The color of each
cell in a matrix denotes the proportion of simu-
lated windows having the particular number of
haplotypes and frequency of the most common
haplotype. Approximately 3000 windows were
simulated for each demographic model with
nsnp ¼ 25, cwindow ¼ 0.25 cM. The parameters
for the bottleneck model are Ncur ¼ Nanc ¼
10,000, Nmid ¼ 1000, and tcur ¼ tmid ¼ 800 gener-
ations. The parameters for the growth model are
Ncur ¼ 10,000, Nmid ¼ 1000, and tcur ¼ 800 gen-
erations.
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number of haplotypes is more informative about overall
population size than is the count of the most common
haplotype (compare Ncur ¼ 10,000 to Ncur ¼ 5000), as
expected, since larger populations have a higher pop-
ulation recombination rate, r ¼ 4Nec than smaller
populations, resulting in a larger number of haplotypes
per window (Wall 2000a). Note that because we
selected nsnp SNPs with MAF $10% per window, the
fact that the larger population has a higher value of u

does not inflate the observed number of haplotypes per
window. A recent bottleneck results in an intermediate
number of haplotypes, but the stronger signature of the
bottleneck is the excess proportion of windows where
the most common haplotype is at unusually high
frequency. These patterns are due to an elevated rate
of coalescence during the bottleneck, which, for some
simulated windows, results in there being fewer lineages
available to recombine. A recent population expansion
also results in an intermediate number of haplotypes,
but without an increase in the number of windows
where the frequency of the most common haplotype is
unusually high.

The HCN statistic contains no information about how
different haplotypes within a window are from each
other. To add this information, we also considered
another summary statistic Hpair, the distribution across
the genome of the average number of pairwise differ-
ences between haplotypes. For all ð n

2
Þ pairs of haplotypes

within a given window, we simply counted the number
of SNPs (which could range from 0 to nsnp) where the
two haplotypes differed and counted the average. Hpair

is the vector giving the number of windows having a
given number of average pairwise differences. We show
(supporting information, File S1 and Figure S1) that
this statistic is not robust to SNP ascertainment bias and
do not use it in further analyses.

Demographic models: We consider two different
single-population demographic models. These models
and their associated parameters are shown in Figure 2.
Figure 2A shows a two-epoch model that is used for
modeling population growth. Here there are three
parameters to estimate: the current population size,
Ncur; the ancestral population size, Nmid; and the time
that growth has occurred, tcur. Figure 2B shows a three-
epoch model that has five free parameters: the current
population size, Ncur; the population size during the
bottleneck, Nmid; the ancestral population size, Nanc; the
time when the bottleneck started (going backward in
time), tcur; and the duration of the bottleneck, tmid. All
times are in units of generations. We note that although
these models (and all models in population genetics)
are arbitrary simplifications of the true demographic
history, the hope is that they capture some essential
features of population history.

Fitting models to data: Since the observed HCN
statistic follows a multinomial distribution, we fit de-
mographic models to the data using an approximate-

likelihood approach (see Weiss and Von Haeseler

1998; Wall 2000a; Fearnhead and Donnelly 2002;
Plagnol and Wall 2006). We define p ¼ ðp1;1;
p1;2; . . . ; p1;l ; p2;1; . . . ; p2;l ; . . . ; pk;1; . . . ; pk;lÞ, where pij

is the probability that a window has i haplotypes where
the most common haplotype is at count j. The approx-
imate-likelihood function for the demographic param-
eters (Q) can be written as

LðQÞ �
Yk

i¼1

Yl

j¼1

p
Xij

ij : ð1Þ

We use the coalescent with recombination (Hudson

1983, 2002) to find pij for the demographic parameter
combination of interest. We simulate z replicates using
the demographic parameters of interest (Q) and r ¼
4Ncurcwindow. We estimate the matrix p as the proportion
of simulation replicates falling in a particular bin of the
HCN statistic. Formally, define the indicator function
I ðw; i; jÞ to be equal to 1 if simulation replicate w has i
haplotypes and the count of the most common haplo-
type is j, and equal to 0 otherwise. Then

pij ¼
P

z
w¼1 I ðw; i; jÞ

z
: ð2Þ

Since we select nsnp SNPs from each window, u does
not explicitly enter into these simulations. Therefore,
instead of setting an arbitrary value of u, and then
randomly selecting nsnp SNPs, we use the ‘‘fixed S
approach’’ (Hudson 1993) to add mutations onto the
ancestral recombination graph (ARG). Specifically, nsnp

mutations are randomly placed onto each simulated
ARG such that these SNPs will have MAF $10%. To
reduce Monte Carlo error, this process is repeated 10
times for each ARG. Each time, we evaluate I ðw; i; jÞ and
increment the appropriate bin of p. Note that we record
10 different p matrices and after the desired number of
simulation replicates, we keep the average of the 10 p
matrices as our final matrix. This is an approximate-
likelihood function since we are approximating p using
simulations, rather than calculating it exactly, and we
also treat all windows of the genome as being mutually
independent.

We optimize the approximate-likelihood function
described above using a grid search since we are

Figure 2.—Demographic models considered. Relevant
free parameters are shown in each diagram. (A) Two-epoch
model; (B) three-epoch model.
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approximating the likelihoods by simulation and the
simulation variance may be nonnegligible, misleading
deterministic hill-climbing approaches. The number of
grid points and number of simulation replicates used to
maximize the approximate-likelihood function vary
among analyses and are given below.

Since variation in recombination rates at a fine scale
can affect the HCN statistic, we have added a model of
recombination hotspots into our inference method. We
describe the parameters used for specific instances
below. Since each window of the genome corresponds
to the same genetic map distance (cwindow), the number
of base pairs per window will differ among windows. In
our simulations to find p, we select the size of the
window in base pairs (denoted L) from the observed
distribution of physical distances. We then set r, the per
base pair recombination rate, to be constant across the
window such that rL will give cwindow. We then simulate
an ARG in the normal manner with recombination rate
rL, but then, similar to the method used by Li and
Stephens (2003), we model hotspots by changing the
relationship between physical and genetic distance.
Informally, the parts of the window where hotspots
occur are assigned fewer base pairs and consequently
have a lower probability of a SNP occurring in them
than windows with lower recombination rates.

Simulations to evaluate performance: We tested the
performance of our method by simulating data under
three different demographic models: (1) ancient pop-
ulation growth, (2) recent population growth, and (3) a
recent population bottleneck. The parameter values for
these models are shown in Figures 3–6. These models
were chosen because of their relevance to human
demographic history. For each model we simulated data
sets (500 for models assuming uniform recombination
rates and 100 for models with recombination hotspots),
each consisting of 2000 independent 250-kb windows in
a sample of 40 chromosomes where m ¼ 1 3 10�8/bp/
generation. Note that when generating test data sets, we
placed a Poisson number of mutations onto the gene-
alogies in the usual fashion (Hudson 1983), rather than
using the fixed S approach as we did for the simulations
used to estimate p. We selected a subset of 20 SNPs (nsnp¼
20) with MAF $10% from each window and constructed
the observed HCN statistic for each data set. We
repeated this process 10 times for each data set and
used the average HCN statistic for inference. For
computational efficiency, we performed the coalescent
simulations to estimate p over a grid of parameters
(3780 and 20,580 parameter combinations for the
growth and bottleneck models, respectively) once for
each demographic and recombination model and
stored the values to be used on subsequent data sets.
The grid points used for each parameter are shown as
the breaks in Figures 3–6. For each grid point we used
104 coalescent simulations to approximate the likeli-
hood. Using a representative data set, we then selected

at least the top 103 grid points and ran an additional 105

replicates, and for points near the maximum-likelihood
estimates (MLEs), we ran an additional 106 replicates.
Due to computational constraints, these grids were not
as dense as those used to estimate parameters in the
Perlegen data.

For all data sets and demographic models, the total
amount of recombination within each window simu-
lated was 0.25 cM (i.e., cwindow ¼ 0.25 cM). However, we
also considered a model with five recombination hot-
spots present at random locations throughout each
window. Each hotspot was 2 kb in size. The recombina-
tion rate (centimorgans per base pair) of each hotspot
was drawn from a gamma distribution (shape ¼ 0.5,
scale ¼ 2 3 10�6). We then rescaled the recombination
rate of each hotspot such that 80% of the total amount of
recombination in the window occurs within hotspots. We
then assumed this model of recombination hotspots when
inferring demographic parameters. The test data sets were
generated using the program msHOT (Hellenthal and
Stephens 2007).

Our method assumes that all windows in the genome
are independent of each other. To assess the perfor-
mance of our method when the windows are not
independent, we simulated an additional 500 data sets
using the same bottleneck model with cwindow ¼ 0:25 cM.
Here the 2000 windows within each data set were from
300 independent sets of 6 or 7 contiguous windows. All
windows were treated as independent in the inference.

While for most of the simulations we assumed that
there was no error in estimated recombination rates
(i.e., ĉwindow ¼ cwindow), we also determined what effect
errors in the estimated genetic map had on our ability to
accurately infer demographic parameters. Specifically,
we simulated data sets under the same bottleneck model
described above, but here instead of having ĉwindow ¼
cwindow ¼ 0:25 cM, we drew cwindow for each window from
a gamma distribution (shape¼ 10, scale¼ 0.025). From
this distribution,�10% of windows have cwindow , 0.155
and �10% of windows have cwindow . 0.355. We then
inferred demographic parameters when incorrectly
fixing ĉwindow ¼ 0:25 cM. We also correctly incorporated
errors into the genetic map by drawing ĉwindow for each
simulation replicate from the same gamma distribution
used to generate the data.

Due to differences between the true HCN statistic and
the HCN statistic constructed from phase-inferred
haplotypes (Figure S2 and File S1), it is important to
incorporate the phasing process into the inference. To
do this, we suggest using the same phasing method that
was used on the actual data to ‘‘phase’’ the simulated
data used to estimate p. Unfortunately, many phasing
algorithms currently in use are computationally inten-
sive and it would be nearly impossible to run these
methods on the millions of coalescent simulation
replicates used to find p. For this reason, we examined
the use of the computationally efficient parsimony

Demographic Inference From Haplotypes 221

http://www.genetics.org/cgi/data/genetics.108.099275/DC1/2
http://www.genetics.org/cgi/data/genetics.108.099275/DC1/14


phasing algorithm proposed by Clark (1990). If there
are no individuals heterozygous at zero or one of the
nsnp SNPs within a window or if there are genotypes that
show no relation to known phased haplotypes, we
arbitrarily assigned phase to a random individual and
then used these two haplotypes to infer the rest. While
this process may seem arbitrary, it can be done consis-
tently both in the observed and in the simulated data
sets. To make the method as computationally efficient as
possible, we used only one ordering of the individuals.
We assessed the performance of this approach by
treating the simulated haplotypes in the test data sets
as diploid genotypes and ‘‘phased’’ them using the
parsimony method. For each simulation replicate to
estimate p we also phased the simulated data using the
same parsimony method.

Since we found that the HCN statistic constructed
using SNPs that were discovered in a SNP discovery
sample $8 chromosomes was very similar to the HCN
statistic with complete SNP ascertainment (Figure S3,
Figure S4, Figure S5, Table S1, and File S1), we ex-
amined how ascertainment bias affected parameter
estimates. Specifically, for the bottleneck model de-
scribed above, we simulated a genotype sample of n¼ 40
and an additional SNP discovery sample of 6 chromo-
somes. Since the Perlegen SNPs were discovered using a
multiethnic panel (Hinds et al. 2005), we included a
SNP discovery sample of an additional 6 chromosomes
from a second population (Ncur ¼ 10,000) that 5000
generations ago split from the population that un-
derwent the bottleneck. To construct the HCN statistic
from these simulated data sets, we considered only SNPs
with MAF $ 10% in the genotype sample that were
variable in the 12-chromosome ascertainment panel. To
infer parameters, we assumed there was no ascertain-
ment bias (i.e., we used the same lookup tables for p that
were described above that assumed complete SNP
ascertainment).

Analysis of Perlegen data: We applied our method to
fit a bottleneck model to the CEU population geno-
typed by Perlegen Sciences (Hinds et al. 2005). We
chose to use this population since there is previous
evidence of a bottleneck in this population (e.g., Marth

et al. 2004; Voight et al. 2005), and all SNPs that were
discovered by the Perlegen resequencing arrays were
later genotyped in the CEU sample, without regard to
LD status. We note that HapMap phase II specifically did
not genotype SNPs that were in high LD in the Perlegen
study, and this ascertainment criterion complicates the
analysis of those data (see discussion). We considered
only autosomal (not X chromosome or mtDNA) SNPs
with MAF $ 10% in both the CEU and the African-
American samples. Since our simulations of ascertain-
ment bias suggest that SNPs needed to have been
discovered from discovery sample sizes .2 chromo-
somes, we used only those SNPs that were discovered in
Perlegen’s resequencing arrays of the multiethnic di-

versity panel (type ‘‘A’’ SNPs). There were 615,415 SNPs
that fit both of these criteria. We used Clark’s parsimony
phasing algorithm to phase haplotypes in both the real
data and the simulation replicates to generate p. For
each population and in each window of the genome, we
selected 10 random subsets of nsnp SNPs and con-
structed 10 different HCN statistics. We then used the
average HCN statistic for inference.

We then set cwindow ¼ 0.25 cM and nsnp ¼ 20. We used
the LDhat genetic map (International Hapmap Con-

sortium 2007) to define windows since the deCODE
map (based on pedigrees; Kong et al. 2002) does not
have sufficient resolution for the scale of 0.25 cM
(Myers et al. 2005). Since the quality of the genetic
map used to divide the genome into windows can affect
the inference, we drew ĉwindow from a gamma distribu-
tion (shape ¼ 10, scale ¼ 0.025) to model errors in the
genetic map. This distribution has a mean of 0.25 and a
variance of 0.00625. For the CEU data, nwindow ¼ 8833.

We used a hotspot model similar to that of Schaffner

et al. (2005; termed the ‘‘Schaffner hotspot model’’). All
hotspots had width of 2 kb. For each simulated window,
hotspots occurred at random intervals drawn from a
gamma distribution (shape ¼ 0.3, scale ¼ 8500/0.3),
giving a mean spacing of 8.5 kb (variance of �2.41 3

108). Then the recombination rate (cM/2 kb) of each
hotspot was drawn from another gamma distribution
(shape ¼ 0.3, scale ¼ ĉwindow=0:3L), where L is the
physical size of the simulated window. In practice, L
was drawn from the empirical distribution of physical
distances for the nwindow windows. We then rescaled the
recombination rate in the hotpots such that 88% of
ĉwindow occurs within hotspots. The amount of recombi-
nation occurring outside of hotspots is then equal to
0:12ĉwindow. Figure S6 and Figure S7 show that this
hotspot model matches the mean, the standard de-
viation, and the overall distribution (tabulated across all
windows of the genome) of the observed inter-SNP
genetic map distances quite well.

In addition to the Schaffner hotspot model described
above, we also directly used the estimated fine-scale
LDhat genetic map (International Hapmap Consor-

tium 2007) as a guide to how recombination rates vary
within windows (termed the ‘‘empirical hotspot’’
model). To do this, for each simulation replicate to
estimate p, we selected one of the 8833 windows at
random and used the corresponding LDhat genetic
map to delimit the relationship between genetic and
physical distance for that replicate. We smoothed the
map by allowing the recombination rate to change only
at points .500 bp and .0.0001 cM apart. We note that
this hotspot model does not match the observed inter-
SNP genetic distances as well as the Schaffner hotspot
model does (Figure S6 and Figure S7).

The grid to optimize the five-dimensional approxi-
mate-likelihood function consisted of 85,536 points for
the Schaffner hotspot model and 101,088 points for the
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empirical hotspot model. We used 12,500 simulation
replicates for all points, 105 replicates for at least the top
4000 points, and finally 106 replicates for at least the top
500 points. We found approximate 95% confidence
intervals (C.I.’s) for single parameters using asymptotic
theory (i.e., the C.I. included points ,1.92 log-likeli-
hood units from the maximum), with linear interpola-
tion of the profile-likelihood curve to find points not
directly simulated.

RESULTS

Performance on simulated data: Figure 3 shows the
distribution of the approximate MLEs of the three
growth model parameters for simulated data sets under
ancient growth (solid bars) and recent growth (open
bars). In both cases, the method is relatively unbiased for
all three parameters. For ancient growth, Ncur is estimated
most accurately and tcur the least. For recent growth, all
three parameters are equally accurate, although for any
given parameter, the MLE is the true value �40% of the
time. Note that the variance in the distribution of MLEs
for tcur is much higher for ancient growth as compared to
recent growth (making it the least precise as well as the
least accurate). Table 1 shows that for both growth
scenarios in 100% of the data sets, the true parameter
values were within the asymptotic 95% C.I.’s (,3.9 log-
likelihood units) around the MLEs. Additionally, in .95%
of the data sets, the one-dimensional 95% C.I.’s for all
three parameters from the profile-likelihood curves
contain the true parameter values.

We also estimated the five parameters for a bottleneck
model in simulated data sets. Figure 4 shows the dis-
tribution of the MLEs for the five bottleneck parame-
ters. For the case of uniform recombination and
ĉwindow ¼ cwindow ¼ 0:25 cM, the mode of the distribu-
tion of the MLEs for each parameter is at the true value
of the parameter. The distribution of MLEs is tightest
for Nmid/Ncur and tcur and broadest for Nanc/Ncur. This
suggests that the recent bottleneck greatly alters haplo-
type patterns such that its timing and severity can be
accurately estimated, but so much so that less informa-
tion about the ancestral, prebottleneck population size
(Nanc/Ncur) remains. Furthermore, the method appears
to be relatively unbiased since it over- and under-
estimates the true parameter value roughly equally.
Table 1 shows that 99.8% of the time, the true parameter
values are within the asymptotic 95% C.I.’s (within 5.5
log-likelihood units around the MLEs).

We next evaluated whether our method could accu-
rately estimate demographic parameters in the pres-
ence of recombination hotspots (see methods for the
recombination hotspot model used). Figure 4 shows
that when properly modeling recombination hotspots,
we are able to accurately estimate the five bottleneck
model parameters. Note that the distributions of the

MLEs for all parameters have larger variances than for
the uniform recombination case. This pattern is due to
the extra noise added by recombination hotspots. If a
window of the genome has a low number of haplotypes
and/or a high count of the most common haplotype,
this could be due to demography (which is the only
factor considered in the uniform recombination model)
or due to SNPs falling in recombination coldspots.
Consistent with this observation, Table 1 shows that a
smaller proportion of the parameter space (99.65% vs.
99.87%) is .5.5 log-likelihood units from the MLEs
when there are recombination hotspots, as compared to
uniform recombination. Notably, however, the method
still appears to be unbiased, and for all 100 data sets, the

Figure 3.—Distributions of MLEs of the three growth model
parameters for simulated data sets under ancient growth and
recent growth with uniform recombination (see methods).
The true value of each parameter is denoted by the horizontal
line in each section. Since tcur differs between the two growth
models, the true value of tcur is denoted by an open diamond
for recent growth and a horizontal line for ancient growth.

Demographic Inference From Haplotypes 223



true parameter values are ,5.5 log-likelihood units
from the MLEs.

The simulations described above assumed that the
windows in each data set were independent. In practice,
the windows may be contiguous along the genome and

thus are not independent. We examined the perfor-
mance of our method on simulated data sets where
some of the windows were linked. Figure 4 shows that
the distributions of the MLEs for certain parameters
have greater variance than when the windows are

TABLE 1

Comparison of MLEs to the true parameter values for simulated data sets

Model

Mean
llMLEs �
llTruth

a

Max
llMLEs �
llTruth

b

% MLEs ¼
truthc

Coverage of
multi

dimensional
95% C.I.’sd

Coverage of
one-

dimensional
95% C.I.’se

% points
outside

95% C.I.’sf

Ancient growth
ĉwindow ¼ cwindow ¼ 0:25 cM 0.631 3.47 3.0 100.0 99.87 94.79

Recent growth
ĉwindow ¼ cwindow ¼ 0:25 cM 0.437 3.09 22.6 100.0 99.93 98.84

Bottleneck
ĉwindow ¼ cwindow ¼ 0:25 cM 0.363 6.31 47.4 99.8 99.52 99.87
Hotspotsg 0.505 3.43 17.0 100.0 99.80 99.65
Linkage 0.732 8.30 29.8 99.4 98.48 99.87
ĉwindow ¼ 0:25 cM, cwindow � gamma 136.685 179.07 0.0 0.0 8.36 99.98
ĉwindow � cwindow � gamma 0.623 6.54 26.4 99.6 99.40 99.72
Clark’s phasing algorithmh 0.779 4.90 19.8 100.0 99.96 99.43
Ascertainment bias 1.998 12.65 14.6 94.0 97.64 99.86

a The average overall data sets of the log-likelihood at the MLEs minus the log-likelihood of the true demographic parameters.
b The maximum distance between the log-likelihood at the MLEs and the log-likelihood of the true demographic parameters.
c The proportion of data sets where the MLEs for all parameters were the true demographic parameters.
d The proportion of data sets where the true parameter values were ,3.9 or ,5.5 log-likelihood units from the MLEs, for the

growth and bottleneck models, respectively.
e The proportion of data sets where the true value of each parameter was ,1.92 log-likelihood units from the MLE using the

profile log-likelihood curve, averaged over three or five parameters for the growth and bottleneck models, respectively.
f The fraction of grid points (see results) having a log-likelihood .3.9 or .5.5 log-likelihood units, for the growth and bot-

tleneck models, respectively, from the MLEs.
g Each window has five recombination hotspots, but for the whole window ĉwindow ¼ cwindow ¼ 0:25 cM.
h Haplotype phase was inferred in the test data sets and simulations to estimate p using Clark’s phasing algorithm (see methods).

Figure 4.—Distributions of MLEs of
the five bottleneck model parameters
for simulated data sets under uniform
recombination, under hotspots, and
where some windows in the simulated
data sets are linked to one another
(see methods). The true value of each
parameter is denoted by the horizontal
line in each section.
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unlinked, which is not surprising since linked windows
contain less information than independent windows. As
shown in Table 1, in all cases except when errors in the
genetic map are ignored or there is SNP ascertainment
bias (see below), the true parameter values for .99% of
the test data sets are within the asymptotic 95% C.I.’s
(,3.9 and ,5.5 log-likelihood units from the MLEs for
growth and bottleneck models, respectively). This result
suggests that the asymptotic C.I.’s may actually be
conservative, since the true parameter values are con-
tained within the interval .95% of the time. When
examining data sets where some of the regions are
linked, we find that for 99.4% of the time, the true values
are ,5.5 log-likelihood units from the MLEs (Table 1).
Since in many cases, the 95% C.I.’s for individual
parameters based on the profile log-likelihood curve
also appeared conservative (Table 1), we assessed their
coverage in the data sets with linkage. For each of the
five parameters, the true parameter value is ,1.92 log-
likelihood units from the MLE in at least 96.8% of the
data sets. These results suggest that for the level of
nonindependence among windows, size of data sets,
and parameter grid considered here, the asymptotic
95% C.I.’s remain conservative.

The above simulations assumed that ĉwindow ¼ cwindow.
In practice, ĉwindow is estimated from a genetic map,
based either on patterns of LD or on pedigrees. We next
evaluated the performance of our method when cwindow

is drawn from a gamma distribution to mimic errors in
the estimated genetic map. We first assumed that
ĉwindow ¼ 0:25 cM when running the inference (i.e., we
ignored the errors in the genetic map). Figure 5 shows
that our method performs poorly compared to the case
where the genetic map is known with certainty. In

particular, it overestimates tcur and tmid. Due to the fact
that some windows in the simulated data sets will have
low recombination rates, these windows will have very
few haplotypes and a high frequency of the most
common haplotype because cwindow , 0.25 cM. Since
we did not account for this in the inference, the method
assumes that these low-diversity windows were due to a
stronger (or longer) bottleneck. Table 1 shows that the
true parameter values are nowhere near the MLEs in
this case. If, however, during the inference, ĉwindow for
each window is drawn from the same gamma distribution
that generated the data, the method performs substan-
tially better (Figure 5), although not quite as well as when
ĉwindow ¼ cwindow ¼ 0:25 cM. Likewise, 99.6% of the time,
the true parameter values are ,5.5 log-likelihood units
from the MLEs. Note that, similar to what was seen for the
case of recombination hotspots, on average, a smaller
proportion of the parameter space (99.72% vs. 99.87%)
is .5.5 log-likelihood units from the MLEs when ĉwindow

and cwindow follow a gamma distribution instead of being
fixed at 0.25 cM.

To properly correct for errors introduced from
inferring haplotype phase, we decided to phase the
simulations used to estimate p using the same method
as that used on the real data. We evaluated the
performance of this strategy using Clark’s phasing
algorithm (Clark 1990) on simulated data sets. Figure
6 shows the distribution of the MLEs for the five
bottleneck parameters. This strategy works reasonably
well and for each parameter the mode of the distribu-
tion of the MLEs is at the true parameter value. Note
that the distributions of the MLEs for the data sets
phased using Clark’s phasing algorithm are broader
than those when haplotype phase in known with

Figure 5.—Distributions of MLEs of
the five bottleneck model parameters
for simulated data sets where there
are errors in the genetic map. ĉwindow ¼
0:25 cM; cwindow � gamma denotes the
case where there are errors in the esti-
mated genetic map that are ignored
when performing the inference.
ĉwindow � cwindow � gamma denotes the
case where we allow for errors in the ge-
netic map when conducting the infer-
ence. The true value of each
parameter is denoted by the horizontal
line in each section.
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certainty. Additionally, a smaller proportion of the
parameter space is excluded (.5.5 log-likelihood
units from the MLEs) when using Clark’s phasing
algorithm as compared to known phase data (99.43%
vs. 99.87%; Table 1). This finding illustrates that,
compared to having phase-known haplotypes, some
information is lost when computationally inferring
haplotypes. However, the method appears reasonably
unbiased, and in all simulated data sets the true
parameter values are ,5.5 log-likelihood units from
the MLEs (Table 1).

To determine if we could accurately estimate bottle-
neck parameters in the presence of SNP ascertainment
bias, we simulated data sets where the nsnp¼ 20 SNPs for
each window were picked from those SNPs with MAF
$ 10% in the genotype sample and were variable in the
12-chromosome SNP ascertainment sample. Figure 6
shows that for Nmid/Ncur, tcur, and tmid, our method
performs very well even in the presence of SNP ascer-
tainment bias. The distributions of the MLEs for Ncur and
Nanc/Ncur are more variable than when there is no
ascertainment bias, and the modes of their distributions
are not at the true parameter values, suggesting that
MLEs of these parameters are less reliable in the
presence of ascertainment bias. The 95% C.I.’s con-
structed from the profile-likelihood curves remain con-
servative for Nmid/Ncur, tcur, and tmid, but for Ncur the 95%
C.I. is no longer conservative (i.e., the true value is within
the 95% C.I. only 91.8% of the time). Additionally, the
five-dimensional 95% C.I. is also slightly anticonservative
(Table 1). For larger data sets (consisting of 10,000
independent regions) the C.I.’s for Ncur and Nanc/Ncur

and the five-dimensional C.I. become even more anti-
conservative and the C.I. for tmid becomes slightly

anticonservative (not shown), likely due the fact that
the ascertainment model is misspecified, which has a
stronger effect as the size of the data set increases.

Inference of bottleneck parameters for the Perlegen
CEU population: We fit the five-parameter bottleneck
model to the Perlegen CEU population. Table 2 shows
the MLEs and�95% C.I.’s for the five parameters when
using both the Schaffner model of recombination
hotspots and the empirical hotspot model based on
the LDhat genetic map. Figure S8 shows that for both
hotspot models, the HCNs generated using the MLE
parameter estimates match the observed CEU HCN
quite well. The current population size is estimated to
be �10,000 when using both recombination models.
There was a severe population size reduction (�4.2–6.6%
of the current size) lasting 260–552 generations (see
Figure S9 for the two-dimensional profile-likelihood
surface). The bottleneck ended (forward in time)
�1017–1437 generations ago.

On the basis of the two-dimensional profile-likelihood
surface (Figure S10), we estimate that the bottleneck
began (tcur 1 tmid) 1500 generations ago—37,500 years,
assuming 25 years/generation when using either hot-
spot model. Notably, the oldest start time within the
asymptotic 95% C.I. (3 log-likelihood units, for 2 d.f.) is
1600 generations, or 40,000 years for the Schaffner
hotspot model, and 1900 generations (47,500 years) for
the empirical hotspot model.

One potential concern with using SNPs from the
Perlegen SNP discovery project is that it contains a lot of
missing data, resulting in some fraction of SNPs having
been discovered in a smaller sample. To determine what
effect this had on the inference of the bottleneck
parameters, we examined the depth of the SNP discov-

Figure 6.—Distributions of MLEs of
the five bottleneck model parameters
for simulated data sets when phasing ge-
notype data using Clark’s phasing algo-
rithm or there is SNP ascertainment
bias (AB) (see methods). The true
value of each parameter is denoted by
the horizontal line in each section.
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ery panel for the 615,415 SNPs used in constructing the
HCN statistic used for demographic inference in the
Perlegen CEU sample. We found that 11.8% of these
SNPs were discovered by comparing fewer than eight
chromosomes. We removed these SNPs and recom-
puted the HCN statistic from the Perlegen CEU data
(now with 8174 windows) and reestimated the bottle-
neck parameters using the Schaffner recombination
hotspot model. We found identical MLEs for the param-
eters as in our original analysis.

DISCUSSION

We have proposed a flexible approximate-likelihood
method to estimate demographic parameters using
haplotype summary statistics. We have shown that
accurate estimates of demographic parameters can be
made using genomewide SNP data sets of practical size.
To the best of our knowledge, this is one of the first
studies to estimate parameters in a demographic model
in a likelihood framework using haplotype patterns
from genomewide SNP genotype data. Furthermore, we
have addressed many complications that arise in the
analysis of genomewide data, such as recombination
rate heterogeneity, errors in the estimated genetic map,
haplotype phase uncertainty, and ascertainment bias.
Provided that good genetic maps are available, our
method could be applied to SNP data from other
species, such as dogs and cattle, to estimate domestica-
tion bottleneck parameters.

One of the major disadvantages of our approach is its
dependence on accurately modeling the distribution of
recombination rates across the genome. Our simula-
tions have shown that errors in the genetic map can
cause poor performance. Therefore, we suggest apply-
ing our method only when there is an accurate genetic
map for the species in question. We suggest incorporat-
ing a distribution on ĉwindow to allow for errors in the
estimated genetic map. However, as the quality and
resolution of genetic maps continue to improve, the

utility and accuracy of our method will also continue to
increase. For species where recombination rates vary at
the fine scale, it is crucial to incorporate some model of
recombination hotspots. Here for the Perlegen CEU
data, we have implemented a parametric model as well
as empirical estimates based on LD patterns. A similar
influence of the assumed recombination rate on the de-
mographic parameter estimates was noted in Thornton

and Andolfatto (2006), who used the variance in the
number of haplotypes across windows as one of their
summary statistics. We recommend, as done in Thornton

and Andolfatto (2006), using different recombina-
tion models and then comparing the final results to
assess how dependent the estimates are on the assumed
recombination model. While the dependence of our
method on accurate estimates of the recombination
rate is not ideal, we point out that many previous
methods in molecular evolution and population genet-
ics are dependent on accurate estimates of the mutation
rate and will be biased if erroneous estimates are used.

We also assume that the genetic map remains constant
over time and is the same across populations. Recombi-
nation hotspots do not appear in the same locations in
chimps and humans despite a high level of sequence
identity (Ptak et al. 2005; Winckler et al. 2005). It has
therefore been speculated that recombination hotspots
are not permanent features of the genome and evolve on
a timescale of at least tens of thousands of years ( Jeffreys

et al. 2005). However, it appears that the timescale over
which many hotspots evolve is older than 100,000 years,
and because this is long enough to alter patterns of LD,
temporal changes in hotspots on this timescale will not
have such a severe impact on our method. Hotspots that
evolve over shorter timescales, or are population specific,
may have a larger effect on our method. This effect is
hard to quantify since the prevalence of rapidly evolving
or population-specific hotspots, other than the existence
of a few examples ( Jeffreys et al. 2005; Clark et al.
2007), remains largely unknown. Encouragingly, a recent
article (Hellenthal et al. 2006) found that genotype-

TABLE 2

Inferred bottleneck parameters for the CEU data set

Schaffner hotspot modela Empirical hotspot modelb

Parameter MLE 95% C.I. MLE 95% C.I.

Ncur 10,000 9,315–10,665 10,000 9,440–11,454
Nmid/Ncur 0.055 0.052–0.064 0.05 0.042–0.066
Nanc/Ncur 0.8 0.70–?c 0.8 0.66–0.97
tcur 1,100 1,017–1,140 1,200 1,086–1,437
tmid 400 360–475 300 260–552

MLEs and�95% C.I.’s from the profile-likelihood curves for the five-parameter bottleneck model are shown.
a The hotspot model is similar to that described by Schaffner et al. (2005) (see methods).
b The hotspot model is based directly on the LDhat genetic map.
c We did not estimate an upper boundary on the C.I. since the profile-likelihood surface for Nanc/Ncur is rel-

atively flat from 0.8 to 1.0 and we did not consider points .1.0 (Figure S11).
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specific recombination events would not substantially
affect LD patterns, boding well for our method.

We have found that the HCN statistic constructed
from computationally phase-inferred data differs from
the true HCN. Simply treating the phase-inferred
haplotypes as the true haplotypes will likely give biased
parameter estimates. Thus, when analyzing data from
unrelated individuals, it is important to consider errors
induced in the phasing process. We suggest doing this
by inferring phase for the coalescent simulations used to
estimate HCN. Our simulations suggest that using
Clark’s phasing algorithm works well for this purpose.
However, some information is lost by this procedure
(Figure 6; Table 1), and we therefore recommend,
where available, using data from trios, where haplotype
phase can be inferred with great accuracy, to maximize
the information in the data.

It has been suggested (Conrad et al. 2006) that
haplotype statistics may be less susceptible to SNP ascer-
tainment bias than statistics based upon SNP frequencies.
Here we have extensively investigated whether this holds
true for the HCN and Hpair statistics under a variety of
demographic and ascertainment conditions. Encourag-
ingly, we found that the HCN statistic is reasonably robust
to SNP ascertainment bias provided that the SNP discov-
ery sample is sufficiently deep. The reason for this is that
we focus on subsets of common SNPs, rather than on rare
SNPs. However, the Hpair statistic was very susceptible to
ascertainment bias (Figure S1 and File S1), suggesting that
all haplotype statistics are not equally affected by ascer-
tainment bias, and it will be necessary to explicitly
evaluate, as we have done here, whether ascertainment
bias affects a particular haplotype statistic.

The sizes of the SNP discovery and genotype samples
play an important role in determining the effect of
ascertainment bias on the HCN statistic. Interestingly,
generating the HCN from SNPs ascertained uniformly
using two chromosomes of known ethnicity (as done by
Keinan et al. 2007) would result in a very different HCN
statistic from that expected without ascertainment bias
(Figure S3, Figure S4, and Figure S5), which would
result in biased inference. Although not considered
here, it is in principle possible to estimate the expected
HCN statistic conditional on this particular ascertain-
ment strategy, and application of such an estimate
would reduce this bias.

We have found that SNP discovery sample sizes of at
least 12 total chromosomes should be sufficient to result
in the HCN statistic from ascertained SNPs to match the
expected HCN when considering genotype samples of
40 or 120 chromosomes. Furthermore, we have shown
that our method can reliably infer several bottleneck
parameters when SNPs were ascertained in this manner.
As the SNP discovery sample size increases, perfor-
mance of our method will continue to improve and
become closer to that for the case of no ascertainment
bias, since a larger SNP discovery sample will capture

more of the SNPs in the genotype sample. These results
are especially encouraging since Perlegen’s SNP discov-
ery effort used 20–50 chromosomes, where �12 chro-
mosomes were of African-American ancestry, �12
chromosomes were of European ancestry, and the
remainder were of Mexican-American, Asian-American,
and Native American ancestry (Collins et al. 1998;
Hinds et al. 2005).

Furthermore, we have found that the size of the SNP
discovery sample is more important than whether or not
the SNP ascertainment had been done in a particular
population (see Figure S5). This suggests that SNPs
ascertained in the Perlegen resequencing survey could
be used to estimate demographic parameters in other
populations not represented in the SNP discovery
panel. It is worth noting that the two populations in
our simulation study shown in Figure S5 split 5000
generations ago (125,000 years, assuming 25 years/
generation) with no subsequent migration and are thus
more differentiated than many actual non-African
populations that could be studied empirically.

It is important to note that the type of ascertainment
bias studied here is due to the preferential genotyping
of common SNPs. In all the analyses presented here, we
assume that the genotyped SNPs were selected without
regard to physical or genetic distance or LD patterns.
Such an assumption is reasonable for the analyses of the
Perlegen data presented here since Perlegen attempted
to genotype all of the SNPs found in their SNP discovery
process (Hinds et al. 2005). The assumption is not valid,
however, for many of the ‘‘SNP chips’’ that preferentially
selected SNPs on the basis of physical distance (in the
case of Affymetrix 500K) or LD patterns (in the case of
the Illumina platform; Eberle et al. 2007). Since the
SNPs on these platforms are not a random subset of the
total variation, using our method on such data will likely
give misleading results. In principle, it should be
possible to modify our method to model the SNP
selection process in the inference, which would allow
our method to be applied to the large-scale SNP
genotype data sets that have been collected, such as
the HGDP data set ( Jakobsson et al. 2008; Li et al. 2008).

For the analysis of the CEU data, we used two different
models of recombination rate variation. Overall, the
results using both models are qualitatively similar,
suggesting that our method is somewhat robust to
minor misspecification of the recombination hotspot
model. We also find that the one-dimensional 95% C.I.’s
from the profile-likelihood curves overlap for all five
parameters estimated (Table 2; Figure S11). Neverthe-
less, the five-dimensional 95% C.I.’s do differ between
the two recombination models, mainly due to the fact
that tcur is greater under the empirical hotspot model
than under the Schaffner hotspot model.

The time we inferred that the CEU bottleneck began
(�37,500 years ago) is too recent to coincide with the
accepted dates for the out-of-Africa bottleneck, which is
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believed to have occurred 40,000–80,000 years ago
(Reed and Tishkoff 2006). Thus, our estimate may
coincide with an additional bottleneck associated with
the founding of Europe, which likely took place 30,000–
40,000 years ago (Barbujani and Goldstein 2004).
Alternatively, our estimated start time of the bottleneck
may represent an average time over several bottlenecks,
including the out-of-Africa bottleneck and a more recent
bottleneck, perhaps associated with the Last Glacial
Maximum that began �18,000 years ago (Barbujani

and Goldstein 2004). Further work considering mul-
tiple European populations and multiple bottlenecks
may help resolve this question.

How do our estimates of the bottleneck parameters for
the CEU match with published estimates? Voight et al.
(2005) may not be directly comparable to our study since
their analysis considered a southern European sample
and ours used individuals with northwestern European
ancestry, and differences in haplotype diversity between
these two regions have been noted (Lao et al. 2008;
Auton et al. 2009). Nevertheless, our estimates of tmid and
Nmid/Ncur fall within their confidence regions. Their
bottleneck start times (40,000 years) and current and
ancestral population size estimates (�10,000) also agree
with ours. Our estimate of the time the bottleneck began
is also consistent with that found using the decay of
pairwise LD. Reich et al. (2001) found evidence for a
bottleneck 800–1600 generations ago (our MLE is 1500
generations). We find evidence for a more severe
bottleneck than previously estimated (Adams and
Hudson 2004; Marth et al. 2004; Keinan et al. 2007),
which could reflect the importance of considering
LD-based information in the inference since these studies
are all based on the frequency spectrum, and the other
study that considers a summary of LD (Voightet al. 2005)
cannot reject such a severe bottleneck. Alternatively,
there could be some other important factors in European

population history not captured by these simple bottle-
neck models that may affect the frequency spectrum and
LD patterns differently. Finally, we cannot exclude the
possibility that we have overestimated the bottleneck
intensity due to greater heterogeneity in the recombina-
tion rate than what was included in our hotspot models.
In short, improved confidence in the fine-scale genetic
map will allow definitive ability to discriminate between
these alternative scenarios.

While we have shown that haplotype statistics can be
used to estimate demographic parameters from SNP
genotype data, and it has been shown that the site
frequency spectrum (SFS) will give misleading results
when applied to genotype data without a correction for
ascertainment bias (Nielsen et al. 2004; Clark et al.
2005), one important question is whether haplotype
summary statistics will provide additional information
that is important for inference when full genomewide
resequencing data are available and it is possible
estimate the SFS accurately. We examined whether the
number of haplotypes and the count of the most
common haplotype can discriminate between two
different demographic models that have similar SFSs.
We focused on a demographic model that included
ancestral population structure since previous studies
found that ancestral structure can result in an excess of
long-range LD (Wall 2000b; Plagnol and Wall 2006).
Specifically, we found that for certain subsets of the
parameter space (the ms command lines giving the
parameters used to generate Figure 7 are given as File
S1), population growth with ancestral structure can
create a similar SFS to that expected under population
growth without ancestral structure. Close inspection of
Figure 7 reveals a very slight uptick in the proportion of
high-frequency derived SNPs in the population growth
with structure SFS as compared to the growth without
structure SFS, which is the expected signal of ancestral

Figure 7.—Comparison of the expected SFS
for population growth with ancestral structure
to that expected with just population growth.
The inset shows the frequency of the most com-
mon haplotype vs. the number of haplotypes for
each simulated window for the same two demo-
graphic models. Note that the SFSs for the two
models appear similar, but that there is an excess
of windows with fewer haplotypes and where the
most common haplotype is at high frequency in
the growth with ancestral structure model (see
discussion).
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population structure. However, this effect is very subtle
and in practice may be attributed to misidentification of
the derived allele, rather than ancestral population
structure (Hernandez et al. 2007a). Note that while
the magnitudes of growth in the structure and panmic-
tic cases are different, the growth with structure case still
has an excess of low-frequency SNPs (Figure 7), which
would often be interpreted as evidence for population
growth. The inset in Figure 7 shows the count of the
most common haplotype vs. the number of haplotypes
for 10,000 windows simulated under the two demo-
graphic models described above. Note the growth with
structure model has an excess of windows where the
most common haplotype is at higher frequency and an
excess of windows with a fewer number of haplotypes
compared to the pure growth model. Thus, this is a case
where two demographic models that cannot be readily
differentiated on the basis of the SFS can be distin-
guished easily using haplotype patterns. The reason for
this is as follows: population growth results in an excess
of low-frequency SNPs, and for the parameters used
here, population structure results in an excess of both
low-frequency and high-frequency derived alleles. The
resulting SFSs in Figure 7 have been affected by both
these forces, but the excess of low-frequency SNPs is the
predominant feature. Since ancestral population struc-
ture results in some genealogies having longer internal
branches, any mutations occurring on these branches
will be in LD with each other, leading to fewer distinct
haplotypes in the sample and the most common
haplotype occurring at higher frequency. Additionally,
since the SFS treats all SNPs as being independent,
haplotype patterns capture more information regard-
ing the local genealogy within a window than the SFS
does. In other words, many of the high-frequency
derived SNPs in the sample are clustered in certain
windows, but this pattern is missed in the SFS since it
treats all SNPs as being exchangeable. Notably, summa-
ries of the SFS performed on a local scale may be better
at distinguishing these two models (Figure S12).

It is important to point out that the HCN statistic has
been designed to be used on ascertained SNP data,
where the number of SNPs in a particular window of the
genome is affected by the ascertainment process.
Consequently, we deliberately did not use the number
of SNPs in constructing the HCN statistic. To analyze
full-resequencing data in a haplotype framework, a
more powerful approach would also make use of
information about the number of SNPs in each window
(Innan et al. 2005). The HCN statistic can be modified
to include this information, suggesting that haplotype
patterns based on full-resequencing data will be even
more informative than described here. Thus statistics,
like the HCN statistic, that capture information about
the local genealogy of a region of the genome will
remain relevant for demographic inference even when
ascertainment bias is no longer an issue.

The example above suggests that combining the SFS
and the HCN statistic may present a powerful approach
to distinguish between complex demographic scenar-
ios. Further work combining the two statistics for
demographic inference is ongoing. Another possible
extension of our method would be to jointly model two
populations in an isolation–migration framework (pro-
posed by Nielsen and Wakeley 2001), where the data
are summarized by the HCN statistic for shared and
population-specific haplotypes. Finally, instead of using
standard coalescent simulations to find the expected
HCN statistic for a given demographic scenario, we
could approximate the coalescent using the sequen-
tially Markov coalescent (McVean and Cardin 2005;
Marjoram and Wall 2006). Doing so would reduce the
computational burden of the method and would also
allow for greater values of cwindow to be used.
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FIGURE S1.—Log10 P-value of the goodness-of-fit test comparing the Hpair statistic under different SNP ascertainment 

schemes (shown on the x-axis) to that with complete ascertainment for the complex demographic model. Here a sample size 
of 40 chromosomes from each population is used.  The solid horizontal line denotes the 5% significance cutoff.  P-values <10-

200 are set to 10-200. 
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FIGURE S2.—Effect of haplotype phase uncertainty on the HCN statistic.  The HCN for a bottleneck model 
(see File S1) when haplotype phase is known (left) and inferred using fastPHASE (right). 
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FIGURE S3.—Log10 P-value of the goodness-of-fit test comparing the HCN statistic under different SNP 
ascertainment schemes (shown on the x-axis) to that with complete ascertainment for three different 
demographic models (see File S1).   Here a sample size of 40 chromosomes from each population is used.  
The solid horizontal line in each figure denotes the 5% significance cutoff.  P-values <10-200 are set to 10-200. 
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FIGURE S4.—Plot of Pearson’s residuals comparing the HCN statistic for two different ascertainment 

strategies to the expected HCN having complete SNP ascertainment for the bottlenecked population 
(population 1) in the complex demographic model.  The two SNP ascertainment strategies compared are SNP 
ascertainment using 2 chromosomes from population 1 (“2 from pop 1”) and ascertainment using 4 
chromosomes from population 1 and 4 from population 2 (“4 from each”).  Darker colors indicate a deficit of 
windows in the particular cell as compared to complete ascertainment.   Lighter colors indicate an excess of 
windows in the particular cell as compared to complete ascertainment. 
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FIGURE S5.—Log10 of the χ2 statistic for the goodness-of-fit test comparing the HCN statistic under different SNP 
ascertainment schemes (shown on the x-axis) to that with complete ascertainment for the complex demographic model.  
Here a sample size of 120 chromosomes from each population is used.  Note that the SNP discovery sample sizes used 
here differ from those in Figures S1 and S3. The horizontal lines denote the 5% significance cutoff for population 1 
(solid) and population 2 (dashed).  The two curves for each population are from two entirely independent replicates of 
the entire process (see File S1) to assess stochastic variance. 
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FIGURE S6.—Comparison between the mean and standard deviation (SD) across all 8833 windows of the 
observed inter-SNP genetic distances (as defined by the LDhat genetic map) and the mean genetic distances 
simulated using the modified Schaffner hotspot model and the empirical hotspot model (see Methods).  The left-
most point in the top figure represents the mean of the smallest inter-SNP distance, averaged over all windows, 
the second point, the second smallest inter-SNP distance, and so on.  The actual HCN statistic used for inference 
was averaged over 10 different HCN statistics, each of which was generated from a different random sub-set of 
SNPs from each window (see Methods).  Here the observed and simulated inter-SNP genetic distances are based 
on selecting one random set of SNPs per window. The simulated inter-SNP genetic distances were determined 
assuming a constant population size, N=10,000, and re-scaling genetic distance for each window such that 

ĉwindow = 0.25 cM. 
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FIGURE S7.—Comparison of the distribution of inter-SNP genetic distances in the Perlegen data (from the LDhat 

genetic map) with the Schaffner and empirical hotspot models (see Methods).  The distribution is tabulated over all 8833 
windows across the genome.  The increased proportion in the bin after 0.025 cM is due to the change in scale of the bins.  
As noted in Figure S6, here the observed and simulated inter-SNP genetic distances are based on selecting one random set 
of SNPs per window. The simulated inter-SNP genetic distances were determined assuming a constant population size, 

N=10,000, and re-scaling genetic distance for each window such that ĉwindow = 0.25 cM. 
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FIGURE S8.—Observed HCN statistic for the Perlegen CEU sample and the HCN statistics for the 
best-fitting demographic models based on the Schaffner hotspot model and the empirical hotspot model.  
Windows based on genetic distance were defined using the LDHat genetic map (see Methods).  See 
Table 2 for the parameter values generating the best-fitting HCN statistics. Note, the bins shown in the 
figure were the same ones used when inferring parameters. 
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FIGURE S9.—Two dimensional profile likelihood surface for tmid vs. Nmid/Ncur for the 
Perlegen CEU data inferred using the Schaffner hotspot model and empirical hotspot 
model.  Contours are every 3-log-likelihood units.  The inner pink contour denotes the 
region of points where the log-likelihood is < 3-log likelihood units from the MLE. 
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FIGURE S10.—Two-dimensional profile likelihood surface for tcur vs. tmid for the Perlegen CEU 
data inferred using the Schaffner hotspot model and empirical hotspot model.  Contours are every 
3-log-likelihood units.  The inner pink contour denotes the region of points where the log-
likelihood is < 3-log likelihood units from the MLE.  Note the jaggedness of the contours is due to 
the relatively course grid used to estimate parameters combined with Monte Carlo error. 
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FIGURE S11.—Likelihood profiles for the five CEU bottleneck parameters inferred using the Schaffner 
hotspot model (black) and the empirical hotspot model (red).  The dashed line denotes the approximate 95% 
confidence interval.  
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FIGURE S12.—Distribution of Tajima’s D for 10,000 independent 250 kb windows (cwindow=0.25 cM) simulated 

under a growth with ancestral structure model (red) and a growth without ancestral structure model (black).  Note 
that while means of the two distributions are similar, the variance is greater in the growth with ancestral structure 
case. 
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FILE S1 

 

Haplotype phase uncertainty: Since the HCN statistic reflects haplotype patterns, and for many genome-wide SNP datasets 

consisting of unrelated individuals, haplotype phase would need to be computationally inferred, we wanted to determine how this 

inference affected the HCN statistic.  To do this, we simulated 1000 windows with cwindow = 0.25 cM in a sample size of 100 

chromosomes from a bottleneck demographic history (Ncur=10,000, Nmid/Ncur=0.1, Nanc/Ncur=1.0, tcur=800 generations, tmid=800 

generations), where nsnp=40.  For each window, we then randomly paired the chromosomes into diploid individuals and generated 

diploid genotypes at each SNP. We next inferred haplotypes from these genotypes using a popular phasing method, fastPHASE 

(Scheet and Stephens 2006), with the default settings.  We chose to use fastPHASE since its performance is comparable to one of 

the better performing phasing algorithms, PHASE, yet is fast enough to be run on genome-wide datasets.  Finally, we compared 

the HCN statistic for the phase-known dataset to the phase-inferred dataset. 

Figure S2 shows the HCN statistic for a bottleneck model when the correct haplotype phase is known with certainty (left) 

and when haplotype phase is inferred using fastPHASE (right).  The HCN from phase-inferred haplotypes has a broader 

distribution than when haplotype phase is known.  In particular the HCN constructed using the phase-inferred haplotypes has an 

excess of windows having many haplotypes (green squares in bins “65-90” and “70-100”) as compared to the known phase HCN.   

Although it is a bit more subtle, the HCN using the phase-inferred haplotypes also has an excess of windows where the most 

common haplotype is at a high frequency.  This can be seen by the yellow square in the phase inferred haplotypes where there 

was an orange square in the phase-known HCN.  Thus, inferring haplotype phase will result in an HCN statistic that is slightly 

different from the true phase-known HCN. 

Ascertainment bias:  To evaluate how the HCN statistic is influenced by SNP ascertainment bias, we conducted a variety of 

coalescent simulations under different demographic models and SNP ascertainment strategies.  We then compared the HCN from 

the different ascertainment strategies to the HCN with complete SNP ascertainment.  We also examined whether another 

haplotype statistic, Hpair, is affected by ascertainment bias.  

 Since we wanted to address the question of whether discovering SNPs in one population and then typing them in a 

second population is more biased than selecting the SNPs in the genotyped population, we considered demographic models that 

consisted of two populations.  Briefly, we considered a finite island model (where each population has size Ne=10,000) with a low 

rate of migration between populations (4Nem=9) and high rate (4Nem =99), a population split model where the two populations 

(each of size Ne =10,000) split 2000 or 5000 generations ago, and a complex model where the two populations split 5000 

generations ago and there was a bottleneck in population one (Nmid/Ncur=0.1, tcur=800, tmid=800).  The last model can be thought of 

as a very crude approximation of the contrast between European (as population 1) and African (as population 2) human 

populations.  For each of these demographic models, we simulated a “genotype” sample of 40 chromosomes from each of the two 
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populations as well as a SNP discovery sample consisting of an additional four chromosomes from each population.  We then 

examined five different SNP discovery protocols shown in Table S1a.  These ascertainment strategies are reasonable ones for 

many of the human genome-wide SNP datasets like HapMap where many of the SNPs were discovered by comparing two 

sequencing reads (as in phase I) or from a polymorphism discovery panel with a few chromosomes from multiple populations 

(phase II SNPs discovered by Perlegen; Hinds et al. 2005; International HapMap Consortium. 2005; International HapMap 

Consortium 2007).  For each ascertainment scheme we simulated 1000 windows 500 kb in size with a uniform recombination 

rate of 1 cM/Mb (cwindow=0.5 cM) andµ =1 x 10-8 per base-pair per generation. To determine whether ascertainment bias 

becomes a problem for larger datasets containing more than 1000 windows (nwindow>1000), we also simulated an additional dataset 

under the complex demographic history consisting of 7000 windows 250 kb in size with uniform recombination rate of 1cM/Mb 

(cwindow=0.25 cM ) andµ =1 x 10-8 per base-pair per generation.  Finally, we considered the case where the genotype sample 

consisted of 120 chromosomes from each population (to mimic the HapMap CEU and YRI samples) and we had data from 7000 

windows 250 kb in size with uniform recombination rate of 1cM/Mb (cwindow=0.25 cM) and µ =1 x 10-8 per base-pair per 

generation.  For this set of simulations, the SNP discovery set consisted of 12 chromosomes per population.  Here we considered 

eight ascertainment strategies shown in Table S1b. 

 For each demographic scenario and ascertainment scheme, we selected a sub-set of 40 SNPs having MAF >10% 

(nsnp=40).  If a window had fewer than 40 SNPs, it was dropped from the analysis.  We then generated 10 different HCN statistics, 

each with a set of 10 randomly selected SNPs from each window, and then averaged them to generate the final HCN statistic. We 

compared the average HCN statistic to the expected statistic under complete ascertainment using a chi-square goodness of fit test.  

To generate the expected HCN statistic under complete ascertainment, we simulated an additional 105 windows each consisting of 

40 chromosomes and nsnp=40 and averaged over 10 different HCN statistics, each using a set randomly selected SNPs for each 

window.  From these simulations, we computed the expected HCN statistic.  Note that, when conducting the chi-square goodness 

of fit tests, we binned the HCN statistic so that we did not have any expected cell counts ≤ 5. For the complex demographic 

history using 7000 windows (for genotype sample sizes of 40 and 120 chromosomes per population) nsnp=20 instead of 40. 

We find that for all demographic models examined, except for the island model with a high migration rate, 

ascertainment of SNPs using two discovery chromosomes from one population results in a different HCN statistic than that 

expected under complete ascertainment (Figure S3).  This is shown by the low P-values for the goodness of fit tests comparing the 

HCN statistic using SNPs polymorphic in two discovery chromosomes to the expected HCN under complete ascertainment.  The 

HCN statistic constructed from SNPs ascertained in two chromosomes has an excess of windows having a small number of 

haplotypes and an excess of windows where the most common haplotype is at higher frequency as compared to the complete 

ascertainment case (Figure S4).   
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The reason for this pattern is that SNPs polymorphic in the two chromosome discovery sample must occur on branches 

of the genealogy where one of the two discovery chromosomes carries the mutant allele and the other does not.  These branches 

are a small fraction of the total area of the genealogy.  This fact will result in SNPs that are polymorphic in the discovery sample 

tending to occur on the same branches of the genealogy more often than expected without ascertainment bias.  SNPs that co-

occur on the same branches of the genealogy will be in LD with each other, resulting in there being fewer haplotypes and the 

most common haplotype occurring at higher frequency than in the case of less LD among SNPs. When considering SNPs 

discovered from two chromosomes from the first population, the HCNs in both populations differ from the expected HCN, 

suggesting that SNP discovery using two chromosomes does poorly, regardless of whether those two chromosomes are from the 

population of interest.  

SNP discovery using one chromosome from each population is a slight improvement to SNP discovery using two SNPs 

from population 1.  However, we note that for many of the demographic models considered here (Figure S3), the HCN 

constructed from ascertained SNPs differs significantly from the expected HCN under complete ascertainment. 

However, SNP discovery using four chromosomes from the first population results in a better fit to the expected HCN 

for most of the demographic models considered.  In all cases, except for the complex demographic model, the HCNs constructed 

from ascertained SNPs are quite consistent with the expected HCN under complete SNP ascertainment.  This finding holds true 

even for the second population which had no SNP discovery, again illustrating that if the two populations have similar 

demographic histories, ascertainment sample depth may be more important than which population the SNPs were ascertained 

from in terms of matching the HCN statistic.  This pattern, however, does not hold for the complex demographic model.  Here 

SNP discovery using four SNPs from the bottlenecked population (population 1) results in a poor fit to the expected HCN statistic.  

The reason for this is that the four SNP discovery chromosomes from the bottlenecked population are less representative of the 

diversity in the second population that did not undergo a bottleneck (population 2).  If, again for the complex demographic 

scenario, instead of taking four discovery chromosomes from the first population, we take two discovery chromosomes from each 

population, the HCN statistic from the ascertained SNPs more closely matches the expected HCN statistic.  However, note that if 

the number of windows of the genome considered is large (nwindow=7000), the effects of ascertainment bias are still present. 

The HCN statistic generated using a four chromosome SNP discovery sample from both of the two populations results 

in an excellent fit to the expected HCN for both populations in all demographic scenarios considered.  We also found an adequate 

fit of the expected HCN to the observed HCN when considering a larger dataset under the complex demographic model.  This 

finding is especially encouraging since the larger number of windows in the dataset (nwinidow=7000 as compared to 1000 in previous 

datasets) will have more power to detect subtle departures in the fit of the model.  Thus, for the demographic models considered 

here using n=40 chromosomes, the HCN statistic using SNP discovery sample of ≥ 4 chromosomes from at least two populations 

is not significantly different from the true HCN statistic. 
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We also examined whether ascertainment bias is a more severe problem when the genotype sample is >40 

chromosomes.  To do this, we repeated the above approach for the complex demographic model using n=120 chromosomes and 

considering larger SNP discovery sample sizes (Figure S5).  We find that small SNP discovery sample sizes (here <8 

chromosomes) result in significant differences between the HCN under SNP ascertainment and the expected HCN.  However, for 

larger SNP discovery sample sizes, the effect disappears.  This holds true even for the population that has no SNP discovery 

chromosomes (e.g. the solid line at “12 from 2”).   To assess the amount of evolutionary variance in the whole process, we 

performed two completely independent sets of simulations for these demographic and ascertainment models.  The results of both 

replicates are shown in Figure S5.  Encouragingly, the variance is reasonably low since the two solid curves (and dotted curves) 

are similar to each other. 

We also evaluated whether the Hpair statistic was robust to ascertainment bias.  As shown in Figure S1, for all 

demographic models and ascertainment conditions considered, Hpair was severely affected by SNP ascertainment bias.  

Ascertainment bias results in Hpair being higher than expected. This finding is analogous to the effect of ascertainment bias on π, 

the average number of pairwise differences among DNA sequences (Nielsen et al. 2004).  Ascertainment bias results in an excess of 

intermediate-frequency SNPs, which results in there being more pairwise differences between haplotypes than low-frequency 

SNPs do.  Thus, by preferentially selecting intermediate-frequency SNPs, Hpair becomes inflated.   

Interestingly, we find that for the cases where SNPs were ascertained in population 1 exclusively, the fit of the Hpair 

statistic under ascertainment bias to the expected Hpair statistic is actually worse in population 1—the population where the SNPs 

were discovered in—than in population 2.  This pattern is seen for both nwidnow=1000 and for nwidnow =7000 and for both the “2 

from pop 1” and the “four from pop 1” ascertainment strategies.  One possible explanation for this counter-intuitive pattern is 

that the ascertained SNPs from population 1 are more likely to be at intermediate frequency in population 1 (as discussed above), 

but may have drifted to lower or higher frequency in the second population, resulting in those SNPs being more representative of 

the true frequency spectrum in that population.    

 

Here are the ms commands to generate the HCN statistic in Figure 7: 

Growth and Structure: 

./ms 40 10000 -t 400 -r 400 250000 -F 4 -es 0.00625 1 0.1 -eM 0.00625 5 -eN 0.00625 0.5 -eN 0.025 0.125 -ej 0.625 2 1 -eM 

0.625 0 -eN 0.625 0.25 

Growth: 

./ms 40 10000 -t 400 -r 400 250000 -F 4 -en 0.01925 1 0.303333 
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TABLE S1 

Summary of SNP ascertainment strategies 

Abbreviation Ascertainment sample description 

a. Supplemental Figures 1 & 3; n=40 

2 from pop 1 2 chromosomes from population 1 

1 from each 1 chromosome from population 1 and 1 chromosome from population 2 

4 from pop 1 4 chromosomes from population 1 

2 from each 2 chromosomes from population 1 and 2 chromosomes from population 2 

4 from each  4 chromosomes from population 1 and 4 chromosomes from population 2 

  

  b. Supplemental Figure 5; n=120 

2 from pop 1 2 chromosomes from population 1 

1 from each 1 chromosome from population 1 and 1 chromosome from population 2 

4 from pop 1 4 chromosomes from population 1 

2 from each 2 chromosomes from population 1 and 2 chromosomes from population 2 

4 from each  4 chromosomes from population 1 and 4 chromosomes from population 2 

12 from pop 1 12 chromosomes from population 1 

12 from pop 2 12 chromosomes from population 2 

12 from each  12 chromosomes from population 1 and 12 chromosomes from population 2 
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