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ABSTRACT

The epistatic interactions among mutations have a large effect on the evolution of populations. In this
article we provide a formalism under which epistatic interactions among pairs of mutations have a
distribution whose mean can be modulated. We find that the mean epistasis is correlated to the effect of
mutations or genetic robustness, which suggests that such formalism is in good agreement with most
in silico models of evolution where the same pattern is observed. We further show that the evolution of
epistasis is highly dependant on the intensity of drift and of how complex the organisms are, and that
either positive or negative epistasis could be selected for, depending on the balance between the efficiency
of selection and the intensity of drift.

THE long-term evolutionary fate of a population
relies on the shape of its adaptive landscape. The

adaptive landscape is the precise map that associates a
fitness value to any possible genotype or phenotype.
While a perfect knowledge of the adaptive landscape is
out of reach, even for the simplest organisms, un-
derstanding its statistical properties can be very valu-
able to decipher the different selective pressures acting
on an organism and its genetic system (e.g., its mutation
rate or its recombination rate). Among such statistical
properties, the mean epistasis among mutations is one
that has been broadly studied in population genetics
(Wolf et al. 2000). Epistasis refers to the existence of
interactions between mutations: the effect of a
mutation depends on the genetic background in which
it appears. The spread of a mutation in a population
depends on its effect on fitness and as epistasis affects
fitness it can potentially influence the evolution of a
population. This is why we focus here on the effect of
mutations and their interactions on fitness.

Epistasis has been studied widely because it was
demonstrated that depending on its sign selection
could favor or not the evolution of recombination
(Kondrashov 1993). Since that study was published,
much more convincing models have been developed on
the evolution of sex (Otto and Barton 2001; Poon and
Chao 2004; Barton and Otto 2005; de Visser and
Elena 2007). Nevertheless, the early model generated a
strong interest for the experimental study of epistasis

among the population genetics community (de Visser

et al. 1996, 1997; Elena and Lenski 1997; Bonhoeffer

et al. 2004; Burch and Chao 2004; Sanjuan et al. 2005;
Beerenwinkel et al. 2007; Jasnos and Korona 2007)

There are several closely related ways to calculate
epistasis (Wolf et al. 2000); in this article epistasis
between two mutations is defined as

e ¼ log
f ðx12Þ
f ðx0Þ

� �
� log

f ðx1Þ
f ðx0Þ

� �
� log

f ðx2Þ
f ðx0Þ

� �
ð1Þ

(Martin et al. 2007).
In this definition e measures the deviation of the log-

fitness for a double mutant, log(f(x12)/f(x0)), from that
expected if the fitness effects of each individual muta-
tion were multiplicative. (x0 is the ancestral genotype, x1

and x2 are the genotypes having mutation 1 or mutation
2, and x12 is the double mutant). With this definition
epistasis is a relative deviation from single-mutant
effects and is therefore not directly connected to the
amplitude of the effect of single mutations on fitness. A
positive epistasis refers to the case in which a combina-
tion of mutations has a higher fitness than the one
expected from independent mutations. Negative epis-
tasis refers to the opposite: double mutants have lower
fitness than expected.

Epistasis is a key component of genomic architecture.
Two main approaches, which can be traced back to the
Wright vs. Fisher debate, have been used to study
epistasis. In a Wrightian approach epistasis dominates
the adaptive landscape such that the landscape is
defined only by the epistatic interactions among muta-
tions. Depending on the amount of epistasis and its (a
priori imposed) distribution, smooth or rugged fitness
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landscapes can emerge (Goodnight 1988; Kauffman

1993; Hansen and Wagner 2001). The epistasis of the
genotypes present in the population evolves then as the
population wanders in such genetic space. In a Fish-
erian view (Fisher 1930), the adaptive landscape has a
single peak, and epistasis either is included to modulate
how fitness decays with the distance to the optimum
(usually in terms of Hamming distance) or emerges as a
consequence of the phenotype to fitness map (Wolf

et al. 2000) (see later). In this article we focus on the
Fisherian view of epistasis. It corresponds to the case in
which a population is well adapted and evolves close to
an optimum of fitness, staying in a region far from other
local optima.

Because epistasis has a large effect on the spread of
mutations, both deleterious and beneficial, within
populations, it has recently been suggested that epistasis
could be under selection itself as it has been shown for
the mutation rate (Tenaillon et al. 1999; Denamur and
Matic 2006) and the recombination rate (de Visser

and Elena 2007). Lines of evidence supporting these
ideas come (among others) from the recent studies of
epistasis in artificial systems. For instance, it was shown
in a model of regulatory networks that epistasis could
evolve and even change sign in the presence of genetic
exchange (Azevedo et al. 2006). In several systems, such
as RNA folding or artificial life (Wilke and Adami

2001), it was found that epistasis was correlated with the
mean effect of mutations. On the basis of these
observations, analytical models have been developed
in which a locus affects the epistatic interactions be-
tween mutations at other loci (Liberman and Feldman

2005, 2006, 2008; Desai et al. 2007; Liberman et al.
2007). Our present work extends these theoretical
works on modifiers of epistasis to the case of a con-
tinuum of mutations effects. For the sake of simplicity
we focus here exclusively on asexual populations, in
which it was predicted that epistasis was neutral (Desai

et al. 2007).
These recent models studying the evolution of a

modifier of epistasis considered loci in which some
deleterious mutations of fixed effect could appear;
moreover, all interactions among mutations presented
the same epistasis value (the discrete value imposed by
the modifier). Although such assumptions allow one to
develop simplified models, they suffer some limitations.
For example, considering mutations of a single type of
mutational effect on fitness can substantially affect some
of the conclusions on the accumulation of deleterious
mutations such as Muller’s ratchet: while in small
populations, the accumulation of deleterious mutations
is stopped in the presence of synergistic epistasis when
the effects of mutations are discrete (Kondrashov

1994), such an accumulation is endless if mutations
have a continuous distribution of effects (Butcher

1995). Moreover, many experiments have demonstrated
that both the fitness effect of mutations on fitness and

their epistatic interactions have a large variability
(Elena and Lenski 1997; Sanjuan et al. 2005; Jasnos

and Korona 2007), so assuming they are not variable is
an important limitation.

It has been suggested for a long time (Fisher 1958;
Wolf et al. 2000) that epistasis could emerge from the
phenotype to fitness relation in an integrated model of
phenotypic adaptation with continuous effects, referred
to as the Fisher geometric model. Fisher’s geometric
model of adaptation, a quite old model (Fisher 1930),
has received a lot of attention recently (Fisher 1930;
Kimura 1962; Orr 1998, 1999, 2000, 2006; Welch and
Meselson 2001; Waxman and Welch 2005; Martin

and Lenormand 2006) as it provides an interesting
integrated model of adaptation that appears to be in
agreement with experimental data, both qualitatively
and quantitatively (Burch and Chao 1999; Orr 1999;
Martin and Lenormand 2006; Silander et al. 2007;
Tenaillon et al. 2007). Recently, the properties of the
distribution of epistasis were characterized in this
framework (Martin et al. 2007) and the emerging
distribution appeared to be in good agreement with
experimental observations (Martin et al. 2007). Fish-
er’s model stipulates that organisms are characterized
by a number of independent trait values. Each trait is
under stabilizing selection, which means that a unique
optimal value of the trait exists. This results in the
existence of an optimal combination of traits that
provides the best possible fitness (Figure 1A). This
simplified model is also interesting because it has only
a few parameters as follows:

i. The number of independent traits, which in geo-
metric terms is the number of dimensions of the
space: We mention this parameter later as ‘‘the
phenotypic complexity.’’

ii. The way fitness declines for each trait given the
distance to the optimal trait value: In this article, we
use the same fitness decay function for all traits,
which produces circular fitness isoclines. We de-
cided to use a fitness function in which epistasis
could be affected by a single parameter, Q. In
agreement with previous studies, the function we
use is f(x)¼ exp(�xQ) (Wilke 2001; Tenaillon et al.
2007), with x being the distance to the optimum and
Q an epistasis parameter (see later).

iii. The way mutations affect traits: In such a model a
mutation is a vector that moves one organism
defined by its position in the phenotypic space to
a new position. In the present analysis the direction
of the vector is drawn from a uniform distribution
and its norm is drawn from a centered normal
distribution with standard deviation s.

In a one-dimensional discrete model, the parameter
Q refers intuitively to epistasis. If Q ¼ 1, then the
logarithm of fitness decays linearly with the Hamming
distance to the optimum. If Q . 1, there is a synergistic
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effect of the distance to the optimum on fitness, the
further away the bigger the effect on fitness, and the
opposite (diminishing return, or antagonistic effect) is
seen if Q , 1. It is, however, unclear how Q influences
epistasis in multiple dimensions and with continuous
mutations; for example, if Q ¼ 2 no average epistasis is
found (Martin et al. 2007).

In this article, we further extend the study of epistasis
in Fisher’s model by studying, first, the distribution of
epistasis when Q 6¼ 2 and, second, the selective pressures
acting on Q.

MODEL AND RESULTS

Impact of Q on the mean epistasis: Along the same
line as Martin et al. (2007), we study the mean epistasis
among pairs of mutations. For an individual at position
x ¼ (x1, x2, . . . , xn) in the space of phenotypic complex-
ity n, its Wright–Fisher fitness is defined as

f ðx~Þ ¼ e�
P

n

i¼1
x2

ið ÞQ=2

(Figure 1).
It is worth noting that the relation between fitness and

distance in the phenotypic space is arbitrary and could
be modulated by the addition of a parameter without
loss of generality by defining instead f ðx~Þ ¼
e�A

Pn

i¼1
x2

ið ÞQ=2

. The parameter A can scale the average
effect of mutations on fitness; however, A can be
absorbed in a change of units for the xi, so we set A ¼
1 in the rest of the article.

For mutations, all traits are treated in the same way:
each phenotype is changed by a centered normal
deviate of standard deviation s.

Before we proceed to our calculations, we can in-
tuitively guess the effect of Q on epistasis: since
phenotype mutations are normally distributed with
mean 0 and standard deviation s, each mutation entails
a move in the phenotypic space of the order of s such
that fitness is modified by a factor of the order of
Exp(�sQ) so log-fitness changes are of order sQ.
Epistasis measures the difference between the effect
on log-fitness of a double mutation and the sum of the
effects of two single mutations. A double mutation is the
sum of two independent random variables with stan-
dard deviation s such that its standard deviation is

ffiffiffi
2
p

s.
Thus the effect on log-fitness of a double mutation is of
the order of 2Q=2sQ . Thus epistasis is of the order of
e � ð2� 2Q=2ÞsQ . Thus epistasis should be on average
positive if Q , 2, negative if Q . 2, and null if Q¼ 2. We
also see that e, which is homogeneous to a log-fitness
effect, is approximately proportional to sQ, i.e., approx-
imately proportional to the average log-fitness effect of
single mutations.

We now describe more rigorously the precise form of
epistasis.

At the optimum: Let us first consider that the organism
is at the optimum (x~¼~0). Epistasis among two muta-
tions originating from the optimum is

e ¼ logðf ðx~1 1 x~2ÞÞ � logðf ðx~1ÞÞ � logðf ðx~2ÞÞ as f ð~0Þ ¼ 1

in which x~1 and x~2 are two random mutations having
each of their components drawn from a normal distri-
bution with mean 0 and standard deviation s. We can
rewrite epistasis as

e ¼ �
Xn

i¼1

ðx1i 1 x2iÞ2
 !Q=2

1
Xn

i¼1

x2
1i

 !Q=2

1
Xn

i¼1

x2
2i

 !Q=2

and then

e ¼ �sQ 3 2Q=2
Xn

i¼1

x1i 1 x2iffiffiffi
2
p

3 s

� �2
 !Q=2

1 sQ 3
Xn

i¼1

x2
1i

s2

 !Q=2

1 sQ 3
Xn

i¼1

x2
2i

s2

 !Q=2

;

which makes appear in parentheses the sum of squared
centered, reduced normal deviates (the sum of two
independent Gaussians being a Gaussian).

Hence the mean epistasis at the optimum is

�e ¼ ð2� 2Q=2Þ3 sQ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

x1i

s

� �2

s !Q !

�e ¼ �ð2� 2Q=2Þ�S ð2Þ

with

�S ¼ �sQ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

x1i

s

� �2

s !Q !

¼ �sQ 2Q=2Gððn 1 Q Þ=2Þ
Gðn=2Þ : ð3Þ

Note that the mean effect of mutations on the logarithm
of fitness is proportional to sQ as expected. For this last
derivation we used the fact that the term in paren-
theses is the (generalized) Qth moment of a chi
distribution with n degrees of freedom.

Hence, in our model, epistasis at the fitness optimum
has a mean directly linked to the parameter Q (Figure 2,
A and B). As expected, when Q ¼ 2, E(e) ¼ 0. If Q . 2,
the mean epistasis at the optimum is negative. Since all
mutations are deleterious, this means that they act
synergistically, a double mutation being worse less than
expected from the single effects. The opposite is true
(positive or antagonistic epistasis) when Q , 2.

Away from the optimum: Let us now consider that we are
away from the optimal fitness, at position z~ having
fitness f0 and at a distance z0 from the optimum.

Before we detail how mutations interact, let us first
study the mean effect of mutations at any distance z0

from the optimum:
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Figure 1.—(A) Representation of Fisher’s model in two dimensions. Here an organism is defined by a combination of its traits’
x and y values; its fitness is a function of the distance of its phenotype (x1, x2) to the optimum genotype (0, 0), and therefore fitness
isoclines are circular. Mutations move an organism from one point of the phenotypic space to another. (B) Impact of parameter Q
on fitness decline. For distances to the optimum .1, low values of Q have a higher fitness than high values, while the opposite is
true for distances ,1. Q takes values 0.5, 1, 1.5, 2, 2.5, and 3 with low values in light gray and higher values in darker gray. (C)
Schematic representation of the effect of a mutation for several values of Q: log-fitness as a function of the phenotype (x1, x2) in
two dimensions for Q¼ 0, Q¼ 0.5, Q¼ 1, Q¼ 2, Q¼ 3, Q¼ 10. The thick black line represents the mean displacement caused by a
mutation at the optimum, whereas the thin black line represents the mean displacement when away from the optimum [at the
position denoted by the white (Q¼ 0, 0.5, 1, 2) or black dot (Q¼ 3, 10)]. The dotted white (Q¼ 0, 0.5, 1, 2) or gray (Q¼ 3, 10) line
is the fitness isocline at this distance. Mutations tend to be more deleterious when Q increases. Note that for Q¼ 0, log-fitness is�1
away from the optimum and 0 at the optimum, as in models with a single-fit ‘‘master sequence.’’ The case Q ¼ 10 (or Q / ‘)
corresponds to a flat neutral space (for a distance smaller than unity) and lethal genotypes (for a distance greater than unity).
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�Sðz0;sÞ ¼ E �sQ 3
Xn

i¼1

zi 1 xi

s

� �2
 !Q=2

1
Xn

i¼1

ðziÞ2
 !Q=2 !

:

The first term is sQ times the (generalized) raw
moment of order Q of a reduced, noncentered chi
distribution with n degrees of freedom, which can be
written as

2Q=2 Q

2

� �
!Ln=2�1

Q=2
� z2

0

2s2

� �
with z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

z2
i

s
;

with L being a generalized Laguerre function.
Thus

�Sðz0;sÞ ¼ z
Q
0 1� s

z0

� �Q

�2Q=2 Q

2

� �
!Ln=2�1

Q=2
� z2

0

2s2

� �� �
# z

Q
0 :

ð4Þ

The mean effect of mutations on log-fitness at a
distance z0 from the optimum is thus the sum of a
positive term z

Q
0 , the maximal beneficial log-fitness

effect (i.e., that of a mutation that moves the genotype
exactly to the optimum), and a negative term (‘‘delete-
rious contribution’’). If this deleterious contribution is
large (s=z0 ? 1) such that mutations become mostly
deleterious as is the case at the optimum, we find again
the mean log-fitness effect at the optimum:

�Sðz0;sÞ �
s=z0/‘

�sQ 2Q=2 Gððn 1 Q Þ=2Þ
Gðn=2Þ :

The behavior of �Sðz0;sÞ as z0 increases is depicted in
Figure 2A. For Q ¼ 2, since Ln=2�1

1 ðxÞ ¼ �x 1 n=2,
we have �Sðz0 ;sÞ ¼

Q¼2
�ns2, which is independent of z0. For

Q . 2, on average, mutations are also deleterious
(�Sðz0;sÞ, �nsQ , 0) and when z0 increases, the abso-

Figure 2.—(A) Mean log-fitness effect of mutations as a function of the distance to the optimum. From up to down: Q ¼ 0.5, 1,
1.5, 2, 2.5, 3. (B) The distribution of epistasis among pairs of mutations for several values of Q and of the number of dimensions.
The mean effect of mutation on logarithm of fitness was normalized to be equal to�0.2 in all conditions. (C) Impact of parameter
Q on the average epistasis among pairs of mutations as a function of the mean effect of mutations on logarithm of fitness. Q takes
values 0.5, 1, 1.5, 2, 2.5, and 3 with low values in light gray and higher values in darker gray (D) Impact of the distance (translated
in log-fitness) to the optimum on the relationship between epistasis and effect of mutations for various values of Q. Black line, Q¼
1.5, z ¼ 0; dashed black line, Q ¼ 1.5, z ¼ �0.1; dotted black line, Q ¼ 1.5, z ¼ �0.2; gray line, Q ¼ 2.5, z ¼ 0; dashed gray line, Q ¼
2.5, z ¼ �0.1; dotted gray line, Q ¼ 2.5, z ¼ �0.2.
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lute value of �Sðz0;sÞ increases: mutations are more
deleterious when one is far from the optimum than
close to it.

If Q $ 2, since mutations are deleterious on average, a
first mutation tends to increase the distance from the
optimum, where mutations are more deleterious (Q .

2) or as deleterious (Q ¼ 2) as in the previous position.
Thus, we again observe a negative mean epistasis if Q .

2, but a null mean epistasis if Q ¼ 2. When Q . 2,
�Sðz0;sÞ, 0 decreases more rapidly (mutations becom-
ing on average more deleterious) as z0 increases if
s is large than if s is small (not shown); thus, when
mutational effect increases, the absolute value of
epistasis should also increase (epistasis becoming more
negative).

For Q , 2, the behavior of �Sðz0;sÞ is more complicated
and can be positive (i.e., mutations can be advantageous
on average) or negative. However, it seems that for
1 # Q , 2, as the log-fitness is still a concave function of
the distance to the optimum (Figure 1, B and C), the
mean effect of advantageous mutations (decreasing the
distance to the optimum) is smaller than the mean effect
of deleterious mutations (increasing the distance to the
optimum). Since the proportion of deleterious muta-
tions is higher than the proportion of beneficial ones
(Fisher 1930), mutations stay deleterious on average.
Nevertheless in contrast to what happens when Q . 2,
mutations are on average less deleterious far from the
optimum than close to it, so that we can expect epistasis
among pairwise mutations to be positive on average. For
Q , 1, the log-fitness function is convex (Figure 1, B and
C) and, depending on the distance to the optimum
and the standard deviation s, mutations can be either
deleterious (close to the optimum) or beneficial (far
from the optimum) on average (Figure 2A).

We can also see in Figure 2A that the curvature of the
mean log-fitness effect of mutations decreases when the
distance to the optimum increases: epistasis should be
more pronounced close to the optimum than far from
the optimum.

The epistasis between two random mutations can be
written as

e ¼ �
Xn

i¼1

ðzi 1 x1i 1 x2iÞ2
 !Q=2

1
Xn

i¼1

ðzi 1 x1iÞ2
 !Q=2

1
Xn

i¼1

ðzi 1 x2iÞ2
 !Q=2

�
Xn

i¼1

ðziÞ2
 !Q=2

e ¼ �sQ 3 2Q=2
Xn

i¼1

zi 1 x1i 1 x2iffiffiffi
2
p

3 s

� �2
 !Q=2

1 sQ

3
Xn

i¼1

zi 1 x1i

s

� �2
 !Q=2

1 sQ 3
Xn

i¼1

zi 1 x2i

s

� �2
 !Q=2

�
Xn

i¼1

ðziÞ2
 !Q=2

and the mean epistasis among pairs of mutations as

�eðz0;sÞ ¼ �2Q=2sQ E
Xn

i¼1

zi 1 yiffiffiffi
2
p

3 s

� �2
 !Q=2 !

1 2sQ E
Xn

i¼1

zi 1 xi

s

� �2
 !Q=2 !

�
Xn

i¼1

ðziÞ2
 !Q=2

with yi ¼ x1,i 1 x2,i. And

�eðz0;sÞ

¼ sQ 2Q Q

2

� �
! �Ln=2�1

Q=2
� z2

0

4s2

� �
1 21�Q=2Ln=2�1

Q=2
� z2

0

2s2

� �� �
� z

Q
0 :

ð5Þ

Note that for Q¼ 2, since Ln=2�1
1 ðxÞ ¼ �x 1 n=2, E(e)¼ 0.

To make appear more clearly the dependency of the
mean epistasis on s, we can write

�eðz0;sÞ ¼ � 2�
2Q L

n=2�1
Q=2 ð�ðz2

0=4s2ÞÞ � z
Q
0 =sQ

2Q=2L
n=2�1
Q=2 ð�ðz2

0=2s2ÞÞ � z
Q
0 =sQ

 !
�Sðz0;sÞ

or

�eðz0;sÞ ¼ � 2� 2Q=2 �sðz0=
ffiffiffi
2
p

sÞ
�sðz0=sÞ

� �
�Sðz0;sÞ;

where the reduced variable �sðz0=sÞ ¼ �Sðz0;sÞ=sQ de-
pends only on the ratio z0/s.

This last expression shows that, as expected, the mean
epistasis is homogeneous to a mutational effect on log-
fitness, i.e., homogeneous to sQ .

We also see that when z0=s converges to 0, the mean
epistasis increases linearly with the mean effect of mu-
tation on log-fitness as found around the optimum value
as

�sðz0=sÞ /
z0=s/0

�sð0Þ ¼ �2Q=2 Gððn 1 Q Þ=2Þ
Gðn=2Þ

and
�sðz0=

ffiffiffi
2
p

sÞ
�sðz0=sÞ /

z0=s/0
1:

Finally, by writing

�eðz0;sÞ ¼ sQ ð2Q=2�sðz0=
ffiffiffi
2
p

sÞ � 2�sðz0=sÞÞ

we clearly see the contribution of each factor on
epistasis: the difference in parentheses is the difference
between the effect of the double mutation (

ffiffiffi
2
p

s is the
standard deviation of the distribution of the double
mutation, which makes a factor 2Q=2sQ appear because
of the form of the log-fitness with a Q exponent) and the
sum of each single mutational effect.

Using parametric Equations 4 and 5 with s as a
moving parameter, we can plot the average epistasis and
the average effect of mutations on log-fitness as a
function of Q and of the distance to the optimum
(Figure 2D). While the number of dimensions affects
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the mean effect of mutations, it has no impact on its
relationship with the average epistasis; i.e., for any
phenotypic complexity the relationship between the
average effect of mutations on the logarithm of fitness
and the average epistasis between pairs of mutations is
unchanged (data not shown). As expected, around Q¼
2, the mean pairwise epistasis is negative if Q . 2 and
positive if Q , 2.

We can further see that, as expected in this model,
around the optimum, the more distant an organism is
from the optimum, the smaller the mean epistasis is
among its mutations (Figure 2D).

Evolution of the parameter Q: Now that we have
shown how epistasis is related to the parameter Q, we
can study the selective pressure acting on Q. We now
assume that in addition to their position in the
phenotypic space, organisms have a genetically encoded
value of Q that is itself subject to mutations. We are
therefore in the theories of modifiers, in which we study
how a trait controlling the parameter Q evolves. We once
again concentrate on Fisher’s model and therefore
consider haploid asexual organisms.

Mutation–selection–fixed-drift equilibrium theory: We re-
cently studied Fisher’s model at mutation–selection–
fixed-drift equilibrium (MSFDE) with low mutation rate
and showed that the equilibrium fitness depends only
on the population size, the number of dimensions, and
the parameter Q (Tenaillon et al. 2007). We can use a
similar formalism to study the evolution of Q and its
distribution at equilibrium. In such formalism, n is the
phenotypic complexity, f the fitness, and v a population
size parameter such that v ¼ 2N � 2 in the haploid case
with N being the population size in a Wright–Fisher
model.

It is important to note that the framework considers
only transiently dimorphic populations: a resident popu-
lation, fully homogeneous, in which a single mutant oc-
curs, either affecting the phenotypes or affecting the
modifier allele, appears and gets either fixed or lost ac-
cording to its fitness relative to that of the first resident.

In such a process, the probability that a mutation gets
fixed depends on both the fitness of the resident and
the fitness of the mutant (and the intensity of drift). If it
gets fixed, the mutant then becomes the new resident.
However, as this process goes on and mutations get
successively fixed, this probability converges to a stable
distribution that does not depend on the fitness of the
first resident (i.e., the beginning of the process)
anymore. Thus after several fixations of mutations, the
probability that the current resident has a given fitness
becomes constant: this is the fitness distribution at
MSFDE.

If the mutations affecting the modifier Q of epistasis
are rare, the population will reach the MSFDE before Q
mutates. We can then compute the fitness distribution
at MSFDE given a fixed value of Q (Sella and Hirsh

2005; Tenaillon et al. 2007),

pMSFDEðf j Q Þ ¼ f nð�Logðf ÞÞðn=Q Þ�1Ð 1
0 f nð�Logðf ÞÞðn=Q Þ�1df

;

or, translated into the distance z to the optimum (the
probability distribution of distance to the optimum),

pMSFDEðz j Q Þ ¼ e�n�zQ � zn�1Ð ‘

0 e�n�zQ � zn�1dz
;

which gives for the mean fitness and the mean log-
fitness (a ‘‘*’’ in the following formula indicates a mean
taken with respect to the equilibrium distribution)

f ðQ Þ* ¼ n

n 1 1

� �n=Q

and

Logðf ðQ ÞÞ* ¼ � n

Q n
¼ �K ðn;Q ;N Þ

and a mean distance to the optimum

zðQ Þ* ¼ Gððn 1 1Þ=Q Þ
Gðn=Q Þ 3

1

v1=Q
� K ðn;Q ;N Þ1=Q :

The parameter K reflects the mean log-fitness at
equilibrium and reflects therefore an intensity of drift;
the higher K is, the lower the fitness. Note that it allows
for the definition of an effective population size Ne that
sums up the intensity of drift in this model. Taking as a
reference a fitness landscape with no epistasis (Q ¼ 2)
and the smallest complexity (n ¼ 1), we define

Neðn;Q ;N Þ ¼
1

4K ðn;Q ;N Þ � N 3
Q

2n

such that

Neðn ¼ 1;Q ¼ 2;N Þ � N :

Ne quantifies the intensity of drift since

Logðf ðQ ÞÞ* ¼ � 1

4Ne

f ðQ Þ* � e�ð1=4NeÞ;

i.e., the smaller Ne is, the higher the intensity of drift and
the higher the fixed-drift load.

We note that these results are strictly valid when the
mutation rate is very small such that the effect on fitness
of the recurrent production of the deleterious mutant is
neglected. For only small mutation rates these values
have to be modified by a factor e�U, with U being the
mutation rate [e.g., f ðQ Þ* � e�ð1=4NeÞ�U ].

Given that the distance to the optimum of the
resident is z we can now calculate how a slight change
from Q to Q9 should be selected for. The effect on log-
fitness of a mutation changing Q into Q9 is given by
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sQ /Q 9 � Log
f ðz;Q 9Þ
f ðz;Q Þ

� �
¼ zQ � zQ 9 ¼ zQ ð1� zQ 9�Q Þ:

Thus if z , 1, z(Q9�Q) , 1 if Q9 . Q: a mutation increasing
Q should be selected for. On the contrary if z . 1, Q
should decrease upon selection.

The effect of drift is to impede the population from
approaching the optimum. When drift is intense, z
should be on average .1. Whereas when selection is
efficient, z , 1 and the population is closer to the
optimum. The further evolution of Q will therefore
depend on this balance between drift and selection. The
effect of a mutation that changes Q, taking into account
this balance, can be measured by computing the mean
selective effect of a mutation of Q at MSFDE, i.e., taking
into account the probability that the distance from the
optimum of the resident is z:

sQ /Q 9* ¼
ð‘

0
ðzQ � zQ 9ÞpMSFDEðz jQ Þdz

sQ /Q 9* ¼
n

v � Q �
1

vQ 9=Q

Gðn=Q 1 Q 9=Q Þ
Gðn=Q Þ :

If n ? Q (e.g., n/Q . 5 or 10, and in the following we
assume this condition holds true), then as Q9 should be
of the order of Q, n/Q ? Q9/Q and

Gðn=Q 1 Q 9=Q Þ
Gðn=Q Þ � ðn=Q ÞQ 9=Q ;

thus

sQ /Q 9* � K ð1� K ðQ 9�Q Þ=Q Þ ¼ K ð1� eððQ 9�Q Þ=Q ÞLogðK ÞÞ
ð6Þ

and

sQ /Q 9* . 0 � ðQ � Q 9ÞLogðK Þ. 0:

If K . 1 (intense drift), then Q9 , Q is selected for. The
inverse is true for K , 1 (strong selection). Selection will
favor high or low values of Q depending on the intensity
of drift. Note that usually Q is of the order of 1, such that
K is of order n/N and the direction of selection on Q is
generally set by n/N: when selection is strong, i.e., when
n/N is small, selection will favor an increase of Q, while
when drift dominates the process, selection will favor a
small Q (Figure 3).

Is this selection efficient? In other words do we
have jN � sQ /Q 9*j. 1? If K ? 1 and Q9 , Q, then
N � sQ /Q 9* � n=2Q . 1 whereas if Q9 . Q, then
N � sQ /Q 9* � � n=2Qð ÞQ 9=Q

, � 1; in other words,
when K ? 1, Q9 , Q is selected for, whereas Q9 . Q is
selected against. The opposite is true when K > 1. In
the intermediate case, when K is of the order of 1,
N � sQ /Q 9* � ððQ 9� Q Þ=Q ÞN ðK � 1Þ, which can be
small if K � 1 � 1=N . For N not too small, around the
threshold value K¼ 1, a slight change (i.e., .1/N) of the

value of K can result in a sharp change in the mean di-
rection of evolution of epistasis (i.e., Q¼ 2 is ‘‘unstable’’).

Hence we see that a change of Q can be selected for in
populations and that depending on the intensity of drift
(parameter K, or 1/4Ne, in our model) selection will
either favor high or low values of Q. It is important to
note that an intense drift does not mean here that there
is no selection at all. When drift is intense (K ? 1), the
population tends, on average, to be delocalized from
the optimum and is in a region where a mutation that
changes Q can have a substantial effect on fitness and
therefore selection for or against this change can be
strong. Interestingly, the intensity of drift depends on Q:
K ¼ 1=4Ne } 1=Q . Thus a high value of Q (e.g., large
negative epistasis) tends to increase selection for still
higher values of Q (more negative epistasis) if n/N > 1
and to reduce selection for small values of Q if n/N ? 1,
whereas a small value of Q (e.g., positive epistasis) tends
to increase selection for still smaller Q (more positive
epistasis) if n/N ? 1 and to decrease selection for high
values of Q if n/N > 1. The precise value of Q could also
be decisive in the special situation where n/N � 1.

On a longer term the equilibrium will be reached
both by the phenotypes and by the modifier of epistasis.

Figure 3.—(A) Impact of population size on the average
value of Q at MSFDE for several phenotypic complexities.
Solid line, phenotypic complexity, n ¼ 100; dashed line, n ¼
30; dotted line, n ¼ 10. (B) Impact of phenotypic complexity
on the average value of Q at MSFDE for several population
sizes. Solid line, population size N ¼ 100; dashed line, N ¼
30; dotted line, N ¼ 10.
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Importantly, if mutations of the modifier Q are not rare
(i.e., as frequent as those affecting the classical traits),
this equilibrium does not need a longer time to be
reached. The evolutionary tendency of Q at this new
equilibrium will reflect the one at the first equilibrium.
Especially in cases where selection for increasing Q
(strong selection) or decreasing Q (intense drift) is
efficient, Q will rapidly reach its maximal value Qmax or
its minimal value Qmin and stay for a long time at this
value. However, when selection for either large or small
values of Q is not very strong, the evolution of Q will
mostly depend on the dynamics of the system, i.e., on
the mutational spectrum, the mutation rate, and the
initial conditions.

At a long timescale, the probability density of Q can be
written as

pðQ Þ ¼ ðnÞ�n=Q ðGðn=Q Þ=Q ÞÐQmax

Qmin
ðnÞ�n=qðGðn=qÞ=qÞdq

ð7Þ

such that the unconditioned mean fitness is

f * ¼
Ð Qmax

Qmin
ðn 1 1Þ�n=qðGðn=qÞ=qÞdqÐQmax

Qmin
ðnÞ�n=qðGðn=qÞ=qÞdq

and the mean Q is

Q * ¼
Ð Qmax

Qmin
ðnÞ�n=qGðn=qÞdqÐ Qmax

Qmin
ðnÞ�n=qðGðn=qÞ=qÞdq

: ð8Þ

These functions cannot be integrated but can never-
theless be explored numerically. First of all it appears, as
expected, that when drift is strong (i.e., small popula-
tion size, large phenotypic complexity), Q evolves to its
minimal value, favoring positive epistasis. On the
opposite, when selection is stronger than drift (large
population size, small phenotypic complexity), Q
evolves to its maximum value, hence favoring negative
epistatic interactions among pairs of mutations. This is
illustrated in Figure 3, A and B, in which we can see that
for a given population size as phenotypic complexity
increases Q evolves from the maximum value to the
minimum, and similarly at a given phenotypic complex-
ity, as population size increases, Q evolves from the
minimum value to the maximum. Hence depending on
the interplay between population size and the pheno-
typic complexity, selection should favor either strong
negative epistasis or strong positive epistasis among
pairs of mutations.

It is interesting to note that if we assume that the
modifier of Q affects only a fraction m of the dimensions,
such that fitness can be written as f ðx~Þ ¼ e�

Pm

i¼1
x2

ið ÞQ1=2�Pn

i¼m11
x2

ið ÞQ=2

, the modifier affecting only Q1, then
the equilibrium value of Q1 is the same as in the previ-
ous model with a phenotypic complexity of m. As noted
before (Tenaillon et al. 2007), at equilibrium each

dimension behaves as if it were independent from the
others (independent traits).

Simulations: The derivations we used assume that
populations have converged to the MSFDE and are
therefore to be used in the limit of infinite time. They
are also based upon the hypothesis of a small mutation
rate. We therefore decided to implement some simu-
lations to see how valid they are. An individual-based
model of evolution was developed [as previously de-
scribed (Silander et al. 2007)] in which the parameter
Q was encoded for each individual. Along the evolu-
tionary process the mean Q of the population was
monitored to find its equilibrium value after 100 million
generations. We chose different initial values of Q, the
mutation rate, and the mean mutation size in the
phenotypic space to determine the impact of those
parameters on the final equilibrium. The parameter Q
evolved through mutations 1000 times less frequently
than mutations affecting the phenotypes and was then
drawn from a uniform distribution between its minimal
and maximal value.

From such simulations it appeared that the theoret-
ical model was qualitatively very accurate for various
mutation rates and mean effects of mutations, but that
the switching point, where Q moves from maximal value
to minimal, is not precisely estimated (Figure 4C).
Indeed, we could find three regimes, two in which both
theories and simulations agree fully and one in which
they do not.

When population sizes are big and phenotypic
complexity is small (K > 1), even at the smallest value
of Q the population at MSFDE is at a distance from the
optimum ,1 [Kmax ¼ n/(2N � 2)Qmin, , 1; Figure 4A,
second panel]. Hence, whatever the initial value of Q or
the initial fitness of the population is, selection will
bring the population toward a smaller than unity
distance from the optimum. For an organism whose
distance to the optimum is ,1, a mutation increasing Q
is always beneficial as it directly increases its fitness (see
Figure 1). Hence for all populations Q will evolve to its
maximal value as predicted by theory (Figure 4A).

Similarly when populations are small and/or pheno-
typic complexity is large (K ? 1), even at the highest
value of Q, the distance to the optimum is .1 [Kmin¼ n/
(2N � 2)Qmax, .1; Figure 4A, bottom panel]. Hence,
whatever the initial conditions are on the initial fitness
or the initial value of Q of the population, drift will bring
the population to a bigger than unity distance to the
optimum. For an organism whose distance to the
optimum is .1, a mutation decreasing Q is always
beneficial as it directly increases it fitness (see Figure
1). Hence for all populations Q will evolve to the
minimal value of Q as predicted by theory (Figure 4A).

In between these two cases [for Qmin , n/(2N� 2) ,

Qmax or Kmin , 1 , Kmax] lies the situation in which the
equilibrium distance of the largest Q is smaller than
unity and the equilibrium distance at the minimal value
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of Q is larger than unity. In this range, there are two
attractors, and depending on the initial conditions, on
the frequency of mutations acting on Q and, on their
effect on Q, a population will either evolve to a distance
smaller than unity and therefore evolve toward the
maximal Q or evolve to bigger than unity distance
favoring minimal values of Q (Figure 4A, third panel).
We confirmed this by initiating different populations at
their equilibrium distance from the optimum with
different values of Q, and, as expected depending on
their positions, they favored either the minimal or the
maximal value of Q (Figure 4C).

The study of the average Q at MSFDE does not predict
clearly this instability (since at equilibrium—when time
goes to infinity—the initial values do not matter);
however, with a closer look at the distribution of Q at
MSFDE, we can see that high probabilities are observed
at both high and low values of Q in the region of

instability we described previously (Figure 4B). Hence
the discrepancy between simulations and theory lies in
the fact that MSFDE reflects very long-term equilibrium
while simulations might get trapped in some local
optimum and infinite time would be required for the
theoretical limit to be reached.

In the simulations presented previously, no clear
effect of the average size of mutations was observed on
the patterns described; whether the average mutation
size was 0.01 or 100, the transition of Q between extreme
values was observed at the same ratio of phenotypic
complexity to population sizes (data not shown).

Impact of the mutation rate: In the simulations pre-
sented before, the genomic mutation rate was assumed
to be quite low, i.e., 0.001 per generation, which ensured
that the simulation was fast and in conditions compat-
ible with the formalism used for MSFDE. However, we
wanted to know how robust such results are in the face of

Figure 4.—(A) Fitness as a function of the distance to the optimum and parameter Q, and distance distributions at MSFDE. Top
panel: log-fitness as a function of the distance to the optimum for Qmax ¼ 2.5 (solid line) and Qmin ¼ 0.8 (shaded line). Second,
third, and fourth panels: density distribution of the distance to the optimum at MSFDE (‘‘short-term equilibrium’’) for a given Q:
Qmax (solid line) and Qmin (shaded line). Second panel: strong selection (Kmax , 1, N ¼ 100, n ¼ 25), an increase of Q is always
advantageous. Third panel: intermediate selection (Kmin , 1 , Kmax, N¼ 100, n¼ 200). Fourth panel: intense drift (Kmin . 1, N¼
100, n¼ 700), a decrease if Q is always advantageous. (B) Distribution of Q at MSFDE as a function of phenotypic complexity. For a
population size of 30, and phenotypic complexity of 10 (solid line), 15, 20, 25, 30, 40, 50, and 100 (dotted line), we see that for
intermediate values of n, high and low values of Q have a high probability, which explains the dependency on initial conditions
observed in simulations. (C) Impact of phenotypic complexity on the average value of Q for population sizes of 30 in the sim-
ulation model, with several initial values of Q. The average size of a mutation was 10. Each point is the average of 10 simulations.
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increased mutation rate. To do so we increased the
mutation rate to 0.1 and followed in a population size of
100 the evolution of Q. Similarly to what has been
observed before, a shift occurred as a function of
phenotypic complexity, arising at different phenotypic
complexities for various initial conditions of Q. The
value at which the shift occurred was, however, affected
by the mutation rate. It arose at lower values of
phenotypic complexity compared to simulations with a
lower mutation rate (Figure 5).

This shift is somehow expected as we know that an
increased mutation rate will have two consequences.
First, it will allow the population to explore more the
genotypic space and therefore enhance the chances to
find the best solution, either low or high Q predicted by
theory. Hence increased mutation rate should favor a
transition in Q closer to the one predicted by theory.
Second, an increase in mutation rate reduces the
average fitness as many deleterious mutants are present
within the population (Haigh 1978) and is also equiv-
alent to a reduction in effective population size
(Charlesworth et al. 1993). This effect results in an
increased distance to the optimum and therefore a
faster transition to low values of Q as phenotypic com-
plexity increases. The first and second effects described
act synergistically when the transition of Q occurs at
higher than expected phenotypic complexity and result
in a transition occurring much closer to the theoretical
value (Figure 5). However, when the transition occurs at
a lower than expected value of phenotypic complexity,
the effects are antagonistic and result in a moderate
displacement of the transition point (Figure 5).

DISCUSSION

Since the ‘‘omic’’ era (genomic, transcriptomic, pro-
teomic, metabolomic), the study of interactions be-
tween an organism and its environment or interactions

within an organism’s genome is becoming more feasible
experimentally, generating a renewed interest for the
theories aiming at understanding how selection should
shape the genomic architecture of organisms. While it is
clear that all kinds of interactions could exist within a
genome, one of the goals of population genetics is to see
whether such interactions could be captured by some
summary statistics that would on the one hand describe
the genomic architecture of the organism and on the
other hand be predictive of the various selective pres-
sures acting on such an organism. In genetics, epistasis
refers to the existence of some genetic interactions
between some loci; in population genetics it refers more
precisely to how such interactions affect phenotypes
and fitness (Wolf et al. 2000). Generally two kind of
epistasis are opposed: antagonistic epistasis in which the
combination of mutations has a fitness closer to the
ancestral fitness than what is expected from their in-
dividual effects and synergistic epistasis in which the
combination of mutations has an increased fitness effect
(more distant from the ancestral fitness) compared to
that expected. The other formalism that we use here
refers to positive or negative epistasis. Positive epistasis
refers to the fact that combinations of mutations that
are beneficial, deleterious, or a mixture of both have
fitness values higher than the ones expected from the
product of the fitness effects of single mutants. Negative
epistasis refers to the opposite situation in which mu-
tations in combination have a lower than expected
fitness effect.

To study how epistasis influences population evolu-
tion and how it can evolve, one can study a locus
controlling epistasis, its impact on the population, and
the selective pressures acting on it. One classical
framework to do so is to assume a single peak fitness
landscape in which epistasis can modulate how fitness
will decay as organisms accumulate deleterious muta-
tions. Epistasis is then chosen to be homogenous among
loci, being either positive or negative. With this frame-
work it was shown that epistasis could largely influence
the way populations would respond to selection
(Kimura and Maruyama 1966; Charlesworth 1990;
Kauffman 1993; Hansen and Wagner 2001; de Visser

and Elena 2007), and some recent studies have shown
how natural selection shapes epistasis (Liberman and
Feldman 2005, 2006, 2008; Desai et al. 2007; Liberman

et al. 2007). However, all experimental data, to date,
have found that both kinds of epistasis were present
simultaneously (Elena and Lenski 1997; Sanjuan et al.
2005; Jasnos and Korona 2007), and therefore such
theories should be revisited to see how robust they are to
the presence of both kinds of epistasis (Kouyos et al.
2006, 2007). To go further in such a direction, one
needs a proper framework in which epistasis can be
distributed with both positive and negative interactions,
with positive or negative averages (Jasnos and Korona

2007), and with a distribution that has potentially some

Figure 5.—Impact of the mutation rate on the evolution of
Q. The mutation rate was set either to 0.001 or to 0.1. The po-
sition of the switch from maximal to minimal value of Q was
decreased when mutation rate increased. Here population
size was 100, and several effects of mutation size gave the same
result.
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biological meaning. In this article, we present a theo-
retical framework that on the one hand provides a
distributed epistasis with nonzero mean and on the
other hand allows us to study how epistasis evolves.

The framework we use is the one first briefly in-
troduced by Fisher (1930) and presented briefly in
Figure 1A. In the last decade a large number of
theoretical studies and experimental works have used
such a framework and showed its interest and validity to
study evolution (Burch and Chao 1999; Orr 1999;
Martin and Lenormand 2006; Silander et al. 2007;
Tenaillon et al. 2007). Two lines of investigations have
been studied mainly: the study of the effect of mutations
(Fisher 1930; Kimura 1962; Orr 1998, 1999, 2000,
2006; Welch and Meselson 2001; Waxman and Welch

2005; Martin and Lenormand 2006) and the study of
MSFDE (Wagner and Gabriel 1990; Hartl and
Taubes 1996, 1998; Poon and Otto 2000; Tenaillon

et al. 2007). For our purposes, we use both aspects.
A direct link between mutation effects on fitness and

epistasis: Using mutation models, we study here the
epistatic interactions among pairs of mutations. First, as
shown before (Martin et al. 2007), we find that the
model provides a whole distribution of possible epistatic
interactions among pairs of mutations (Figure 2B).
Such a distribution can have both positive and negative
epistatic interactions as it has been observed in bi-
ological organisms. Moreover we show that the average
epistasis is nonzero as long as Q is different from 2
(Figure 2C). Interestingly we find a tight link between
epistasis and the mean effect of mutations on fitness
logarithm. This observation is very interesting, as it
agrees with the analysis of various in silico models in
which a correlation between the effect of mutations and
epistasis was found, and therefore suggests that such a
model could be analyzed under Fisher’s model frame-
work. Hence, we show that while the parameter Q is
directly related to epistasis, it is also directly related to
the effect of mutations on fitness, something that we
could refer to as genetic robustness, i.e., how stable the
fitness of an organism is in the face of mutations. Hence,
as suggested before in a simple discrete model (Wilke

and Adami 2001), our formalism suggests that epistasis
and genetic robustness might be intimately linked,
without involving any selection mechanism: the corre-
lation between the two appears as an emerging muta-
tional property of the adaptive landscape and not a
property resulting from the action of natural selection.

The parallel with previous definitions of epistasis in
discrete models can be pushed further. In genotypic
models fitness is often defined as f kð Þ ¼ e�akb

, or
Logðf kð ÞÞ ¼ �akb, with k being the number of muta-
tions [f(0) being the optimal fitness], a the mean effect
of the first mutation on logarithm of fitness, and b the
epistasis parameter. Using our formalism, if �Sk denotes
the average log-fitness of individuals with k mutations,
we have, for all k,

�Sk ¼ �sQ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

P
k xki

s

� �2
s !Q !

¼ �sQ kQ=2E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

P
k xki

s
ffiffiffi
k
p

� �2
s !Q !

�Sk ¼ kQ=2 �S

such that we can write �Sk ¼ �akb for all k with a ¼ ��S
and b ¼ Q=2. So a direct parallel between b and Q/2
can be made. Interestingly, Wilke and Adami (Wilke

2001) predicted that a and b should be negatively cor-
related. In our framework, we have �S �

n[1
� A ns2ð ÞQ=2 if fitness

is defined as f ðx~Þ ¼ e�A
Pn

i¼1
x2

ið ÞQ=2

. Thus Q=2 ¼ Log
ð��S=AÞ=Logðns2Þ or b ¼ Logða=AÞ= Logðns2Þ. As b .

0 (mutations are deleterious on average), if a , A, then
Logðns2Þ , 0 and a and b are negatively correlated, b

being approximately a log function of a as seems to be
the case in Wilke and Adami’s (2001) study. It would be
interesting to compare this result to their data, as the
complexity of their system could then be estimated.

Finally, we show here that even with a definition of
epistasis that should be independent of the effect of
mutations (Equation 1) as it measures a relative change
in effect, in our model, epistasis is directly linked to the
average effect of mutations on log-fitness. Hence com-
parative studies on the intensity of epistasis (Sanjuan

and Elena 2006) should take this parameter into
account.

Evolution of the parameter Q depends on drift:
Previous studies have analyzed the evolution of epistasis
(Liberman and Feldman 2005, 2006, 2008; Desai et al.
2007; Liberman et al. 2007). However, they focused on
modifiers of epistasis acting on two loci or on modifiers
of epistasis acting on many loci having mutations of
similar effects on fitness. Our framework allows the study
of a modifier that has an impact on a whole distribution
of epistatic interactions, which is somehow more realistic.
However, as there are many different effects of mutations,
an unavoidable consequence is that the modifier affects
not only epistasis but also the average fitness effects of
mutations. Hence our analysis unravels, at least in this
model, a mixed effect of the selection acting on a mod-
ifier affecting epistasis. What we may lose in theoretical
clarity, we gain in realism as we know that mutations in
nature do not have a single effect and that epistasis
appears to be distributed. Hence any global modifier of
epistasis should be submitted to a selective pressure sim-
ilar to the ones acting on Q.

In previous studies (Liberman and Feldman 2005,
2006, 2008; Desai et al. 2007; Liberman et al. 2007), the
theoretical framework used was that of a very large
population size and fixed effect of mutations. In such a
context, the population remains at the fitness optimum.
Epistasis in such models affects only the fitness of
genotypes having two deleterious mutations. However,
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in such large asexual populations deleterious mutants
having a single or even more deleterious mutations are
doomed to disappear and do not contribute to the long-
term fate of the population. Hence, any modifier
affecting the effect of single [modifier of genetic
robustness (Gardner and Kalinka 2006)] or double
mutations [modifier of epistasis (Desai et al. 2007)] will
be neutral. However, in sexual populations through
recombination, individual having deleterious muta-
tions can contribute to the production of mutation-free
individuals and therefore epistasis is under selection.
Therefore, previous studies have focused on the impact
of recombination on the evolution of epistasis.

In contrast with those theoretical predictions, in
asexual populations, evolution of genetic robustness has
been observed (van Nimwegen et al. 1999). This has been
mainly studied theoretically through the framework of
neutral networks, in which fitness of an organism is either
maximal or null (corresponding to an infinite value of Q
in our model). In such a framework, the genotypes having
the highest fraction of neutral neighbors are selected for
because the fitness of the populations is linked not only to
mutation rate as Haldane proposed in the absence of
neutral mutations, but also to the fraction of neutral
neighbors, the so-called neutrality. Indeed, as soon as the
population is not doomed to stay at a single genotype of
maximal fitness, selection can act on modifiers affecting
the fitness of the explored genotypes. This was illustrated
on the evolution of robustness by Krakauer and Plotkin

(2002), who showed that a high mutation rate coupled
with drift could lead to selection for genetic robustness. It
is worth noting that they kept the assumption of high
mutation rate, but that such an assumption is not
necessary (Gros and Tenaillon 2009). For a model like
Fisher’s model, in which mutations can have arbitrarily
small effects, some deleterious mutations will be fixed
regardless of the population size. A modifier of epistasis
that affects the fitness of those fixed mutations can
therefore be under selection even if the mutation rate is
almost null. Hence to study this selection we can first
assume a near vanishing mutation rate to see how
epistasis would evolve: this is the main reason why we
choose to study epistasis in the MSFDE framework.

We have applied the MSFDE theory to Fisher’s model
to study how the parameter Q would evolve (if evolv-
able). In MSFDE theory, a population is always mono-
morphic unless a single mutant appears. Depending on
its effect, either on the phenotypes or on Q, such a
mutant will either invade and become the new resident
genotype or disappear. The interesting feature of Fish-
er’s model on the MSFDE side is twofold. First, the
results concerning the evolution of Q are independent
of the mutational effects (cf. Equations 6 and 7) and
therefore robust to the different distributions of muta-
tion effects and to their mean; these parameters in-
fluence only the speed of convergence to the
equilibrium. Second, the theory combines phenotypic

complexity, epistasis, and population size in a global
parameter to measure the efficiency of selection vs.
drift. It can be shown that at MSFDE the mean logarithm
of fitness is ÆLogðf Þæ ¼ �ðn=Q ð2N � 2ÞÞ. Hence fitness
at MSFDE decreases with phenotypic complexity (as it is
harder to optimize simultaneously many traits); it is also
affected, as expected, by the population size, and finally
by the epistasis parameter Q (the higher Q is, the higher
the fitness at MSFDE): when mutations are mostly
deleterious, increasing Q makes mutations more dele-
terious on average and they are more easily selected
against. However, this property makes the evolution of a
modifier of epistasis different from that of a noncostly
modifier of genetic robustness [for instance, the pa-
rameter s or a parameter A modulating the selection
intensity if fitness is defined as f ðx~Þ ¼ e�A

Pn

i¼1
x2

ið ÞQ=2

].
The latter has no effect on mean fitness at equilibrium
while a modifier of Q does. It appears therefore in-
teresting to study the evolution of Q in Fisher’s model.

Using MSFDE theory we find that the evolution of
parameter Q is influenced by the ratio of complexity to
population size (Figure 3). When selection is strong, i.e.,
when n/N is small, selection will favor an increase of Q,
while when drift dominates the process, selection will
favor a small Q. This was suggested by the theory and
confirmed by simulations. Interestingly while our the-
ory is based on the assumption of low mutation rate,
simulations show that its range of validity includes large
mutation rates (Figure 5). However, it is worth noting
that while the model predicts very well the behavior of
the population in the strong drift or strong selection
regimes, it is better to use local selective pressure acting
on Q rather than long-term equilibrium predictions in
the intermediate regime. A precise estimate of the time
needed to reach equilibrium is not available here.
However, this timeframe should depend mainly on the
mutation rate of the modifier of Q as well as on the mean
effect of a mutation acting on Q. Increasing the
mutation rate of the modifier should shorten this
relaxation time as it increases the probability to escape
the local optimum. The effect of the size of mutations
on this modifier is more complex: a reduction in this
size can increase the probability to escape a local
optimum (since mutations are less deleterious) while
more mutations may then be needed to fully escape this
optimum. An increase in the size may also increase the
probability that a mutation passes through the valley
between the two local optima.

As we have seen, the intensity of drift is determined
mainly by the ratio n/N of phenotypic complexity and
population size. Therefore an estimate of both param-
eters is essential to decipher whether negative or
positive epistasis should evolve. The main difficulty
may probably come from the estimate of n as we have
to date no idea of what precisely determines phenotypic
complexity. So far, the only study that precisely addressed
this question experimentally is that of Tenaillon et al.
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(2007) for the vesicular stomatite virus (VSV) and the
bacteriophage PhiX174. They found, respectively, n/Q
�10 and �45 for these two viruses coding, respectively,
5 and 11 genes. Intuitively the number of genes, the
number of genetic interactions, and the diversity of
environmental conditions may be parts of the determi-
nants of this complexity. We have therefore no precise
estimate of phenotypic complexity for other organisms
but it is likely that it spans several orders of magnitude
among life diversity, as the viruses studied previously are
among the simplest life forms. Hence it is highly likely
that some species may be subjected to selection for
negative epistasis whereas others may be subjected to
selection for positive epistasis.

Why should drift favor the evolution of antagonistic
epistasis? When drift is strong, populations will not be
clustered around the optimum but at some distance,
natural selection failing to improve all phenotypic traits
simultaneously. As positive epistasis improves the fitness
of distant organisms (Figure 1B), it is hence favored
under such conditions. In our model drift is just a
pressure that pushes the populations away from the
optimum.

Link with previous models: In large populations,
other models have shown that positive epistasis was
selected for in the presence of recombination; here,
positive epistasis is selected for when drift is strong. In
infinite sexual populations, populations are polymor-
phic and recombination ‘‘moves’’ alleles in different
genotypes, both optimal and nonoptimal, even if the
populations keep some optimal genotypes present in
the populations. Our analysis somehow suggests that
this situation has some similarity with the evolution of
finite asexual populations in which the best genotype is
strongly drifting around the optimal genotype. A
parallel can be made between the fraction of time spent
by beneficial alleles in genotypes loaded with deleteri-
ous mutations in the presence of recombination and the
time spent by the asexual monomorphic population
with a fixed deleterious mutation.

Some more interplay between our result and the
existence of selection for recombination can be sug-
gested. First, our model shows that when selection is
efficient compared to drift, negative epistasis is favored.
This could be interesting for the evolution of sex as the
existence of negative epistasis is one of the conditions
that favor selection for recombination (de Visser and
Elena 2007). Second, in the simulations we performed,
we saw that under some ranges of parameters, the
system can transiently (compared with infinite time)
evolve to the maximal or the minimal value of Q. In such
a regime, any additional parameter that favors the
efficiency of selection could lead to a switch toward a
negative epistasis. This could be one of the bases of the
evolution of the epistasis observed in regulatory net-
works in which the addition of sexual exchanges leads to
a more efficient selection and concomitantly to a

change of sign of epistasis toward negative epistasis
(Azevedo et al. 2006). It would therefore be interesting
to see how the presence of genetic exchange in poly-
morphic populations could affect MSFDE and affect the
evolution of epistasis.

Impact of the evolution of Q on the mean fitness
effect of mutations: In the analysis presented before, we
showed independently how Q influences the mean
epistasis and how Q should evolve. If we assume that
mutations affecting Q are very rare, then populations
will reach MSFDE and then mutate Q step by step (in a
process similar to the process used in adaptive dynam-
ics). If we assume that the population is exactly at the
equilibrium distance from the optimum, we can then
see how epistasis evolves as the parameter Q evolves. As
stated previously, the evolution of Q does not depend on
the size of mutations in the phenotypic space, but the
mean epistasis and the mean mutational effect on
fitness do. We can therefore study the impact of the
evolution of Q on both epistasis and fitness effects of
mutations for several values of the mean distance that a
mutation travels in the phenotypic space (parameter s

in our formalism). When drift dominates the process,
whatever the ‘‘size’’ of mutations, Q decreases and so
does the mean effect of mutations (Figure 6A). Hence
selection for lower values of Q is consistent with
selection for robustness under a strong drift regime. It
is, however, worth noting that in such conditions fitness
at MSFDE decreases with Q, something similar to ‘‘the
paradox of robustness’’ suggested in the evolution of
robustness (Frank 2007) but involving in addition a
fitness decline (Gros and Tenaillon 2009).

When selection is efficient and favors a high value of
Q, we can see that the mean mutational effect on fitness
either increases or decreases depending on the size of
mutations (Figure 6B). If mutations are ‘‘small,’’ their
effect on fitness will decrease with increasing Q, while
when they are big the opposite is true. This is not
expected if selection for epistasis is strictly equivalent to
selection acting on the mean effect of mutation or
genetic robustness. In fact, in such a long-term process,
it is not the average effect of mutations on fitness that
matters, but rather the fraction of mutations that could
contribute to the population evolutionary fate, i.e.,
mutations that could be fixed. In this sense the
evolution of the parameter Q always favors a decreasing
effect on fitness of small size mutations.

Hence our analysis suggests that care should be taken
in analyzing experimental data, as the mean effect of
mutations that will be often used as the measure of
robustness and used for epistasis might be a bad
indicator of what has been selected for in populations.

Impact of the evolution of Q on the mean epistasis
between pairs of mutations: While the value of Q
(compared to 2) reflects the signof epistasis, the evolution
of Q does not reflect how the intensity of epistasis evolves
because epistasis also depends on the effects of mutations
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and on position in the phenotypic space. Similarly to what
was done in the previous paragraph we can study how the
intensity of epistasis evolves as Q moves toward its maximal
or minimal value. When low values of Q are selected for,
depending on the minimal value of Q, either strong
positive epistasis will emerge or almost null epistasis for
very low values of Q (Figure 7A). When selection favors
high values of Q, it appears that strong negative epistasis is
selected upon when mutations have large effects and
almost no detectable epistasis is observed for small-effect
mutations (Figure 7B).

Interestingly, in a very large range of conditions, the
model predicts that the intensity of epistasis should
evolve to be significantly different from zero. Hence,
under this asexual model of evolution, strong interac-
tions among mutations should emerge in either di-
rection depending on the intensity of drift. With such

an increase in the interactions between mutations, our
model suggests that the evolution of modularity, which
would favor the lack of interactions between mutations,
is unlikely in asexual populations. This observation is in
good agreement with in silico models of evolution that
showed that populations tend not to favor the evolution
of modularity unless genetic exchanges (Misevic et al.
2006) or fluctuating environments (Kashtan and Alon

2005) are present.
Multiple modifiers of epistasis: We previously focused

our analysis on a global modifier of epistasis that would
affect all traits simultaneously. Our formalism, however,
allows us to study many independent modifiers of epis-
tasis that would each affect independently m different
subgroups of nk traits such that fitness would be defined

as f ðx~Þ ¼ e�
Pm

k¼1

Pnk

i¼1
x2

ið ÞQk=2

. In such a system, each
group of traits and its modifier evolve independently,
according to its number of traits or phenotypic complex-
ity. Small subgroups of traits will tend to evolve toward the
maximal value of Q, as the effective drift is reduced for
such parameters while a modifier of a large number of
traits will tend to favor minimal values of Q. Hence a
complex composite epistasis could emerge, depending
on the range of action of modifiers (parameter nk).

Interestingly for a protein, it was shown that an
increased stability results in a decreased effect of

Figure 6.—(A) Impact of Q on the mean effect of mutation
on log-fitness at MSFDE when selection favors low values of Q.
Populations are assumed to be at the mean distance for their
value of Q at MSFDE. For all sizes of mutations in phenotypic
space, the average effect of mutation on fitness decreases with
decreasing Q. n ¼ 10, N ¼ 100, and the standard deviations of
the mutation size in phenotypic space are s ¼ 0.05 (solid
line), s ¼ 0.1, s ¼ 0.2, s ¼ 0.3, and s ¼ 0.5 (dotted line).
(B) Impact of Q on the mean effect of mutation on log-fitness
at MSFDE when selection favors high values of Q. Depending
on the size of mutations in phenotypic space, the average ef-
fect of mutation on fitness increases or decreases with increas-
ing Q. n ¼ 100, N ¼ 30, and the standard deviations of
mutation size in phenotypic space are s ¼ 0.05 (solid line),
s ¼ 0.1, s ¼ 0.2, s ¼ 0.3, and s ¼ 0.5 (dotted line).

Figure 7.—(A) Impact of Q on the mean epistasis among
mutations at MSFDE when selection favors low values of Q
(same conditions as in Figure 6A). (B) Impact of Q on the
mean epistasis among mutations at MSFDE when selection fa-
vors high values of Q (same conditions as in Figure 6B).
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mutations and an increased negative epistasis as the first
mutation is less likely to disrupt the protein function
while pairs of mutations could still do it (Bloom et al.
2005; Bershtein et al. 2006). Hence it appears first that
a local control of epistasis can be achieved by acting on
protein stability and second that the observed stability of
proteins suggests the existence of negative epistasis. A
global control of epistasis could occur through the
induction of chaperones. Once a badly folded protein is
present, chaperones are induced to allow its proper
refolding. This results in a strong positive epistasis
(Maisnier-Patin et al. 2005), as once a deleterious
mutation induces an increased level of chaperones,
these helper proteins can also buffer the deleterious
effects of additional mutations in other proteins.
Hence, as suggested in our model, it appears that
single-trait modifiers of epistasis favor negative epistasis
while global regulators favor positive epistasis.

Concluding remarks: The model we present here
provides an interesting framework to study the distribu-
tion of epistasis, its influence on population evolution,
and the selective pressure acting on epistasis. We have
shown the existence of a strong link between epistasis
and the mean effect of mutations on the logarithm of
fitness and shown that at MSFDE, drift would largely
influence the evolution of epistasis. More should be
done to study how robustness, recombination, and
mutation rates would be affected by the form of epistasis
present in this model and reciprocally how they in-
fluence the evolution of epistasis.
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