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ABSTRACT

For phenotypic distributions where many individuals share a common value—such as survival time
following a pathogenic infection—a spike occurs at that common value. This spike affects quantitative trait
loci (QTL) mapping methodologies and causes standard approaches to perform suboptimally. In this article,
we develop a multiple-interval mapping (MIM) procedure based on mixture generalized linear models
(GLIMs). An extended Bayesian information criterion (EBIC) is used for model selection. To demonstrate
its utility, this new approach is compared to single-QTL models that appropriately handle the phenotypic
distribution. The method is applied to data from Listeria infection as well as data from simulation studies.
Compared to the single-QTL model, the findings demonstrate that the MIM procedure greatly improves the
efficiency in terms of positive selection rate and false discovery rate. The method developed has been
implemented using functions in R and is freely available to download and use.

MANY statistical methods for mapping quantitative
trait loci (QTL) have been developed for traits

with regular distributions. These include single-interval
mapping (Lander and Botstein 1989), marker-based
regression (Cowen 1989; Moreno-Gonzalez 1992),
composite-interval mapping ( Jansen 1993; Jansen and
Stam 1994; Zeng 1994), multiple-interval mapping
(Kao et al. 1999; Kao and Zeng 2002), and methods
especially for binary traits (see, e.g., Xu and Atchley

1996; Visscher et al. 1996; Xu et al. 1998; Yi and Xu 2000;
McIntyre et al. 2001).

Recently, Broman (2003) considered the traits with
distribution having a spike, i.e., a mixture of a regular
distribution and a single-point mass. This type of trait is
common in survival analysis and tumor studies (see, e.g.,
Boyartchuk et al. 2001; Hunter et al. 2001). Broman

(2003) studied several single-QTL methods. The com-
mon feature of these methods is that putative QTL are
considered one at a time. The single-QTL methods can
be efficient for identifying QTL-bearing chromosomes.
But if they are used to identify individual QTL, there is a
potential to commit a high false discovery rate due to the
existence of spurious genotype correlations between
loci not in linkage disequilibrium (LD) with QTL and
those in LD with QTL.

A natural alternative to single-QTL methods is to con-
sider multiple QTL simultaneously. In this article, we
consider a multiple-interval mapping (MIM) procedure
based on mixture generalized linear models (GLIM)
for traits with the spike feature. An EM algorithm for
the mixture GLIM and a forward procedure using an
extended Bayesian information criterion (EBIC) (see
Chen and Chen 2008) are developed. The MIM pro-
cedure is illustrated with the Listeria data (Boyartchuk

et al. 2001) that were analyzed by Broman (2003), using
the single-QTL methods mentioned above. Simulation
studies are carried out to compare the MIM procedure
with the single-QTL methods.

METHODS

For simplicity, we consider backcross designs without
loss of generality. Let the marker genotypes of an
interval be coded by x as follows: x ¼ 1, if both markers
are homozygous; x¼ 2, if the left one is homozygous and
the right one is heterozygous; x ¼ 3, if the left one is
heterozygous and the right one is homozygous; and x¼
4, if both markers are heterozygous. Let yi be the trait
value of individual i and xij be its genotype code on
interval j. Denote by dij the unobservable genotype of
individual i at a putative QTL on interval j, where dij¼ 1,
if the genotype is homozygous, and 0 otherwise. The
probability that dij ¼ 1 is determined by xij and rj, where
rj is the recombination fraction between the left marker
and the putative QTL of interval j. Let p(rj, xij) denote
this probability.
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The multiple-QTL mixture GLIM: Consider any m
intervals. Let di ¼ ðdi1; . . . ; dimÞ. Assume that the condi-
tional density function of yi given di is

½1� pðdiÞ�1�zi ½pðdiÞfðyi ; diÞ�zi ; ð1Þ

where zi ¼ I{yi 6¼ 0}, pðdiÞ ¼ Pðzi ¼ 1Þ, and f is the
density function of an exponential family distribution.
Then the joint density of fðyi ; diÞ; i ¼ 1; . . . ;ng is given
by

f ðy;DÞ ¼
Yn

i¼1

Ym
j¼1

pdij ðrj ; xijÞ½1� pðrj ; xijÞ�1�dij

3 ½1� pðdiÞ�1�zi ½pðdiÞfðyi ; diÞ�zi ; ð2Þ

where y ¼ ðy1; . . . ; ynÞ and D ¼ ðd1; . . . ;dnÞ. The mar-
ginal density of y is obtained by summing up the second
product over all possible values of the dij’s, which gives
rise to a mixture of 2m components of form (1).

Consider the general exponential family form of
fðyi ; diÞ,

fðyi ; diÞ ¼ exp
yiumðdiÞ � bmðumðdiÞÞ

t
1 Cðt; yiÞ

� �
;

where t is a dispersion parameter common to all i, and bm

is a monotone function related to the mean mðdiÞ of the
distribution by mðdiÞ ¼ ð@bm=@umÞðumðdiÞÞ. Let g1(m(di))
be the link function that connects mðdiÞ with a linear
predictor hmðdiÞ as hmðdiÞ ¼ g1ðmðdiÞÞ. If only the
main effects of the QTL are considered, hmðdiÞ ¼
bm0 1

Pm
j¼1 bmj dij . If epistasis effects among the

QTL are considered, hmðdiÞ ¼ bm0 1
Pm

j¼1 bmj dij 1P
1#j,k#m gmjkdijdik. Similarly, let pðdiÞ be related to a

linear predictor hp(di) through another link function g2.
The linear predictor hp has the same structure as hm.
For example, in the main-effect-only model, hpðdiÞ ¼
bp0 1

Pm
j¼1 bpj dij . A common choice for g2 is the logistic

link g2ðpÞ ¼ log p=ð1� pÞð Þ.
The mixture GLIM described above forms the basis of

the MIM procedure. For details on GLIM, the reader is
referred to McCullagh and Nelder (1989).

The EM algorithm: In the EM algorithm, the un-
observable QTL genotypes D are treated as missing data.
The pair ðD; yÞ is considered as the complete data and y
as the incomplete data. The parameters to be estimated
are bm; bp, the coefficient vectors in the two linear pre-
dictors, and r, the vector of recombination fractions, as
well as t, the dispersion parameter. The EM algorithm
alternates iteratively between an E-step and an M-step. In
an E-step, the conditional expectation of the log likeli-
hood of the complete data, E ½log f ðy;DÞ j y; b0

m;b
0
p; r

0; t0�,
is computed at the most updated values of bm;bp; r; t. In
an M-step, the conditional expectation is maximized with
respect to the parameters. Let upðdiÞ ¼ ln pðdi ;bpÞ=ð
ð1� pðdi ;bpÞÞÞ and bp(up) ¼ ln(1 1 exp(up)). The log
density of the complete data, log f ðy;DÞ, is expressed as
follows:

Lðbm;bp; r; tÞ

¼
Xn

i¼1

Xm

j¼1

½dij lnðpðrj ; xijÞÞ1 ð1� dijÞlnð1� pðrj ; xijÞÞ�

1
1

t

Xn

i¼1

zi ½yiumðdi ;bmÞ � bmðumðdi ;bmÞÞ�

1
Xn

i¼1

ziupðdi ;bpÞ � bpðupðdi ;bpÞÞ½ �

¼ L0ðrÞ1
1

t
L1ðbmÞ1 L2ðbpÞ:

Let ðk1; . . . ; kmÞ be an m-tuple with kj’s taking values 0
or 1. Define Dik1...km

¼
Qm

j¼1 Ifdij ¼ kjg. Let umk1...km
¼

umððk1; . . . ; kmÞ;bmÞ and upk1...km
¼ upððk1; . . . ; kmÞ;bpÞ.

Then L1ðbmÞ and L2ðbpÞ can be expressed as

L1ðbmÞ ¼
X
ðk1...km Þ

½umk1...km

Xn

i¼1

ziyiDik1...km � bmðumk1...km Þ
Xn

i¼1

ziDik1...km �;

L2ðbpÞ ¼
X
ðk1...km Þ

½upk1...km

Xn

i¼1

ziDik1...km � bpðupk1...km Þ
Xn

i¼1

Dik1...km �;

where the sums are taken over all possible m-tuples
ðk1; . . . ; kmÞ. The E-step thus is reduced to the compu-
tation of the conditional expectations EðDik1...km

j yÞ, and
the M-step is broken down into three separate maximi-
zation problems. For ease of notation, in what follows,
we use the same notation for Dik1...km

, dij, and their
respective conditional expectations. Since L0ðrÞ is the
sum of m sums, each of them involving a different
position parameter, the maximization of L0ðrÞ is further
broken down into m maximization problems. Each of
them can be solved easily by a grid-point search pro-
cedure. The maximization of L1ðbmÞ and L2ðbpÞ can be
carried out by two separate iterated weighted least-
squares procedures that we describe as follows.

Let xk1...km
be the row vector of the covariate values in

the linear predictors with d ¼ ðk1; . . . ; kmÞ. Let X be the
matrix obtained by stacking the xk1...km

’s one above
another in lexicographical order; i.e., the indexes
ðk1; . . . ; kmÞ are in the order (00 . . . 00), (00 . . . 01),
(00 . . . 10), ð00 . . . 11Þ; . . . , ð11 . . . 11Þ. Define WmðbmÞ
as the diagonal matrix with diagonal elements wmk1...km

given by D
½z�
k1...km

=½g 91ðmk1...km
Þ�2b$m ðumk1...km

Þ, where mk1...km
is

the mean value corresponding to d ¼ ðk1; . . . ; kmÞ,
D
½z�
k1...km

¼
Pn

i¼1 ziDik1...km
, g 91 is the first derivative of g1,

and b$m is the second derivative of bm. Define
zmðbmÞ ¼ X bm 1 vmðbmÞ, where vmðbmÞ is the vector
with its (k1 . . . km)th component given by
g 91ðmk1...km

ÞðD½zy�k1...km
=D
½z�
k1...km

� mk1...km
Þ, where D

½zy�
k1...km

¼Pn
i¼1 ziyiDik1...km

. Similarly, define WpðbpÞ and zpðbpÞ
by replacing g1; bm; bm; D½z�, and D[zy] with g2; bp;bp,
D[1], and D[z], respectively, where D

½1�
k1...km

¼
Pn

i¼1 Dik1...km
.

The M-step for updating bm and bp is then realized by
iteratively solving the following equations:

338 W. Li and Z. Chen



X 9WmðbOLD
m ÞX bNEW

m ¼ X 9WmðbOLD
m ÞzmðbOLD

m Þ;
X 9WpðbOLD

p ÞX bNEW
p ¼ X 9WpðbOLD

p ÞzpðbOLD
p Þ:

After bm is updated, the dispersion parameter t is
updated by the average squared Pearson’s residuals
associated with L1. The EM algorithm above is de-
veloped along the same line as that in Chen and Liu

(2009).
Multiple-interval mapping procedure: The MIM pro-

cedure makes use of a model selection criterion adapted
from the EBIC recently developed by Chen and Chen

(2008). For a model with m intervals, the adapted
criterion is given by

�2 ln Lðb̂m; b̂p; r̂; t̂Þ1 nm ln n 1 2 ln
M
m

� �
; 1 , n , 3;

where M is the total number of intervals under study.
The number nm is considered as the effective number of
unknown parameters in the model. For a model with m
intervals, there are m components in each of bm;bp, and
r. But bp does not play the same role as bm. Further-
more, only a portion of the data involve bm, and a
position parameter cannot be counted fully as a free
parameter in terms of its effect on the likelihood.
For example, most backcross progenies have flanking
markers that are either both homozygous or both
heterozygous. In this case, the position of a putative
QTL has little effect on the likelihood. A definite
effective number, which is in fact dependent on the
data, is difficult to determine. The n adjusts the effective
number according to the data. The choice of n should
be data dependent. In the discussion, some ad hoc rules
and an outline of a data-driven approach to the choice
of n are provided.

We use EBIC as the model selection criterion because,
as has been shown, it is consistent if the number of
covariates under consideration is of the order O(nk) for
any k where n is the sample size, but the ordinary BIC
fails to be consistent if k . 0.5 (see Chen and Chen

2008).
The MIM procedure starts with models containing

only one interval. The model with the minimum EBIC is
compared with the null model with no QTL at all. If the
minimum is smaller than the EBIC of the null model,
the interval contained in the model is selected and the
procedure continues; otherwise, it stops. At a general
step, suppose m intervals have already been selected.
Then all the models containing these m intervals plus an
additional one are assessed. The minimum EBIC of
these models is compared with that of the previous
model consisting of m intervals. If the minimum is still
smaller, the additional interval corresponding to the
minimum EBIC is selected, and the procedure contin-
ues; otherwise, it stops. In the above procedure, if
an additional interval to be added is adjacent to any
one already selected, it is skipped to avoid potential

colinearity that might cause nonconvergence of the EM
algorithm. To summarize, the procedure sequentially
adds intervals to a tentative model if the EBIC of the
model decreases. The procedure stops when the EBIC
begins to increase. The intervals contained in the final
model are taken as QTL-bearing ones.

EXAMPLE

The Listeria data of Boyartchuk et al. (2001) are
reanalyzed to illustrate the MIM procedure. The data
consist of the time to death following infection with
Listeria monocytogenes of 116 F2 mice from an intercross
between the BALB/cByJ and C57BL/6ByJ strains and
the mice’s genotypes at 133 markers on 20 chromo-
somes. The result obtained is compared with that of
the single-QTL two-part model method considered by
Broman (2003).

The single-QTL two-part model method is imple-
mented with threshold value of 4.93 for the LOD score.
This threshold value is obtained by 10,000 permutation
replicates. The intercross version of the MIM procedure
is applied with n ¼ 2.5 in EBIC. The exponential family
distribution f in the GLIM is taken as the normal
distribution.

In the following, we use [k, d] to denote a locus on
chromosome k with a genetic distance d cM from the left
end of that chromosome. The single-QTL two-part
model method detects chromosomes 1, 5, and 13 as
QTL-bearing ones. The loci at which the LOD score
attains its maximum over each of the three chromo-
somes are, respectively, [1, 81], [5, 30.9], and [13,
26.16]. The MIM procedure detects chromosome 1, 2,
5, 6, 8, and 13 as QTL-bearing ones. The detected loci in
the last step of the MIM procedure are [1, 81], [2, 3.5],
[5, 29.0], [6, 13.0], [8, 10.0], [13, 26.5], and [13, 13.05].
These results are summarized in Table 1. The loci and
the EBIC value at each step of the MIM procedure are
given in Table 2. The positions of the loci are slightly
different from step to step because they are reestimated
at each step. We cannot judge which result is better in
this example. In the next section, we evaluate these two
methods by simulation studies.

SIMULATIONS

The genetic map of the mouse genome in the exam-

ple section is used to generate the data in simulation
studies; that is, the number and lengths of chromo-
somes and the number and positions of markers on
each chromosome are kept the same as those in the
mouse genome. The genetic map is provided in sup-
porting information, File S1.

Backcross progenies are generated according to the
genetic map. In each replicate of the simulation, 5
chromosomes are randomly chosen from the first 19
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chromosomes (the 20th chromosome is ignored since
there are only two markers on it); on each of them, a
QTL location is generated at random, and then the
genotypes at these 5 QTL together with the 133 markers
of 200 backcross progenies are generated. The trait
values are generated under the assumption of no
epistasis effect. The bp is set at

bp ¼ ð1:03; 0:91; 0:75; 0:31; �0:49; �1:01Þ

and kept unchanged throughout. It is designed such
that �25% of the progenies will survive. Three settings
of bm are considered:

bm ¼ ð4:650; 1:605; 1:065; 0:585;�0:855;�1:410Þ;
bm ¼ ð3:100; 1:070; 0:710; 0:390;�0:570;�0:940Þ;
bm ¼ ð1:550; 0:535; 0:355; 0:195;�0:285;�0:470Þ:

The survival times are generated by a normal distribu-
tion with mean equal to hm and variance 1. The three bm-
values correspond to the survival time heritabilities 0.63,
0.43, and 0.16, respectively.

The 95% threshold value for the LOD is simulated as
3.35 by 10,000 replicates and used in all three settings.
The LOD scores are calculated at grid points spaced
1 cM apart. Three values of n, 1.5, 2, and 2.5, are used in
the EBIC. The MIM procedure and the single-QTL two-

part model method are applied to the same data. Their
performances are assessed by positive selection rate
(PSR) and false discovery rate (FDR). To make the
comparison fair to the single-QTL two-part model
method, we consider only whether or not a QTL-
bearing chromosome is correctly identified, since sin-
gle-QTL methods have been used mainly for this
purpose. A chromosome is claimed as a QTL-bearing
one if at least one of the selected loci falls in that
chromosome. A claimed QTL-bearing chromosome is
said to be a positive discovery if that chromosome does
contain QTL. Otherwise, it is said to be a false discovery.
The PSR and the FDR are defined as follows:

PSR ¼ Number of positive discoveries

Total number of true QTL-bearing chromosomes
;

FDR ¼ Number of false discoveries

Total number of claimed QTL-bearing chromosomes
:

The simulation results over 500 replicates are given in
Table 3. The findings are summarized as follows. With
heritability 0.63, the MIM procedure has a much higher
PSR with all the three n-values, a lower FDR when n ¼ 2
or 2.5, and a comparable FDR when n ¼ 1.5. With
heritability 0.43, the MIM procedure has higher PSR
and lower or comparable FDR when n ¼ 2 or 1.5 and
lower FDR and comparable PSR when n ¼ 2.5. We may
claim that the MIM procedure is better than the single-
QTL two-part model method when the heritability is
moderate or high. However, in the case of heritability
0.16, the single-QTL two-part model method is better
than the MIM procedure in terms of either PSR or FDR.
An explanation is given below. The heritability consid-
ered in the simulation accounts only for the nonsurvival
portion and the QTL effect on the survival proportion is
fixed. Any QTL with a heritability as low as 0.16 is hard to
detect no matter what approach is used. The fairly
sizeable PSR in this case is mainly due to the QTL effect
on the survival proportion. In the EBIC criterion of the
MIM procedure, an overpenalization arises when the
effect on the survival time is in fact negligible. This
explains why the PSR of the MIM procedure is lower in
this case. A remedy for the problem of overpenalization
is discussed in the next section.

TABLE 1

Loci (genetic distance in centimorgans from the left
end of each chromosome) indicating evidence of
QTL detected by the single-QTL two-part model

(TPM) and multiple interval-mapping
(MIM) in the example

Loci detected

Chromosome TPM MIM

1 81 81
2 — 3.5
5 30.90 29
6 — 13
8 — 10
13 26.16 13.05, 26.5

TABLE 2

The loci included and the corresponding EBIC value at each step of the MIM procedure in the example

Step Loci included EBIC

1 [13, 27] 153.02
2 [13, 26.5] [5, 28] 141.11
3 [13, 26.5] [5, 28] [1, 81] 138.78
4 [13, 26.5] [5, 28] [1, 81] [6, 14] 136.88
5 [13, 26.5] [5, 28] [1, 81] [6, 14] [2, 4] 136.74
6 [13, 26.5] [5, 29] [1, 81] [6, 14] [2, 3.5] [8, 8.5] 128.31
7 [13, 26.5] [5, 29] [1, 81] [6, 13] [2, 3.5] [8, 10] [13, 13.05] 124.48
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DISCUSSION

We have demonstrated that the MIM procedure
compares favorably with the single-QTL two-part model
method when being used to identify QTL-bearing
chromosomes. It has the further advantage of identify-
ing individual QTL with accurately estimated positions.
We discuss some further issues in this section.

In the MIM procedure considered in the previous
sections, we do not distinguish between the QTL effects
on the spike probability and on the survival time. This
might lead to an overpenalization of the EBIC if only
one type of effect exists and hence result in a reduced
power for QTL detection. The procedure can be
modified such that, when a new interval is considered,
two substeps are taken, one for the effect on the spike
probability and the other for the effect on the survival
time. Correspondingly, the term nm ln n in the EBIC is
replaced by nq ln n, where q counts the number of
parameters of the model. When a new interval is
considered, if only one type of effect is included, q
increases by 1, and if both types of effect are included, q
increases by 2.

In the simulation studies, we used different n-values in
EBIC. For smaller n, the PSR is higher but the FDR is also
higher, and vice versa. We give some ad hoc rules for the
choice of n here. First, different n-values should be used
and the results compared. It is usually the case that, if
the heritability is relatively high, the results will be
similar in a range of n-values. If this is the case, the
smallest n in this range produces the highest PSR and
comparable FDR compared with other values in the
range and should be used for a final decision. If there is
a big discrepancy among different values, the choice

should be based on the purpose of the study. If the study
is for confirmation, the FDR is a more serious concern,
and a larger n should be taken. If the study is a
preliminary step to detect regions for further investiga-
tion, a smaller n should be taken.

A data-driven approach based on the idea of model
averaging and bootstrapping can be used. The ap-
proach is outlined as follows. Starting with a moderate
n-value, a set of claimed QTL together with their
estimated effects is obtained. Then the following
bootstrap-like procedure is carried out. A random
number, say m*, is generated from a Poison distribution
with the mean as the number of claimed QTL. Then m*
loci, each on a different interval, are randomly selected
from the genetic map and assigned as QTL, the effects
of the QTL are generated using the estimated effects of
the claimed QTL, and the trait values of individuals are
generated by using the GLIM. Finally, the MIM pro-
cedure with different n-values is applied to the gener-
ated data, and the positive discoveries and false
discoveries are obtained by comparing the claimed
QTL with the assigned QTL. This process is repeated
for a large number of times. The numbers of positive
discoveries and false discoveries are averaged to provide
estimates for PSR and FDR for each of the n-values.
Then with the estimated PSR and FDR, the user can
make a choice on the basis of a balanced consideration
of PSR and FDR. A full development of the data-driven
approach in more general settings is underway, which is
beyond the scope of this article. We will report the
general data-driven approach elsewhere.

The MIM procedure has been implemented using
functions in the R package migtlm. The package will be
updated soon to include a general function for the MIM
procedure. The package can be downloaded from
www.stat.nus.edu.sg/�stachenz.
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FILE S1 
 

Multiple Interval Mapping for Quantitative Trait Loci with a Spike in the Trait Distribution  
 

Wenyun Li and Zehua Chen 
 
 

In this supporting information, we provide the genetic map used in the simulation studies of the paper.  It is the genetic map of a mouse 

genome extracted from the Listeria data of BOYARTCHUK et al. (2001). The map contains 132 markers on 20 chromosomes.  On each 

chromosome, any two adjacent markers form an interval.  The markers form a total of 112 intervals.  In the following tables, the intervals on 

each chromosome together with their lengths (in cM) and the positions of the flanking markers (indicated by genetic distance in cM from the left 

end of the chromosome) are provided.   
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TABLE S1  

The genetic map of the mouse genome in the Listeria data 

Chrom. Interval Inte-length Left-marker Right-marker 

1 1 0.99675 0.00000 0.99675 

1 2 23.85098 0.99675 24.84773 

1 3 15.56588 24.84773 40.41361 

1 4 9.58107 40.41361 49.99468 

1 5 2.80552 49.99468 52.80020 

1 6 17.31184 52.80020 70.11204 

1 7 0.69438 70.11204 70.80642 

1 8 9.81682 70.80642 80.62324 

1 9 0.77299 80.62324 81.39623 

1 10 3.53851 81.39623 84.93474 

1 11 7.74920 84.93474 92.68394 

1 12 0.95950 92.68394 93.64344 

2 1 27.94171 0.00000 27.94171 

2 2 19.16370 27.94171 47.10541 

2 3 20.15644 47.10541 67.26185 

2 4 10.13620 67.26185 77.39805 

2 5 13.45825 77.39805 90.85630 

3 1 32.47839 0.00000 32.47839 

3 2 11.45964 32.47839 43.93803 

3 3 13.65535 43.93803 57.59338 

3 4 5.59202 57.59338 63.18540 

3 5 7.65360 63.18540 70.83900 

4 1 19.16072 0.00000 19.16072 

4 2 16.16014 19.16072 35.32086 

4 3 32.78230 35.32086 68.10316 

5 1 6.10396 0.00000 6.10396 

5 2 13.11939 6.10396 19.22335 

5 3 0.32548 19.22335 19.54883 

5 4 4.16831 19.54883 23.71714 

5 5 1.78295 23.71714 25.50009 

5 6 5.39656 25.50009 30.89665 

5 7 0.00100 30.89665 30.89765 
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TABLE S2 

The genetic map of the mouse genome in the Listeria data (Cont.) 

Chrom. Interval Inte-length Left-marker Right-marker 

5 8 2.00757 30.89765 32.90522 

5 9 5.16285 32.90522 38.06807 

5 10 5.95569 8.06807 44.02376 

5 11 6.96095 44.02376 50.98471 

6 1 8.18754 10.00000 18.18754 

6 2 5.68464 18.18754 23.87218 

6 3 7.22192 23.87218 31.09410 

6 4 10.70096 31.09410 41.79506 

6 5 3.35073 41.79506 45.14579 

6 6 2.38411 45.14579 47.52990 

6 7 3.71746 47.52990 51.24736 

6 8 0.40337 51.24736 51.65073 

6 9 3.65405 51.65073 55.30478 

6 10 3.70510 55.30478 59.00988 

6 11 0.36101 59.00988 59.37089 

6 12 1.39155 59.37089 60.76244 

7 1 18.78851 0.00000 18.78851 

7 2 16.12211 18.78851 34.91062 

7 3 6.11986 34.91062 41.03048 

7 4 19.08361 41.03048 60.11409 

7 5 11.97015 60.11409 72.08424 

8 1 1.33987 0.00000 1.33987 

8 2 10.08104 1.33987 11.42091 

8 3 15.71975 11.42091 27.14066 

8 4 5.84559 27.14066 32.98625 

8 5 17.87739 32.98625 50.86364 

9 1 4.21823 0.00000 4.21823 

9 2 10.49742 4.21823 14.71565 

9 3 12.60852 14.71565 27.32417 

9 4 5.63227 27.32417 32.95644 

9 5 12.37923 32.95644 45.33567 

9 6 7.16837 45.33567 52.50404 
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TABLE S3 

The genetic map of the mouse genome in the Listeria data (Cont.) 

Chrom. Interval Inte-length Left-marker Right-marker 

10 1 24.74745 0.00000 24.74745 

10 2 15.96238 24.74745 40.70983 

10 3 8.02021 40.70983 48.73004 

10 4 12.32617 48.73004 61.05621 

11 1 15.15394 0.00000 15.15394 

11 2 11.26755 15.15394 26.42149 

11 3 12.09996 26.42149 38.52145 

11 4 3.63994 38.52145 42.16139 

11 5 22.18342 42.16139 64.34481 

12 1 6.17921 0.00000 6.17921 

12 2 15.40130 6.17921 21.58051 

12 3 7.50353 21.58051 29.08404 

12 4 12.71165 29.08404 41.79569 

12 5 12.66013 41.79569 54.45582 

13 1 0.28675 0.00000 0.28675 

13 2 10.07913 0.28675 10.36588 

13 3 2.68395 10.36588 13.04983 

13 4 0.00100 13.04983 13.05083 

13 5 5.85801 13.05083 18.90884 

13 6 2.10374 18.90884 21.01258 

13 7 3.86273 21.01258 24.87531 

13 8 1.28423 24.87531 26.15954 

13 9 2.23316 26.15954 28.39270 

13 10 0.00100 28.39270 28.39370 

13 11 7.59337 28.39370 35.98707 

14 1 23.90747 0.00000 23.90747 

14 2 8.87932 23.90747 32.78679 

14 3 12.76343 32.78679 45.55022 

15 1 13.46195 0.00000 13.46195 

15 2 5.32886 13.46195 18.79081 

15 3 0.57392 18.79081 19.36473 

15 4 4.54900 19.36473 23.91373 
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TABLE S4 

The genetic map of the mouse genome in the Listeria data (Cont.) 

Chrom. Interval Inte-length Left-marker Right-marker 

15 5 1.21277 23.91373 25.12650 

15 6 6.14957 25.12650 31.27607 

15 7 11.69600 31.27607 42.97207 

16 1 16.76684 0.00000 16.76684 

16 2 9.46451 16.76684 26.23135 

16 3 15.56766 26.23135 41.79901 

17 1 11.72823 0.00000 11.72823 

17 2 5.60704 11.72823 17.33527 

17 3 21.51280 17.33527 38.84807 

18 1 0.68560 0.00000 0.68560 

18 2 16.29826 0.68560 16.98386 

18 3 3.91604 16.98386 20.89990 

19 1 16.36398 0.00000 16.36398 

19 2 16.46537 16.36398 32.82935 

19 3 11.66497 32.82935 44.49432 

20 1 42.34593 0.00000 42.34593 

 


