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ABSTRACT

We compared the accuracies of four genomic-selection prediction methods as affected by marker
density, level of linkage disequilibrium (LD), quantitative trait locus (QTL) number, sample size, and level
of replication in populations generated from multiple inbred lines. Marker data on 42 two-row spring
barley inbred lines were used to simulate high and low LD populations from multiple inbred line crosses:
the first included many small full-sib families and the second was derived from five generations of random
mating. True breeding values (TBV) were simulated on the basis of 20 or 80 additive QTL. Methods used
to derive genomic estimated breeding values (GEBV) were random regression best linear unbiased
prediction (RR–BLUP), Bayes-B, a Bayesian shrinkage regression method, and BLUP from a mixed model
analysis using a relationship matrix calculated from marker data. Using the best methods, accuracies of
GEBV were comparable to accuracies from phenotype for predicting TBV without requiring the time and
expense of field evaluation. We identified a trade-off between a method’s ability to capture marker-QTL
LD vs. marker-based relatedness of individuals. The Bayesian shrinkage regression method primarily
captured LD, the BLUP methods captured relationships, while Bayes-B captured both. Under most of the
study scenarios, mixed-model analysis using a marker-derived relationship matrix (BLUP) was more
accurate than methods that directly estimated marker effects, suggesting that relationship information
was more valuable than LD information. When markers were in strong LD with large-effect QTL, or when
predictions were made on individuals several generations removed from the training data set, however,
the ranking of method performance was reversed and BLUP had the lowest accuracy.

WITH the advent of cheap and high-density array-
based DNA marker technologies, genomewide

dense molecular markers are becoming available for
livestock and crop species. As examples, cattle geneti-
cists have genotyping systems that provide .50,000
single nucleotide polymorphisms (SNP; VanRaden et al.
2009); the U. S. Department of Agriculture-sponsored
Barley Coordinated Agricultural Project (CAP) is de-
veloping 3000 informative SNP to be scored on 3840
elite U. S. breeding lines. Meuwissen et al. (2001)
developed a method called ‘‘genomic selection’’ to
predict breeding values using precisely this kind of
genomewide dense marker data. Marker effects are first
estimated on a training data set with marker genotypes
and trait phenotypes. Breeding value can then be
predicted for any genotyped individual in the popula-
tion using the marker-effect estimates. Simulation
studies have shown that genomic selection can lead to
high correlations between predicted and true breeding

value over several generations without repeated pheno-
typing (Meuwissen et al. 2001; Habier et al. 2007).
Therefore, genomic selection can result in lower costs
and increased rates of genetic gain.

Several statistical methods have been proposed for
analysis of the training data for genomic selection.
Meuwissen et al. (2001) and Habier et al. (2007)
compared least squares, random-regression best linear
unbiased prediction (RR–BLUP) and Bayesian methods
(Bayes-A and Bayes-B). Xu (2003) proposed a Bayesian
shrinkage approach for quantitative trait locus (QTL)
detection on the basis of the genomic-selection idea
(Meuwissen et al. 2001). ter Braak et al. (2005)
provided modifications to the Xu (2003) model to ensure
proper posterior distributions-of-effect estimates and to
better estimate QTL locations. We can regard these
Bayesian shrinkage regression methods as another form
of genomic selection when using them to predict breed-
ing values. In previous work, these genomic-selection
prediction methods have predominantly been com-
pared under a specific simulation scenario such that
their relative strengths under different conditions of
linkage disequilibrium (LD), marker density, training
data set size, and distribution of QTL effects are not
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known. Furthermore, genomic selection was pioneered
in animal breeding systems and few studies have
considered plant breeding systems. Indeed, genomic
selection in plants has been studied only for populations
derived from crosses of biparental lines (Bernardo and
Yu 2007; Piyasatian et al. 2007; Zhong and Jannink

2007). The extent and nature of LD in such popula-
tions, however, will be quite different from populations
with many founders in mutation-drift-recombination
equilibrium.

Plant breeding populations have special characteristics
relative to animal breeding populations. In particular,
plant breeders often work with full-sib families created
from crosses of inbred parents that vary in size, whereas
half-sib families from non-inbred parents are more
typical in animal breeding. Extensive LD will arise within
each family but, given differing linkage phases across
families, LD across a large set of families should represent
the underlying population-wide LD. In typical plant-
breeding practice, enough lines from a germplasm pool
will have been sampled such that associations with a
dense marker set should be consistent population-wide,
which would be particularly useful for association map-
ping or marker-assisted selection (MAS) (Yu et al. 2008).
Another characteristic of plant breeding is that the use of
inbred lines is common and breeders usually have the
ability to replicate individual genotypes over space and
time and, by averaging across replicates, can thus obtain
very accurate phenotypic measurements for a quantita-
tive trait. Given a fixed amount of resources, breeders
have the option to evaluate more individuals with lower
accuracy or fewer individuals with higher accuracy.
These characteristics might affect how genomic selection
should be carried out in crops relative to livestock.

Barley offers an excellent public-sector model for
crops because the Barley CAP and its partners have
generated .4500 SNP from expressed sequence tags.
These SNP have been scored on the ‘‘Barley CAP core,’’ a
set of 102 inbred barley lines primarily of U. S. origin. We
used this data set as a starting point to test genomic
selection for levels and structures of LD that are realistic
for a self-pollinating crop. Here, we report on the relative
performance of alternate genomic-selection prediction
methods under different conditions of marker density,
QTL effect distribution, and training data set size using
mating schemes that affected the extent of LD. We also
assessed the adequacy of the marker density that is
currently available for barley for genomic selection,
contrasting the accuracies of genomic estimated breed-
ing values (GEBV) with those that might be obtained
from phenotypic information.

MATERIALS AND METHODS

Overview: An ideal evaluation of genomic-selection estima-
tion methods would require large data sets of individuals with

known breeding values scored at high marker density. In the
absence of such data sets, we simulated them realistically on
the basis of actual barley marker data. These data encapsulate
actual LD structure upon which we can impose a genetic
model to obtain phenotypes and true breeding values.
Simulated mating designs allow generation of samples of
different sizes and levels of LD, enabling us to explore a broad
range of scenarios. In the following, we describe the original
Barley CAP core data set, the assumed genetic model, the
mating designs used to generate samples, and, finally, the
genomic-selection prediction models that were evaluated.

Germplasm and genetic map: To avoid excessive popula-
tion structure due to the historical separation between six- and
two-row barley, we worked only with data from 42 two-row
spring barley lines (see supporting information, Table S1).
The 1933-locus, 1279-cM map constructed by Peter Szucs and
Patrick Hayes on the Oregon Wolfe Barley (OWB) population
(http://www.barleycap.org/) was used as the reference map.
This map contains Diversity Array Technology (DArT) markers,
SNP, and classical markers (e.g., simple sequence repeat and
restriction enzyme fragment polymorphism markers). The
SNP genotypes were obtained from two Illumina GoldenGate
assays. One assay was described in Rostoks et al. (2006) and the
other was developed by similar methods (T. J. Close, personal
communication). Map positions of SNP and classical markers
based on other mapping populations (T. J. Close, personal
communication) were obtained from HarvEST: Barley 1.64
(http://harvest.ucr.edu/). A consensus map of DArT and
classical markers was obtained from Wenzl et al. (2006). The
following expedient approach was used to merge these maps.
First, common markers between the OWB and each of the
other two maps were identified. Per chromosome, there were
on average 77 (range: 65–97) and 69 (range: 32–94) markers in
common between the OWB and the SNP and DArT maps,
respectively. The OWB map positions were then regressed on
SNP map positions and on DArT map positions to project the
SNP and DArT maps onto OWB-predicted positions. A mark-
er’s final linkage map position was estimated as the mean of all
available OWB or OWB-predicted positions. Only markers that
had a minor allele frequency .0.1 across the 42 two-row spring
barley lines were used. This criterion resulted in the selection
of 1605 markers. Markers were then chosen so that they were at
least 0.2 or 0.75 cM apart, resulting in dense and sparse settings
of 1040 and 575 markers, respectively. In both settings, there
were 19 marker gaps .5 cM. All markers were biallelic. Given
the low rate of missing marker data (1.7%), missing marker
genotypes were randomly assigned according to their popula-
tion allele frequency.

Genetic model: All loci were biallelic with inbred genotypes
coded as 0 or 1. The number of segregating QTL affecting the
trait was set at either 20 or 80. QTL were simulated by
randomly drawing positions on the genetic map and assigning
the closest marker among the 1040 and 575 to be a QTL. One
marker allele was randomly chosen to have a positive effect
and the other to have a negative effect on the simulated trait.
QTL effect sizes were scaled according to the allele frequen-
cies to obtain variances that followed a geometric series
(Lande and Thompson 1990). The breeding value of a line
was the sum of the effects of the QTL alleles that it carried. To
obtain the phenotype, we added a normal error deviate with
variance calculated to achieve the desired heritability.

Mating designs: Using the 42 lines as a founder pool, we
simulated four mating designs by pairing inbred lines,
generating gametes according to Mendelian inheritance
assuming no crossover interference, and then by doubling
the gametes to create doubled haploid (DH) lines. These
mating designs, which are described in detail in the following
and are summarized in Table 1, produced the training data
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sets that were analyzed by genomic-selection methods to
predict breeding values of individuals in testing data sets.
Regardless of the mating design used to generate the training
data set, the testing data set was produced by one or four
generations of 500 random crosses between the DH lines of
the training data, each with one progeny.

Design 1: Training data sets of 42 families of 12 DHs (504
DHs in total) were generated using a single round-robin
design (Verhoeven et al. 2006); i.e., the lines were first
randomly ordered and then crossed as follows: line 1 3 line
2, line 2 3 line 3, . . ., line 42 3 line 1. To evaluate the effect of
increasing the training data set size, we also generated design
1–1000 data sets in which each family contained 24 DHs,
resulting in 1008 lines.

Design 2: Training data sets of 500 double haploids with
lower long-range LD than in design 1 were derived after
randomly mating the original 42 lines for five generations. The
population size during random mating was 200 individuals,
and 500 DHs were derived at random from the last generation.
Design 2–1000 data sets that contained 1000 DHs were also
created. The environmental variance for these designs was set
such that the heritability was 0.4 for the original 42 lines.

Designs 3 and 4: Designs 3 and 4 were similar to designs 1
and 2, respectively, but had one-third as many DHs. Assuming
a fixed number of plots to grow plants, this would allow for
increased replication. A heritability of 0.67 was used to
simulate phenotypes for each DH, given that we had one-
third the number of DH lines and therefore could afford three
times more replicates relative to designs 1 and 2.

Linkage disequilibrium measures: Markers with minor
allele frequency .0.2 in the Barley CAP core were used to
estimate the extent of LD between all pairs of markers within
100 cM in all chromosomes. The LD was computed as the
squared correlation between alleles at two markers: r̂ ¼
D2

ij=ðpið1� piÞpjð1� pjÞ (Hill and Robertson 1968), where
Dij ¼ pij � pipj and pij, pi, and pj are the frequencies of
haplotype ij and allele i at one locus and allele j at the other
locus.

Statistical models: Four genomic-selection prediction
methods were used for analysis of each training data set. Two
were as described by Meuwissen et al. (2001): RR–BLUP and
Bayes-B. RR–BLUP assumed that each marker had variance
equal to VG/M, where VG is the genetic variance and M is the
number of markers. In the Bayes-B approach, the prior for the
proportion of markers associated with zero phenotypic vari-
ance, p, was assumed known. We evaluated two values, p ¼
(M � 80)/M (denoted Bayes-B1) and p ¼ (M � 150)/M
(denoted Bayes-B2). Other prior hyperparameters for marker
variance components were the same between Bayes-B1 and
Bayes-B2 and were as given in Meuwissen et al. (2001). The
third statistical method was based on ter Braak et al.’s (2005)
improvements to the Bayesian shrinkage regression method
developed by Xu (2003), which shrinks small effects toward zero
(denoted ‘‘Xu2003’’). In the fourth method, markers were used

only to estimate the relationship between lines. First, a marker-
based relationship matrix, A ¼ XX 9=

P
k pkð1� pkÞ, was calcu-

lated, where X is the DH line by marker matrix of marker scores,
the summation is over all markers, and pk is the allele frequency
at marker k in the training data set (Habier et al. 2007;
VanRaden and Tooker 2007). To ensure a positive definite
matrix, A* ¼ A 1 10�6I was used in calculations (I is the
identity matrix). The heritability used to solve the mixed model
equations was set at the simulated heritability. To obtain
breeding value estimates for the testing data set, A was
calculated across the DH lines from both training and testing
sets. Because this method uses an estimate of the realized A
matrix, we called it the RA–BLUP method.

In some cases, although the QTL were not identified, their
genotypes were included along with all other markers in the
analysis. We contrast these ‘‘observed’’ QTL cases to more
typical ‘‘unobserved’’ QTL cases. For each mating design and
marker density scenario, 30–50 replicates were simulated and
analyzed using the four methods. After each analysis, the
predicted breeding values of the testing data set sample were
correlated with their known true breeding values. This pre-
diction accuracy was used as the performance criterion for the
methods.

RESULTS

Extent of LD in two-row barley founders: Despite
avoiding structure due to the division between two- and
six-row barley, many instances of long-range LD re-
mained among the 42 founders (Figure 1A), in agree-
ment with previous studies in barley (Kraakman et al.
2004; Rostoks et al. 2006). Even though high long-
range LD occurred, LD at short range was low, averaging
about r̂ 2 ¼ 0.25 for markers ,0.25 cM apart. The single
round-robin mating of design 1 removed high LD (r̂ 2 .

0.4) at distances .30 cM (Figure 1B), although moder-
ate LD (r̂ 2 . 0.2) still occasionally extended to 100 cM.
After the five rounds of random mating as in design 2,
moderate LD occurred only up to distances of �15 cM
(Figure 1C). Design 2 also eliminated long-distance LD
greater than an r̂ 2 of 0.1. Thus, as expected, recombi-
nation in designs 1 and 2 greatly reduced long-distance
LD but had little effect on LD at distances ,2 cM
(Figure 1). If we assume that LD between marker pairs
approximates LD between markers and QTL, the
marker density of �1/cM available for this study would
often lead QTL to be only in low LD with any marker: for
example, for QTL within 0.5 cM of a marker, the r̂ 2 was

TABLE 1

Mating designs used to simulate training data sets from 42 inbred founders

Design 1 Design 2 Design 3 Design 4 Design 1–1000 Design 2–1000

Generations of mating 1 5 1 5 1 5
Mating structure Round Random Round Random Round Random
No. of families 42 500 42 168 42 1000
No. of DH per family 12 1 4 1 12 1
No. of lines 504 500 168 168 1008 1000
Heritability 0.4 0.4 0.67 0.67 0.4 0.4
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.0.6 only about one-fourth of the time among the
original 42 lines.

Prediction accuracy using genomic selection: Pre-
diction accuracy—that is, the correlation between the
breeding values predicted by genomic selection and the
true values known from simulation—ranged from 0.35
to 0.85 across the different scenarios analyzed (Figure
2). When the causal SNPs were observed and QTL
effects were large, the Xu2003 method gave the best and
the RR–BLUP the worst predictions (Figure 2B for 20
QTL). The performance of the Xu2003 method,
however, declined sharply either when QTL effects were
small (Figure 2B for 80 QTL) or when QTL genotypes
were not observed (Figure 2, A, C, and D). In almost all

scenarios, Bayes-B2, with a higher prior proportion of
non-zero markers, outperformed Bayes-B1 (Figure 2);
they performed equally only when there were 20 QTL
and the causal SNPs were observed (Figure 2B). In
almost all scenarios, predictions were better when LD
was high (designs 1 and 3, Figure 2) than when it was low
(designs 2 and 4, Figure 2), the sole exception being the
scenario with 20 observed QTL. Predictions were more
accurate in the dense than in the sparse marker
scenarios (Figure 2A vs. Figure 2C), an effect that was
accentuated under low as compared to high LD (design
2 vs. design 1 in Figure 2, B and C). The change in
marker density did not, however, much affect the
relative performance of the different analysis methods.
Relative performance also changed little as a result of
changes in the extent of LD (design 2 vs. design 1),
although the Xu2003 method suffered the most from a
decrease in LD, while the BLUP methods suffered the
least throughout. The BLUP and Bayes-B methods
performed similarly in all scenarios where causal SNPs
were not observed. Conditions that favored BLUP over
Bayes-B were when there were more QTL in the genetic
model (i.e., 80 vs. 20 QTL, for example, in Figure 2B)
and when the trait had higher heritability (i.e., h2¼ 0.67
in designs 3 and 4 vs. h2 ¼ 0.40 in designs 1 and 2).
Finally, predictions were generally more accurate for
designs 3 and 4, where fewer lines were phenotyped with
more replication, than for designs 1 and 2, where more
lines were phenotyped with less replication (Figure 2C
vs. Figure 2D).

When the testing data set resulted from four gener-
ations of random mating, starting from training DH
lines, prediction accuracies were usually much lower
than after a single generation (Figure 3 vs. Figure 2).
The exception was for the Bayes-B and Xu2003 methods
in the scenario of 20 observed QTL (Figure 3B), where
accuracies declined only by 0.03–0.09. When 20 un-
observed QTL were simulated, the accuracy of the
Xu2003 method was greater under design 2 than under
design 1, while for all other methods the accuracy was
lower, although the decline in accuracy was less for the
Bayes-B than for the BLUP methods. In contrast, when
80 QTL were simulated, declines in accuracy as a result
of decreased LD in design 2 compared to design 1 were
similar across all methods (Figure 3, A, C, and D). An
exception was when 80 QTL were observed: in that case,
the decrease in LD increased the accuracies of the
Bayes-B and Xu2003 methods, while it decreased the
accuracies of the BLUP methods (Figure 3B).

The accuracy of all methods benefitted from doubling
the size of the training data sets (Figure 4). When QTL
were not observed, the benefit to increasing sample size
was small, amounting to an increase in accuracy on the
order of 0.03–0.06 (Figure 4A). When the QTL were
observed, the increase in accuracy due to increased
sample size could be ordered as follows: Xu2003 . Bayes-
B1 ¼ Bayes-B2 . RA-BLUP . RR-BLUP (Figure 4B).

Figure 1.—Decline of LD as measured by r̂ 2 against dis-
tance in centimorgans for all markers with minor allele fre-
quency .0.2 (858 markers in total). (A–C) r̂ 2 in the
original 42 lines, design 1 and design 2, respectively. Gray
lines are smoothed running averages.
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These same trends could be detected when the QTL
were not observed, but they were much weaker (Figure
4A). Differences between methods in the effect of
increasing size of the training data were small but great
enough to cause some rank change in performance of
the methods in selected scenarios.

DISCUSSION

Extent of LD: Long-range LD was much greater in
our sample of two-row barley than has been observed in
animal breeding populations (e.g., Zenger et al. 2007).
Results showing high long-distance LD should not be
surprising for this sample of two-row barley because it
contains not only North American but also some
European and Australian lines. A decline in LD due to
intermating in designs 1 and 2 was expected and
generated a useful gradient of LD conditions upon
which to evaluate the analysis methods. For example,
independent of the analysis method, there was a clear
interaction between the extent of LD and marker
density: at high density, the lower LD of design 2 than
design 1 caused a small drop in prediction accuracy
(Figure 2A), but at low density this drop was substantial
(Figure 2C). This observation underscores the impor-
tance of knowing the extent of LD in determining
requisite marker densities.

Comparison to phenotypic selection: The baseline
accuracy to which these methods should be compared is
phenotypic selection. For the sake of simplicity, we
assume phenotypes are analyzed without taking advan-
tage of pedigree information. We therefore understate
somewhat the accuracy of analyses based solely on
phenotype. The correlation of mid-parent to single
offspring is the square root of 0.5 times heritability,ffiffiffiffiffiffiffiffiffi

1
2 h2

r
(Falconer and Mackay 1996). For h2¼ 0.4 (designs

1 and 2), that equals 0.45. Thus, all methods of genomic
selection out-performed phenotypic selection, except
the Xu2003 method on design 2 (Figure 2, A and C).
Assuming 80 unobserved QTL, the best method of
analysis, RA–BLUP, provided accuracies that would be
equal to phenotypic selection with heritabilities of 0.77
and 0.64 for designs 1 and 2, respectively. The accuracy
of the phenotype itself as a predictor of breeding value is
the square root of the heritability, h ¼ 0.63. No method
of genomic selection exceeded that baseline, but RA–
BLUP reached accuracies of 0.62 and 0.56 for designs 1
and 2, thus coming close without requiring the expense
and time of phenotyping the lines. For designs 3 and 4,
where

ffiffiffiffiffiffiffiffiffi
1
2 h2

r
¼ 0:58, only the RA–BLUP method consis-

tently outperformed this baseline under sparse markers
(Figure 2D), but under dense markers, Bayes-B2 did so
also (data not shown). Assuming 80 unobserved QTL,
RA–BLUP provided accuracies that would be equal to
phenotypic selection with a heritability of 0.86 for

Figure 2.—Correlation between simulated and predicted breeding values in individuals derived from one generation of ran-
domly mating the training population (accuracy). (A and B) Analyses with dense markers. (C and D) Analyses with sparse markers.
(B) Results with observed QTL. (A, C, and D) Results with unobserved QTL. The standard error for each point is small (,0.002)
and is not shown. Note that the y-axis scale for B is different from that for A, C, and D.
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design 3 and 0.75 for design 4. The accuracy of the
progeny line phenotype itself would be h ¼ 0.82 for
designs 3 and 4, whereas RA–BLUP achieved accuracies
of 0.66 and 0.61, respectively. As in many other studies,
we find that the benefits of MAS are greater for traits of
lower heritability (Lande and Thompson 1990). We also
note that our assumption here was of limited resources
with which to phenotype the training population;
hence, under designs 3 and 4, sample size was sacrificed
to obtain higher heritability, a situation that also favors
phenotypic selection relative to MAS (Knapp and
Bridges 1990; Moreau et al. 1999).

Genomic-selection prediction method comparison:
We suggest that a general interpretive scheme, taken
from Habier et al. (2007), explains many of the patterns
of the relative performance of the methods. This
scheme describes a trade-off that exists between a
method’s prediction accuracy when marker-associated
effects are strong (e.g., when few loci of large effect
segregate and LD is high) vs. when they are weak (e.g.,
when many loci of small effect segregate and LD is low).
The analysis methods can be ordered according to this
trade-off from the method that is best when marker-
associated effects are strong to the method that is best
when effects are weak: Xu2003, Bayes-B1, Bayes-B2, RR–
BLUP ¼ RA–BLUP. In our analyses, the most obvious
observation that this trade-off explains was the switch in
method performance between the scenario of 20
observed QTL, where marker-associated effects were
strong, and all other cases in which QTL were not

observed and marker effects were weaker (Figure 2).
Similarly, in the comparison between scenarios with 20
vs. 80 QTL, going from stronger to weaker marker
effects, the Bayes-B and Xu2003 methods always lost
more accuracy than the BLUP methods (Figure 2).
Given this interpretive scheme, we would expect that the
Bayes-B and Xu2003 methods would also suffer more
than the BLUP methods from the lower LD in design 2
compared to design 1 when QTL were not observed. We
did not see this effect (Figure 2, A, C, and D), but Figure
2B, where QTL are observed, suggests a possible
explanation. Here, when 20 QTL were simulated, the
lower LD of design 2 compared to design 1 benefited
the Bayes-B and Xu2003 methods but hindered the
BLUP methods. Lower LD means lower collinearity
between markers. Collinearity hampers the ability of the
regression methods to identify QTL ( Jansen 2007), and
collinearity reduction is a strength of the ridge re-
gression approaches (Whittaker et al. 2000) used by
the BLUP methods. Thus, for the Bayes-B and Xu2003
methods, when LD decreases, the disadvantage of
weaker marker signals may be compensated by the
advantage of lower collinearity between markers. While
this collinearity reasoning seems to explain observed
accuracies when 20 observed QTL were simulated, it
fails when 80 observed QTL were simulated. We do not
have a good explanation for this behavior of the
methods and surmise that for the Bayes-B and Xu2003
methods the optimal level of collinearity or LD may
depend on the marker-effect sizes. That is, when QTL

Figure 3.—Same as for Figure 2, but predictions are for individuals derived from four generations of randomly mating the
training population.
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effects are very small, it may require some collinearity
between them to capture their effects at all.

When marker effects are weak, they may be so poorly
estimated that improved accuracies may be obtained by
assuming that genetic effects are evenly distributed over
the genome and then by using markers simply to
estimate the fraction of the genome shared between
individuals. This fraction is the coefficient of coancestry
between individuals, again suggesting that when associ-
ated effects are weak, markers may best be used to
estimate genetic relationships. Goddard (2008) has
shown that the RR–BLUP and RA–BLUP methods are
statistically equivalent. This equivalence depends on
assumptions surrounding the variance of marker ef-
fects. In our implementation of RA–BLUP, we set the
genetic variance at the simulated variance, VG. In our
implementation of RR–BLUP, we set the marker vari-
ance at VG/M (Meuwissen et al. 2001), but Habier

et al. (2007) have shown that the correct value should
be VG=

P
k pkð1� pkÞ [we omit a factor of 2 on the

summation relative to Habier et al. (2007) because we
are dealing here essentially with haploid individuals].
The differences that we saw between RR–BLUP and RA–
BLUP (RA–BLUP outperformed RR–BLUP in almost
all instances; Figure 4) may be due to this choice of
marker variance. While there is consistency between
Habier et al. (2007) and Goddard (2008) in their
emphasis on the role that genetic relationship informa-
tion plays in the RR–BLUP analysis, there is also an
apparent paradox: Habier et al. (2007) demonstrate
that a substantial fraction of the accuracy of RR–BLUP is
due to LD between markers and QTL (their Table 4), yet
Goddard (2008) shows that the RR–BLUP analysis is
equivalent to an analysis (that we have termed RA–
BLUP) in which there are no explicit marker effects at
all. In RA–BLUP, marker effects enter implicitly: the
marker-based relationship matrix can be thought of as
an average of relationship matrices based on single
markers. When markers in LD with QTL contribute to
that average, they also contribute to the method’s

‘‘accuracy due to LD.’’ Our conclusion is that the
dichotomy between the contributions ‘‘due to LD’’ vs.
those ‘‘due to genetic relationship’’ is useful for consid-
ering the strengths of different methods, but that the
two contributions are quite confounded in practice.

Especially at low LD, evaluating fewer individuals
more extensively improved prediction accuracy when
the test population was one generation removed from
the training population (contrast Figure 2C with Figure
2D) but not when it was four generations removed
(contrast Figure 3C with Figure 3D). It is well known
that improvements in capturing QTL effects through
LD can be obtained by allocating observations to more
genotypes vs. to replications of fewer genotypes (Knapp

and Bridges 1990). The improvement in accuracy
apparent in designs 3 and 4 relative to designs 1 and 2
in Figure 2 must therefore have come from improve-
ments in the accuracy of the contribution of the genetic
relationship to the prediction due to the greater
heritability of observations in designs 3 and 4. When
the testing population was only distantly related to the
training population as in Figure 3, however, this
contribution of genetic relationship was much reduced.

The trade-off between the ability to capture strong
marker effects vs. genetic relationships is not absolute.
For example, Bayes-B2 and Bayes-B1 were essentially
equal in their ability to capture the strong specific locus
signals of 20 observed QTL (Figure 2B), but in all other
cases where locus effects were weaker, Bayes-B2 was
superior to Bayes-B1 (Figure 2). The superiority of
Bayes-B2 over Bayes-B1 in estimating genetic relation-
ships came from the fact that it fit more markers in the
model because its prior proportion of markers associ-
ated with non-zero variance was higher. Habier et al.
(2007) also found the number of markers fitted to be
important. The Xu2003 method was least able to
capture genetic relationships even though, just as for
RR–BLUP, it maintains all markers in the model. The
Xu2003 model, however, severely shrinks the effects of
markers that are only weakly related with the pheno-

Figure 4.—Prediction accuracy in individuals derived from one generation of random mating with different population sizes
under sparse markers with 80 QTL. All scenarios are under the 80 QTL setting. (A) Results with unobserved QTL. (B) Results with
observed QTL. Note that the y-axis scale for A is different from that for B.
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types, such that their weight in estimating genetic
relationships is practically null. It may be possible to
implement a model intermediate between the severe
shrinkage of Xu2003 and the uniform shrinkage of RR–
or RA–BLUP, for example, by adding a polygenic effect
to the Xu2003 model. We purposely suggest the
combination of the two models that appear most
different according to our simulations because other-
wise there will be confounding between model compo-
nents. For example, adding a polygenic effect to a
model that resembled the Bayes-B described here hardly
affected prediction accuracy (Calus and Veerkamp

2007). This lack of improvement from the polygenic
effect may have been because the Bayes-B method used
by Calus and Veerkamp (2007) fit a sufficient number
of markers to adequately capitalize on genetic relation-
ships in the absence of a polygenic term.

Prediction accuracy after random mating and with
large training data sets: Our hypotheses concerning the
interplay between the ability to capture large marker
effects, collinearity between markers, and the ability to
estimate relatedness among individuals were further
explored by assessing model accuracy after four gen-
erations of random mating (Figure 3). First, we would
predict that methods that capture strong marker-
associated effects would maintain greater accuracy,
despite generations of random mating between the
training and testing data sets (Habier et al. 2007). This
prediction is most obviously borne out by the scenario in
which 20 observed QTL were simulated. Here the Bayes-
B and Xu2003 methods retained accuracies almost as
high after four (Figure 3B) as after one round of
random mating (Figure 2B). The effect of capturing
specific marker effects is also visible, although to a much
lesser extent, from the scenario with 20 unobserved
QTL. In that scenario, after four generations of random
mating, Bayes-B2 out-performed RA–BLUP for all
mating designs and for dense or sparse markers (Figure
3), although it underperformed RA–BLUP after one
generation of mating (Figure 2). In the scenario of 80
unobserved QTL, the BLUP methods retained their
slight superiority over the Bayes-B methods, even after
random mating. We assume here that with 80 QTL,
effect sizes were small enough that they were poorly
estimated and prediction accuracy was due primarily to
the use of information on genetic relatedness. In this
case, a further indication that genetic relatedness in-
formation contributed more than strong marker-associated
effects to accuracy for all methods is that all methods
responded similarly to the decrease in LD in designs
2 and 4 relative to designs 1 and 3 (Figure 3, A, C, and
D). It may be puzzling that a genomic-selection pre-
diction method such as RA–BLUP that relies strictly on
genetic relatedness information should decline in
accuracy with decreasing LD. After all, whether LD is
high or low, the same number of markers are used to
estimate coancestry. But when LD is high, each marker

in some sense represents a larger segment of the
genome and therefore contains a greater amount of
the required information.

A final illustration of the idea that the BLUP methods
relied on genetic relatedness information in the
markers, while the Bayes-B and Xu2003 methods relied
on capturing QTL effects associated with markers,
comes from simulations in which sample sizes were
doubled from 500 to 1000 (Figure 4). We predict that
the Bayes-B and Xu2003 methods would benefit more
from expanded sample size than the BLUP methods
because greater size would improve estimates of specific
marker effects. In contrast, as a pedigree extends,
average genetic relatedness diminishes and increases
in homogeneity so that the informativeness of knowing
a relationship decreases. This prediction is particularly
well supported by results for design 2 under observed
QTL, and to a lesser extent from results across all
scenarios (Figure 4). Small sample size was also a likely
cause of the superiority of the BLUP methods in designs
3 and 4, where the training data set contained only 168
observations (Figure 2D). In contrast to our results,
Meuwissen et al. (2001) found that accuracy increased
more rapidly with training data set size for RR–BLUP
than for Bayes-B. In their study, however, Bayes-B
accuracy was already quite high at the lowest data-set
size so the extent to which it could increase was limited.

We hypothesize that the difference in the effect of
sample size between the BLUP vs. the Bayes-B and Xu2003
methods would have been stronger, were it not for the
fact that our founder population consisted of only 42
individuals. For design 1, the testing sample was just two
generations removed from the founders, and increased
sample size allowed the breeding values of those founders
to be estimated more accurately; the small founder
number prevented relationship information from dissi-
pating over a large pedigree. In all scenarios, we found
that the divergence in the effect of sample size on the
BLUP vs. the Bayes-B and Xu2003 methods was greater
under design 2 than under design 1. This observation is
consistent with the notion that large sample size will be
more important for Bayes-B and Xu2003 relative to BLUP
only when the effective population size is also large.

In terms of assessing the relative performance of the
different methods, the frequent occurrence of high
long-range LD in crops may be a hindrance to the Bayes-
B and Xu2003 methods more so than in livestock and
also more so than to the BLUP methods. Finally, the
distinction between LD and relationship sources of
accuracy (Habier et al. 2007) and the recognition of
the equivalence of RR– and RA–BLUP methods are
powerful guides for predicting what circumstances may
favor the different genomic-selection prediction meth-
ods currently available.

Implications for genomic selection in the public
sector: Even at the relatively low marker densities
investigated here, accuracies from the best genomic-
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selection methods were comparable to accuracies from
phenotypic selection. Nevertheless, at these low densi-
ties, predictions relied primarily on marker information
to model genetic relationships between the training and
testing data sets, rather than on markers capturing QTL
effects by association. The relatively low mean r2

between markers at the average marker interval (aver-
age r2 � 0.25) suggests that an important fraction of
QTL will not be in strong LD with a marker. The general
superiority of the BLUP methods in our simulations
further supports this conclusion.

We have used a simple additive model and thus did
not address questions of QTL interactions with envi-
ronment (G 3 E) or with genetic background (G 3 G).
Such interactions should hamper accurate estimation of
marker effects and therefore decrease GEBV accuracies,
but they should also decrease the accuracy of the
phenotype as an indicator of breeding value. In fact,
genomic selection may have advantages in the presence
of interactions. With regard to G 3 E, allele effects can
be assayed over years and locations more easily than line
effects and thus should have effect estimates closer to
their expectations in the target population of environ-
ments (Heffner et al. 2009). In the presence of G 3 G,
genomic selection should estimate the additive compo-
nent of an allele’s effect as an average weighted by the
frequencies of genetic backgrounds. The GEBV could
therefore be a better indicator of breeding value than
even a well-replicated line phenotype that deviates from
breeding value because of gene interactions.

We have performed these simulations on the basis of
two-row spring barley combined from several breeding
programs. Separate analyses should be performed for
other barley populations and other crops. To guide
intuition on how these results might relate to prospects
in specific barley breeding programs, we note that high
LD increases the accuracy of genomic selection (e.g., the
contrast between designs 1 and 2). In the Barley CAP
germplasm, LD is generally higher in six- than in two-
row spring barley, and LD is also higher within single
breeding programs than in populations combining
programs (M. T. Hamblin, unpublished results). These
LD patterns suggest that genomic selection should also
perform well in six-row barley and within breeding
programs. Nevertheless, in the next couple of years, as
public sector programs experiment with genomic selec-
tion empirically, it seems likely that marker densities will
be low relative to the extent of linkage disequilibrium
(as for the conditions simulated in this study), and
sample sizes will be restricted by genotyping costs. This
study shows that these conditions favor genomic-selection
methods that effectively use genetic relationship in-
formation in markers, in particular the BLUP methods.
Conversely, we predict that, as genotyping costs drop
and marker densities rise, it will become increasingly
possible to genotype many experimental lines that have
been phenotyped with only low levels of replication.

Under those conditions, marker-QTL LD will become a
more important component of genomic-selection accu-
racy, and large sample sizes will compensate for high
error variation in phenotypic evaluations.
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TABLE S1 

Two-row spring barley lines used in this study 

No. Name No. Name No. Name No. Name 

1 B1202 12 CDC Copeland 23 Flagship 34 Newdale 

2 2B96-5038 13 CDC Kendall 24 Franklin 35 Orca 

3 2B98-5312 14 CDC Stratus 25 Garnett 36 Pasadena 

4 AC Metcalfe 15 CIho 4196 26 Geraldine 37 Radiant 

5 Arapiles 16 Collins 27 Harrington 

6 B1215 17 Conlon 28 Haxby 

38 Rawson (ND19119-2) 

7 Baronesse 18 Conrad 29 Hays 39 Scarlett 

8 BCD47 19 Craft 30 Hockett 40 Shenmai 3 

9 Bowman 20 Crest 31 Klages 41 Sublette 

10 C-14 21 Eslick 32 Merit 42 TR306 

11 Canela 22 Farmington 33 ND21863   

 


