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ABSTRACT

Expression quantitative trait loci (eQTL) mapping concerns finding genomic variation to elucidate
variation of expression traits. This problem poses significant challenges due to high dimensionality of both
the gene expression and the genomic marker data. We propose a multivariate response regression approach
with simultaneous variable selection and dimension reduction for the eQTL mapping problem. Transcripts
with similar expression are clustered into groups, and their expression profiles are viewed as a multivariate
response. Then, we employ our recently developed sparse partial least-squares regression methodology to
select markers associated with each cluster of genes. We demonstrate with extensive simulations that our
eQTL mapping with multivariate response sparse partial least-squares regression (M-SPLS eQTL) method
overcomes the issue of multiple transcript- or marker-specific analyses, thereby avoiding potential elevation
of type I error. Additionally, joint analysis of multiple transcripts by multivariate response regression
increases power for detecting weak linkages. We illustrate that M-SPLS eQTL compares competitively with
other approaches and has a number of significant advantages, including the ability to handle highly
correlated genotype data and computational efficiency. We provide an application of this methodology to a
mouse data set concerning obesity and diabetes.

EXPRESSION quantitative trait loci (eQTL) map-
ping is a genetic mapping of genomewide gene

expression. It combines traditional quantitative trait
mapping and microarray technology. eQTL mapping
provides an opportunity to investigate a large and
unbiased set of traits that are immediately connected to
DNA sequence variation; thereby it enables the study of
gene networks. eQTL mapping studies have been ap-
plied in several model organisms and humans (Brem

et al. 2002; Schadt et al. 2003; Morley et al. 2004;
Chesler et al. 2005; Stranger et al. 2005; Wang et al.
2006). These studies have demonstrated several advan-
tages of this line of research, from identifying candidate
genes (Schadt et al. 2003) to elucidating regulatory
networks (Brem et al. 2002; Schadt et al. 2003; Yvert

et al. 2003).
Typical eQTL studies involve an N 3 G matrix of gene

expression, where rows are different individuals (e.g.,
mice, in the order of tens) and columns are transcripts
(in the order of thousands), and an N 3 p matrix (Xp)
with genomic marker (in the order of hundreds or
more) information. eQTL analysis differs from tradi-
tional quantitative trait loci (QTL) analysis in the

number of traits considered. We refer to Kendziorski

and Wang (2006) for a comprehensive review of general
statistical issues concerning eQTL studies. Initial meth-
ods for eQTL mapping can be grouped into two
(Kendziorski et al. 2006): (1) transcript-specific analy-
sis in which mapping of a single expression trait is
considered at a time and the entire analysis consists of
thousands of transcript-specific analyses and (2) marker-
specific analysis in which differentially expressed tran-
scripts are identified at a single marker (by considering a
marker genotype as a treatment) and the complete
analysis requires scanning for all the markers. Both
approaches are multiple applications of traditional
methods (QTL mapping and identification of differen-
tially expressed transcripts) and are prone to elevation
of the false positive rate. Moreover, these approaches
analyze data disjointly, either at the transcript or the
marker level, leading to loss of power.

Mapping methods based on a notion of meta-
transcript, which combine multiple similarly behaving
transcripts by clustering or principal components anal-
ysis of genomewide gene expression data (Lan et al.
2003; Yvert et al. 2003), are viable approaches for
reducing the number of tests and improving the power
of linkage detection. However, these methods do not
produce transcript-specific information because identi-
fied markers associate with a meta-transcript and not
with individual transcripts.
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Recent efforts for eQTL analysis focus on combined
analysis of all the transcript and marker data by
collapsing the aforementioned approaches 1 and 2.
The mixture over markers (MOM) model of Kendziorski

et al. (2006) is the first approach to facilitate informa-
tion sharing across transcripts by an empirical Bayes
method. It identifies transcripts that map to at least one
marker (mapping transcripts) and then characterizes
one or more markers per mapping transcript by
utilizing transcript-specific highest posterior density
regions. Recently, Gelfond et al. (2007) improved on
the MOM model by utilizing genomic locations of the
transcripts. To identify mapping transcripts and related
eQTL simultaneously, Jia and Xu (2007) proposed a
shrinkage analysis through a Bayesian hierarchical
model called BAYES. This approach treats eQTL map-
ping in a variable selection context, where expression
values of transcripts are modeled by linear functions of
markers and variable selection is promoted by a special
prior distribution specification, namely, the spike and
slab distribution (Mitchell and Beauchamp 1988), on
regression coefficients. When fitting transcript-level
regression models, BAYES uses all the transcripts and
markers simultaneously to achieve better power in
detecting linkages. These transcript-level regression
models share the same set of prior distributions. Al-
though BAYES is flexible enough to map multiple
markers per transcript, it is highly parametric, relies on
prior specifications, and requires intense computations.
Furthermore, properties of BAYES when markers are
highly correlated are not studied. This is an important
practical challenge because markers in close proximity
are often highly correlated due to linkage disequilib-
rium (LD). These high correlations may hamper the
performance of variable selection schemes that do not
explicitly accommodate such a grouping structure.

In this article, we propose a multivariate response
regression framework, named eQTL mapping with
multivariate response sparse partial least-squares regres-
sion (M-SPLS eQTL). We utilize sparse partial least-
squares (SPLS) regression (Chun and Kelesx 2007), a
novel statistical methodology for multivariate response
regression with built-in dimension reduction and vari-
able selection. Such a formulation is motivated by the
apparent power advantages of multiple phenotype
modeling observed in traditional multitrait QTL map-
ping ( Jiang and Zeng 1995; Allison et al. 1998). It aims
to capitalize on correlations between multiple tran-
scripts while simultaneously dealing with all the
markers. Recent computational models of eQTL map-
ping in the yeast Saccharomyces cerevisiae suggest that
most eQTL have weak effects and that half of transcripts
require more than five loci (markers) under additive
models (Brem and Kruglyak 2005). This study further
elucidated the importance of joint analysis of the
multiple transcripts and markers to boost weak linkage
signals. In our approach, we cluster genes into groups on

the basis of their expression similarity. This helps us to
view the expression values within a cluster as a multivar-
iate response. Then, we form a cluster-level multivariate
response regression and employ SPLS regression to
identify markers affecting all or a subgroup of genes
within the cluster. In the next two sections, we review
underlying principles of the SPLS regression by focusing
on aspects important to our application and describe our
method in detail. In the simulation studies section, we
study the operating characteristics of our approach and
compare it to other approaches. We show that the
proposed framework has excellent power and very small
type-I error and significantly outperforms its univariate
counterpart. In the case study: application to mouse

data from a study of obesity and diabetes section,
we illustrate our approach with a mouse data set of
obesity and diabetes research (Lan et al. 2006) and then
discuss potential extensions.

eQTL MAPPING WITH MULTIVARIATE
SPLS REGRESSION

SPLS regression: Partial least-squares (PLS) regres-
sion has been an alternative to ordinary least squares
(OLS) regression in ill-conditioned linear regression
models that arise in several disciplines such as chemistry,
economics, psychology, and pharmaceutical science (De

Jong 1993). At the core of PLS regression is a dimension
reduction technique that operates under the assump-
tion of a basic latent decomposition of a response matrix
ðY 2 RN 3qÞ and a predictor matrix ðX 2 RN 3pÞ,

Y ¼ TQ T 1 F ; and X ¼ TP T 1 E ;

where T 2 RN 3K is a matrix that produces K linear
combinations (scores), P 2 Rp3K and Q 2 Rq3K are
matrices of coefficients (loadings), and E 2 RN 3p and
F 2 RN 3q are matrices of random errors.

To specify the latent component matrix T such that
T ¼ XW, PLS requires finding the columns of W ¼ (w1,
w2, . . . , wK) from successive optimization problems. The
criterion for the kth estimated direction vector ŵk is
formulated as

ŵk ¼ argmaxwwT X T YY T Xw

s:t:wT w ¼ 1; wT SXX ŵj ¼ 0; ð1Þ

for j ¼ 1, . . . , k � 1, where SXX is the sample covariance
matrix of X. After estimating the latent components (T ),
loadings (Q) are estimated via OLS for the model
Y ¼ TQT 1 F. bPLS is estimated by b̂

PLS ¼ ŴQ̂T, where Ŵ
and Q̂ are estimates of W and Q, since Y ¼ XWQT 1 F ¼
XbPLS 1 F.

In Chun and Kelesx (2007), we investigated theoret-
ical properties of PLS regression and showed that
although it had been traditionally promoted for
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regression problems with a large number of variables, it
suffers from the curse of dimensionality in the contem-
porary large p, small N setting. To address this, we
developed a sparse PLS regression that aims to promote
sparsity by imposing an L1 penalty onto the direction
vector of PLS. The SPLS objective function is given by

min
a;w
� kaT Ma 1 ð1� kÞðw � aÞT M ðw � aÞ1 l1jwj1 1 l2 jwj22

s:t:aT a ¼ 1; ð2Þ

where M¼ XTYYTX. This formulation promotes an exact
zero property by imposing an L1 penalty onto a
surrogate of the direction vector (w) instead of the
original direction vector (a), while keeping a and w
close to each other. This formulation is discussed in
Chun and Kelesx (2007), where we also characterized
the solution of the minimization problem. The first L1

penalty encourages sparsity on w, and the second L2

penalty takes care of potential singularity in M when
solving for w. The parameter k is for reducing the
concavity of the problem and avoiding locally optimal
solutions. We show in Chun and Kelesx (2007) that a k-
value of ,0.5 performs well in practice and considering
multiple k-values has the effect of initiating the algo-
rithm with different starting values. After obtaining a

and w, we rescale the solution of w to have norm 1 and
use this scaled version as the estimated direction vector.

The direction vector objective function in (2) is
utilized in the course of the SPLS algorithm to select
active (relevant) variables. We define A to be an index
set for active variables, K as the number of components,
and XA as the matrix of covariates of which indexes are
contained in A. Then, the computational SPLS algo-
rithm can be summarized as follows:

1. Set b̂
PLS ¼ 0, A ¼ ;, k ¼ 1, and Y1 ¼ Y.

2. While (k # K),
2.1. Find ŵ by solving the minimization problem in (2)

with M ¼ X T Y1Y T
1 X .

2.2. Update A as fi : ŵi 6¼ 0g [ fi : b̂
PLS

i 6¼ 0g.
2.3. Fit PLS with XA by using k numbers of latent

components.
2.4. Update b̂

PLS
by using the new PLS estimates of the

direction vectors, and update Y1 and k through
Y1)Y � X b̂

PLS
and k)k 1 1.

As seen in formulation (2), SPLS has tuning param-
eters l1, l2, and K. Since this formulation becomes
highly singular when q ¼ 1 or Y’s are highly correlated,
i.e., favorable scenarios for SPLS regression, we set l2 to
‘ with an elastic net penalty (Zou and Hastie 2005).
This leads to the form of a soft thresholded estimator
(Chun and Kelesx 2007). As a result, step 2.1 of the SPLS
algorithm takes the form of simple soft thresholding
driven only by l1. In principle, each direction vector
requires its own soft thresholding parameter. However,
tuning K numbers of parameters is computationally

prohibitive. Thus, we utilize the following adaptive form
of a soft thresholded estimator where we need only to
tune h, 0 # h # 1:

w̃ ¼ ðjŵj � h max
1#i#p

jŵi jÞI ðjŵj $ h max
1#i#p

jŵi jÞsignðŵÞ:

This form of soft thresholding retains components that
are greater than some fraction of the maximum com-
ponent. As a result, SPLS has two tuning parameters, h

and K, and these are tuned by cross-validation (CV).
SPLS regression can select a higher number of

relevant variables than the available sample size since
the number of variables that contribute to each di-
rection vector is not limited by the sample size. This
property is shared by recent variable selection methods
such as elastic net (Zou and Hastie 2005) and
supervised principal components (Bair et al. 2006).
Additionally, as apparent from the formulation in (2),
SPLS regression is able to handle multivariate
Y 2 RN 3q , q $ 1, without additional computational
complexity. This property motivates the use of SPLS
regression within the context of eQTL mapping where
the goal is to utilize transcript and marker information
simultaneously.

M-SPLS eQTL: Our approach consists of two steps.

Step 1. Clustering of the G 3 N expression matrix: Current
eQTL studies typically have a total of N experimental
units from two or more distinct populations. There is a
vast literature on clustering of gene expression data.
Among simple methods are nonparametric clustering
methods such as k-means, partitioning around me-
doids (Kaufman and Rousseeuw 1990), and hierar-
chical clustering (Eisen et al. 1998) or parametric
clustering methods such as a mixture of Gaussian
distributions (Fraley and Raftery 2002). We view
the choice of the clustering method as a design-
dependent decision and present an example within
our case study. The thrust of the clustering step is to
provide a transition from transcript-level regression
models to module/cluster-level regression models.

Step 2. Cluster-specific multivariate response SPLS regression
with bootstrap confidence intervals: After the clustering/
grouping step, at each cluster k, we define a Gk-
dimensional response vector Y ðkÞi: to denote the
expressions of all the Gk genes, measured on the ith
subject. We then consider a cluster-specific marker
model

Y
ðkÞ
i: ¼ Xi:B

ðkÞ1 Ei:;

where Ei. denotes the random error matrix and B(k) is a
p 3 Gk matrix representing the contribution of each
marker m 2 {1, . . . , p} to the expression variation of each
transcript g 2 {1, . . . , Gk} of cluster k. Such a model is
fitted for every cluster using the SPLS regression.
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Two apparent gains are expected from this approach.
First, we expect it to be more powerful than both the
individual transcript- and marker-specific analyses be-
cause transcripts with similar patterns are considered
simultaneously and correlations among the transcripts
are taken into account. Thus, it will be able to detect
weak linkages. Second, it is expected to avoid type-I
error inflation by eliminating multiple model fittings.
We illustrate these points with simulations. SPLS re-
gression tends to select a set of highly correlated
markers rather than a single one among them when
the covariates that are collectively associated with a
phenotype have a grouping structure. This group
selection property is easily realized in the SPLS algo-
rithm. The minimization problem in (2), with an
updated M in step 2.1, can allow a set of variables to
be admitted to the active set A simultaneously in step
2.2. This property is especially attractive in the following
two cases. First, when a region of the genome, covered
by a set of markers (e.g., in the form of haplotypes), is
associated with a phenotype, SPLS regression can
localize the region rather than select a single marker
from the set. Selecting the set of highly correlated
markers is more desirable when the data do not dis-
criminate among these due to small sample size.
Second, when quantitative traits are linked to several
physically linked loci with small effects, suggested by
several QTL mapping studies (reviewed in Flint et al.
2005), SPLS regression can capture these linked loci.

The final stage of cluster-specific SPLS regression is
constructing bootstrap confidence intervals for tran-
script selection. The outcome of multivariate SPLS
regression is a set of selected markers that significantly
associate with one or more transcripts in the cluster and
their estimated regression coefficients. We provide an
example of such an outcome for a data set from our
simulation study (simulation C-1) in Figure 1. Figure 1A
depicts true linkages simulated for a cluster of 100 genes
over 145 markers. Figure 1B displays linkages estimated
by the M-SPLS regression. As evident in this plot, M-
SPLS is able to select the true set of markers, but several
false linkages, albeit with very small sizes, are also
revealed for the selected markers. This is not realistic
because, generally, a given marker or a set of markers is
likely to associate with a subset of the genes within a
cluster since cluster analysis is also prone to errors. To
circumvent this, we construct bootstrap confidence
intervals for transcript selection. After the initial appli-
cation of M-SPLS regression, subjects are randomly
selected with replacement and multivariate response
PLS regression is fitted using only the selected markers
from the original fit. An empirical distribution of
estimated regression coefficients is obtained for each
marker/transcript combination after a large number of
bootstrap iterations. Using these empirical distribu-
tions, a 95% confidence interval is constructed for each
marker/transcript combination. The final summary of

linkages contains marker/transcript combinations for
which the confidence intervals exclude zero. Figure 1C
summarizes the linkages after the bootstrap confidence
intervals are taken into account. Here, only the relevant
transcripts have nonzero coefficients at the selected
markers. For illustration purposes, we provide bootstrap
confidence intervals for marker 137 (D18Mit123) across
all 100 transcripts in Figure 1D.

SIMULATION STUDIES

We performed simulation studies to investigate the
operating characteristics of M-SPLS eQTL by compar-
ing it to available methods under various eQTL archi-
tectures (simulations A and B). We paid attention to
having both simple single-marker and more complex
multiple-marker eQTL architectures. In addition, we
allowed a large number of transcripts to be affected by a
single architecture following some of the recent eQTL
mapping findings (Wu et al. 2008). We also examined
the advantages of multivariate response SPLS regression
by comparing it to its univariate counterpart (simula-
tion C). In these simulations, we intentionally skipped
the clustering step and treated all the transcripts as a
group. However, the performance of multivariate re-
sponse SPLS regression might depend on the compo-
sition of a given cluster. In simulation C, we investigated
the robustness of M-SPLS regression to different in-
accuracies in cluster assignments and evaluated its
ability to identify regions of the genome with a large
number of mapping transcripts, i.e., hotspots (Schadt

et al. 2003).
Simulation A—comparison of M-SPLS eQTL to

BAYES and MOM in the absence of a strong LD struc-
ture among markers: We first compared M-SPLS eQTL
to BAYES ( Jia and Xu 2007) and MOM (Kendziorski

et al. 2006) by adopting the simulation experiments of
Jia and Xu (2007). Ten markers (p ¼ 10) are generated
on a 360-cM genome by using the Haldane map
function (Haldane 1919) and four eQTL are located
at markers 1, 3, 6, and 10. A total of G¼ 1000 transcripts
and N ¼ 50 samples are generated following the
Bayesian regression model that forms the backbone of
Jia and Xu’s (2007) BAYES method. In the first scenario
(A-1), each subgroup of transcripts is affected by only a
single marker. Transcripts 1–50 are under the influence
of marker 10, transcripts 601–604 of marker 3, tran-
scripts 605–610 of marker 1, and transcripts 961–1000 of
marker 6. The remaining transcripts do not map to any
markers and their expression values are determined by
the error terms. eQTL control sizes, which are essen-
tially coefficients of the relevant markers in the BAYES
regression model, are generated from N(0, 32), and
error terms are generated from N(0, 0.12). In the second
scenario (A-2), multiple-marker sets affect the expres-
sion of subgroups of transcripts as follows: transcripts 1–
16 are controlled by markers 1 and 10, transcripts 17–20

82 H. Chun and S. Keles



by markers 1, 3, and 10, and transcripts 971–990 by
markers 1 and 6. Data for the remaining transcripts as
well as eQTL effects and error terms are generated as in
the first scenario.

We generated 100 replicates of each simulation
scenario and applied SPLS regression. We then com-
pared the operating characteristics with the results
reported in Jia and Xu (2007). We note that Jia and
Xu (2007) use only 20 replicates, which is presumably
due to the computational complexity of the BAYES
method. However, the results are overall comparable
because our results for 20 vs. 100 simulation replicates
are very similar. We used 99% bootstrap confidence

intervals based on 1000 bootstrap samples for transcript
selection whereas Jia and Xu (2007) use some un-
specified false discovery rate (FDR), which is >1%, for
linkage thresholding.

The simulation averages of power and type-I error are
reported in Table 1. Here, U-SPLS refers to univariate
SPLS regression where we fit an SPLS regression per
transcript. U-SPLS is expected to produce many false
positives due to multiple fitting of the regression model.
As indicated in Table 1, indeed this approach has highly
inflated type-I error. It is possible to argue that the
performance of U-SPLS can be improved by implement-
ing a bootstrap confidence interval step similar to that

Figure 1.—(A) Set of true linkages. (B) Absolute values of the linkages estimated by M-SPLS regression. (C) Absolute values of
the estimated linkages after considering bootstrap confidence intervals. In A–C, the x-axis represents markers, and the y-axis (on
the left) represents transcripts. The shading of each pixel represents the strength of linkage signal. (D) Ninety-five percent C.I.’s
for marker 137 across all the transcripts in the cluster. The y-axis depicts the size of the coefficients.
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of M-SPLS. However, this increases computation time
considerably; i.e., if M-SPLS replicates 1000 bootstrap
samples, U-SPLS would replicate 1000 for each Gk tran-
script. We observe that M-SPLS has quite small type-I
error and performs comparably to BAYES in terms of
power despite the fact that the underlying data gener-
ating model precisely follows the assumptions of BAYES.
Additionally, we observe that M-SPLS has the ability to
accommodate the case where multiple transcripts do
not form a homogeneous group. This is a desired
property since different groups of transcripts within a
cluster could easily be associated with multiple-marker
sets. We revisit this point in simulation C-2.

Simulation B—comparison of M-SPLS eQTL and
BAYES with a strong LD structure among markers: The
current literature on eQTL mapping utilizes a small
number of markers that typically lack a strong LD
structure when investigating operating characteristics
of methods by simulations (e.g., simulation A). In this
next set of simulations, we use all of the 145 markers
from 60 mice (p ¼ 145 and N ¼ 60) (Lan et al. 2006) to
increase the number of markers and to reflect the
ranges of LD structure that might exist among markers.
We consider two types of eQTL architectures. In the first
scenario (B-1), we select 6 markers (D2Mit17, D3Mit22,
D4Mit190, D10Mit42, D12Mit217, and D13Mit66) ge-
nomewide. This represents a case where the markers in
the eQTL architecture do not necessarily have a
grouping structure since these markers have a relatively
low LD structure. In the second scenario (B-2), we select
three chromosomes (2, 5, and 15) randomly, and 2

highly correlated adjacent markers per chromosome,
depicting three eQTL covered by 6 markers (D2Mit274
at 69.6 cM, D2Mit17 at 73.9 cM, D5Mit259 at 43 cM,
D5Mit9 at 46 cM, D15Mit193 at 58.4 cM, and D15Mit16
at 70.1 cM). In both B-1 and B-2, transcripts 1–5 are
directly regulated by an architecture due to these 6
markers, components of which are described in sup-
porting information, Table S1. Transcripts 6–30 are
regulated by transcript 3, and transcripts 31–50 are
regulated by transcript 5 to allow within-group correla-
tion that is not due to markers. Remaining transcripts
51–60 are determined by a Gaussian error term. Average
heritability across these 60 transcripts is 0.75. M-SPLS is
tuned by 10-fold CV and we use 10,000 bootstrap
samples for constructing confidence intervals. We use
a cutoff of 0.2 for FDR control for BAYES.

As seen in Table 2, M-SPLS eQTL has significantly
higher power than BAYES at the cost of a small increase
in the type-I error. Power gain of M-SPLS eQTL is more
noticeable in simulation B-2 with the strong LD struc-
ture among the markers of the eQTL architecture. This
suggests that the grouping property of M-SPLS regres-
sion could be beneficial in genetic mapping studies in
the presence of linkages with strongly correlated mark-
ers. Although this grouping property slightly increases
the type-I error by including extra markers that have
high correlations with the true set of relevant markers,
SPLS starts to select a smaller set among the set of
correlated markers as the sample size increases and the
data start to discriminate these markers (simulation data
not shown).

Simulation C—sensitivity of M-SPLS eQTL to the
quality of cluster assignments: In simulations A-1 and
A-2, we observed that M-SPLS regression overcomes the
elevation of type-I error compared to U-SPLS by avoid-
ing multiple model fits. However, the gain due to M-
SPLS might depend on the quality of cluster assign-
ments. Thus, we next compare performances of U-SPLS
and M-SPLS regression by imposing different types of
inaccuracies on cluster assignments. We consider two
cases: (C-1) expression values of some of the cluster
transcripts are determined by noise, i.e., presence of
nonmapping transcripts, and (C-2) subgroups of tran-
scripts within a cluster are controlled by different
combinations of architectures. In addition, in simula-

TABLE 1

Type-I error and power results based on the simulation
setup of JIA and XU (2007)

A-1: single marker,
multiple transcripts

A-2: multiple markers,
multiple transcripts

Method Type-I error Power Type-I error Power

MOM 0 0.9800 0.0004 0.642
BAYES 0 0.9800 0 0.993
M-SPLS 0.007 0.9870 0.007 0.986
U-SPLS 0.126 0.9910 0.1430 0.928

TABLE 2

Type-I error and power results for simulation B

B-1: weak LDa B-2: strong LDa

Method Type-I error (SD) Power (SD) Type-I error (SD) Power (SD)

BAYES 0.009 (0.002) 0.832 (0.023) 0.004 (0.001) 0.612 (0.02)
M-SPLS eQTL 0.014 (0.002) 0.915 (0.021) 0.008 (0.001) 0.942 (0.03)

a LD among the markers in the eQTL architecture.
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tion C-3, we investigate the hotspot detection property
of M-SPLS eQTL that is likely to be affected by the
quality of cluster assignments.

Simulation C-1—noisy clusters with nonmapping tran-
scripts: We assume that there is only one eQTL architec-
ture involving several markers and affecting a percentage
of the genes in the cluster; i.e., the observed correlation
mechanism among the genes is a result of a single eQTL
architecture. This corresponds to considering three fac-
tors in the data-generating scheme: r, number of relevant
markers in the eQTL architecture (3, 10); r, proportion
of cluster genes affected by the eQTL architecture (10,
30, 60, and 90%); and c, control size of the eQTL
architecture (weak vs. strong).

As in simulation B, we use the full set of markers from
60 mice. For each combination of r, r, and c, we simulate
100 transcripts, treated as a group for M-SPLS regres-
sion, as follows. We first generate a norm 1 eQTL
architecture direction vector with r nonzero compo-
nents. The sizes of the coefficients are controlled to a
constant multiplied by this direction vector. We consider
the constants c¼ 1 and c¼ 2 for weak and strong effects,
r proportion of transcripts are controlled by the eQTL
architecture, and random error terms are generated
from N(0, 1). We use fivefold CV for marker selection

and 95% bootstrap confidence intervals based on
1000 bootstrap samples for transcript selection. The
simulations are replicated 100 times. More details on
data generation of these simulations are provided in
Table S2.

Results are presented in Figure 2 in terms of power
and type-I error. U-SPLS regression exhibits inflated
type-I error as expected on the basis of the earlier
simulations following Jia and Xu’s (2007) design.
Additionally, the power of U-SPLS does not change as
the proportion of transcripts associated with the eQTL
mechanism increases. This is also expected since U-
SPLS considers separate regression fits for each tran-
script. On the other hand, M-SPLS regression has very
small type-I error and, overall, has significantly higher
power than U-SPLS. We note that in our data-generating
scheme, the sizes of the coefficients are inherently
decreasing as the number of markers r in the eQTL
mechanism increases. This is because the sizes are
proportional to the elements of the direction vector
and the norm of the direction vector is by definition 1.
As a result, the r ¼ 10 markers and weak control
configuration have the highest noise level among the
16 configurations considered. Despite the decreasing
overall signal at the transcript level, the power of

Figure 2.—Results for simula-
tion C-1 (noisy cluster with many
nonmapping transcripts). Sym-
bols represent different numbers
of markers (s, r ¼ 3; d, r ¼ 10)
associated with r 2 {0.1, 0.3, 0.6,
0.9} proportion of transcripts in
the cluster. Different line types in-
dicate weak (dashed line) or
strong (solid line) control by a
single eQTL architecture.

eQTL Mapping With SPLS Regression 85

http://www.genetics.org/cgi/data/genetics.109.100362/DC1/5


M-SPLS increases as the proportion of transcripts
affected by the eQTL mechanism increases. This pro-
vides evidence that M-SPLS successfully utilizes infor-
mation across multiple transcripts; therefore, low signal
linkages that might be missed by examining individual
markers separately become detectable. Additionally, M-
SPLS has more power than U-SPLS even when only
10% of the transcripts in the cluster are affected by the
same set of markers (at both control sizes when r ¼
10).

Simulation C-2—heterogeneous clusters with subgroups of
transcripts controlled by different eQTL architectures: We
next study the case where two hidden components,
therefore two different eQTL architectures, are present.
These two components are (1) eQTL mechanism 1, linear
combinations of markers 11, 12, and 13; and (2) eQTL
mechanism 2, linear combinations of markers 136 and
137. Mechanism 1 is set to have a weaker control size
than mechanism 2. We consider two cases for the
multiple-eQTL architectures simulation:

C-2.1: Transcripts 1–50 are under the influence of
mechanisms 1 and 2, and transcripts 51–90 are
affected only by mechanism 1. Expression values of
the rest of the transcripts are set by the error terms.

C-2.2: The same as C-2.1 but with a larger control
size.

Details on the parameter settings are provided in
Table S3.

Results of these multiple-eQTL architecture simula-
tions are provided in Figure 3. M-SPLS has greater power
than U-SPLS with a smaller type-I error. This observation
is consistent with our earlier simulation experiments,
suggesting that M-SPLS has the ability to accommodate
cases where different groups of transcripts within a
cluster are associated with multiple-marker sets.

Simulation C-3—clusters with weak eQTL effects: Hotspot
regions are defined as loci of a genome that are mapped
by a large number of genes (Schadt et al. 2003). They
lead to widespread changes in the expression of distant
genes. Hotspots that exhibit strong control of their
target transcripts are often easily identified with tran-
script-specific approaches. However, if the hotspot locus
exerts weak control over its targets, except maybe for
a few directly related transcripts (e.g., cis-regulation),
univariate approaches tend to miss these linkages and
thus fail to identify the hotspot. In contrast, a multivar-
iate approach might capture these weak linkages by
utilizing correlations among transcripts.

Figure 3.—Results for
simulations C-2 (heteroge-
neous cluster: C-2.1 repre-
sents weaker control by
the two eQTL architectures
compared to C-2.2) and C-3
(cluster with weak link-
ages). Top panels represent
type-I error and power for
U-SPLS (U) and M-SPLS
(M) with vertical lines rep-
resenting simulation stan-
dard errors. Bottom
panels report the propor-
tion of linked transcripts
for each marker by U-SPLS
(bottom left panel) and M-
SPLS (bottom right panel)
in simulation C-3. Hotspot
markers are indicated with
solid lines.
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We assume that two subgroups of transcripts form a
cluster and are controlled by different combinations of
two architectures. Each of the architectures can be
interpreted as hotspots as they control 50 and 80% of
the transcripts. One of the architectures exerts weak
control except for one transcript, but the other exhibits
strong control of all linked transcripts. This setting is
similar to that of simulation C-2.1 and more details are
provided in Table S3.

Figure 3 summarizes the results from this simulation.
Linkages with the first eQTL mechanism cannot be
detected by U-SPLS because the control size is very
small, resulting in poor power for U-SPLS. In contrast,
M-SPLS has at least twice the power of U-SPLS, although
M-SPLS misses some of the linkages with this architec-
ture. This result is also reflected in the hotspot selection
performance of the methods. The first eQTL mecha-
nism cannot be revealed as a hotspot from individual
regression analyses by U-SPLS (Figure 3, bottom left).
However, M-SPLS is able to identify markers involved in
this mechanism as hotspots (Figure 3, bottom right).

CASE STUDY: APPLICATION TO MOUSE DATA FROM
A STUDY OF OBESITY AND DIABETES

We present an application of our method to a mouse
data set published in Lan et al. (2006). This data set
contains expression measurements of 45,265 transcripts
from liver tissues of 60 mice. Mice were collected from a
(B6 3 BTBR) F2-ob/ob cross where animals lacked a
functional leptin protein hormone, known to be im-
portant for reproduction and regulation of body weight
and metabolism (Zhang et al. 1994), and segregated for
obesity- and diabetes-related phenotypes. We utilized
the preprocessed data that are publicly available at GEO
(http://www.ncbi.nlm.nih.gov/projects/geo/query/acc.
cgi?acc¼GSE3330). The marker map for these data
consists of 145 microsatellite markers from 19 nonsex
mouse chromosomes. Following Jia and Xu (2007), we
performed an initial screening of the transcripts on the
basis of their variability across 60 mice and excluded
transcripts with sample variances ,0.12 from our
analysis. This left a total of G ¼ 1573 transcripts.

Next, we clustered these remaining transcripts. As
discussed earlier, the clustering method in an application
is highly design dependent. For a time-course experi-
ment, methods that utilize dependencies among differ-
ent time points (Yuan and Kendziorski 2006) or
methods specifically parameterizing cluster profiles
( Jörnsten and Kelesx 2008) might be more desirable.
For the mouse data, we considered the following
approach motivated by the successful use of the topolog-
ical overlap measure (TOM) (Ravasz et al. 2002) in
clustering analysis (Zhang and Horvath 2005). First, we
constructed undirected, unweighted gene networks on
the basis of the expression data, using the Gaussian
graphical model (GGM) approach of Schäfer and

Strimmer (2005). The constructed network is then used
to compute TOM for each pair of transcripts. Dissimilar-
ity measure 1-TOM between 2 transcripts represents a
lack of closeness based on the number of shared
neighbors in the expression network. Since 95 transcripts
did not share any neighbors with other transcripts, they
were analyzed by U-SPLS regression. Hierarchical clus-
tering on the remaining transcripts using this dissimilar-
ity measure resulted in 47 clusters based on the average
silhouette measure (Kaufman and Rousseeuw 1990).
The within-cluster Pearson correlations ranged from
0.027 to 0.948 with a mean of 0.226 across 47 clusters.

We present the results for one of the clusters in more
detail. This cluster contains 3 lipid metabolism tran-
scripts, namely, Scd1, Elovl6, and Fasn, that were in-
vestigated by a different analysis of the same data set
(Lan et al. 2006; Jia and Xu 2007). There are a total of 83
transcripts in this cluster with a median within-cluster
correlation of 0.12. An application of our approach with
M-SPLS yields 27 markers, presented in Table 3, that
are associated with one or more transcripts. The total
number of linkages identified for this cluster is 487 and
there are 62 transcripts that do not map to any marker.
An image plot of the estimated effects of this cluster
across markers and transcripts is provided in Figure 4.
The entire M-SPLS eQTL analysis, including both the
tuning and the bootstrap steps, for this cluster of 83
transcripts took only 3 min on a 64-bit machine with
2.66-Ghz CPU.

We note that many of the selected markers are in close
proximity to each other on the mouse genome. These
physically close markers are highly correlated (pairwise
correlations on chromosomes 2, 5, and 15 are displayed
in Figure S1). The fact that these highly correlated
markers are identified relates to the group selection
property of the SPLS regression. Since SPLS can choose
more than one variable at each step of the selection
process, it is able to capture all the relevant correlated
variables rather than arbitrarily selecting one. One can
argue that, perhaps, the selected markers cover too
large of a region on each chromosome. The problem of
identifying such large regions is driven by the nature of
the data. Since the markers are highly correlated, it is
hard to select finer areas of the genome with data from
60 mice. Flint et al. (2005) argue that 300 F2 animals are
needed to map a QTL with an effect size of 5% onto a
40-cM interval with 50% power, using markers that are
spaced every 20 cM across the genome. We anticipate
that more mice are needed to localize finer areas of the
genome in eQTL studies. In each correlated marker
group in Table 3, there is at least one marker that is
previously declared as an obesity- and diabetes-related
locus. This result is encouraging since it provides a list of
transcripts mapping to markers known to be related to
obesity and diabetes.

Expression profiles of lipid metabolism transcripts
Scd1, Elovl6, and Fasn are highly correlated (pairwise
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plots are in Figure S2; minimum pairwise correlation is
0.756). Therefore, it is reasonable to expect similar
linkages for these transcripts. Indeed, M-SPLS reveals
that these transcripts map to similar markers, whereas
BAYES yields different linkages. This could be due to
high correlation among markers. Unlike the markers
generated by the Haldane map function (simulations
A-1 and A-2), markers from the mouse study exhibit very
high correlations. This multicollinearity problem is not
explicitly addressed in BAYES, and priors for regression
coefficients are assumed to be independent. In fact,
similar mixture priors were used by Sha et al. (2006) in
the context of a different model and a decrease in the
variable selection performance was observed for the
correlated variable case. It is plausible that BAYES also
suffers from a similar problem and tends to select only
one variable among a set of correlated variables.

Lan et al. (2006) highlighted that transcripts that were
highly correlated with Scd1 mapped to the same genomic

locations as Scd1, and found major QTL peaks for most of
the 20 lipid metabolism traits at markers D2Mit263 and
D5Mit240. These two markers are successfully identified
by our approach. Among the five hotspots reported by
MOM,one of themis also identified byM-SPLSeQTL with
the group of transcripts we considered. This is marker
D8Mit249, which is close to the ‘‘fat’’ gene known to affect
obesity and diabetes (Naggert et al. 1995). M-SPLS eQTL
identified D5Mit348, which is adjacent to D5Mit1, instead
of D5Mit1, which affects triglyceride levels. Marker
D15Mit63, emphasized in the findings of BAYES, is also
identified by M-SPLS eQTL. Markers on chromosome 2
have been the most popular candidates for obesity and
diabetes (Stoehr et al. 2000; Diament et al. 2004; Jerez-
Timaureet al. 2005), but hotspots from MOM and BAYES
do not have a noticeable indication of this. In particular,
BAYES does not find any hotspots on chromosome 2. In
contrast, M-SPLS eQTL yields strong effects for markers
on chromosome 2. Furthermore, although marker

TABLE 3

Markers identified for a cluster of size 83 including three lipid metabolism transcripts: Scd1, Elovl6, and Fasn

Marker Map (cM)
No. of mapping

transcripts Reference

D2Mit274 69.6 1 Close to obesity modifier locus D2Mit9 (Stoehr et al. 2004)
D2Mit17 73.9 16 Obesity/diabetes syndrome (Stoehr et al. 2000)
D2Mit106 77.9 19 Liver weight ( Jerez-Timaure et al. 2005)

Obesity/diabetes syndrome (Stoehr et al. 2000)
D2Mit194 85.4 18 Obesity locus (Diament et al. 2004)

Body weight and fat ( Jerez-Timaure et al. 2005)
Obesity/diabetes syndrome (Stoehr et al. 2000)

D2Mit263 98.7 21 Lipid metabolism (Lan et al. 2006)
Obesity/diabetes syndrome (Stoehr et al. 2000)

D2Mit51 101.7 20
D2Mit49 104.2 21
D2Mit229 110.5 21
D2Mit148 121.6 21
D5Mit348 6.3 17
D5Mit75 11.8 21
D5Mit267 17.1 21 Reproduction in leptin-deficient obese mice (Ewart-Toland

et al. 1999)
D5Mit259 43 21
D5Mit9 46 21
D5Mit240 49.1 21 Lipid metabolism (Lan et al. 2006)
D5Mit136 54.9 21
D8Mit249 58.1 18 Fat gene (Naggert et al. 1995)

Triglyceride level (Colinayo et al. 2003)
D8Mit211 72 21
D8Mit113 77.6 21
D9Mit21 43.8 12
D9Mit207 45.3 17
D9Mit8 58.6 18 Fat-pad mass (Mehrabian et al. 1998)
D9Mit15 93.6 21
D9Mit18 110.7 17
D15Mit174 0 11
D15Mit136 11.5 17
D15Mit63 21 13 Early life body weight (Miller et al. 2002)

Diabetic modifier (Takeshita et al. 2006)
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D5Mit267, which is identified by M-SPLS eQTL but
missed by MOM and BAYES, does not seem to be directly
related to obesity and diabetes, it is associated with
reproduction, which is another known function of leptin
protein hormone (Ewart-Toland et al. 1999).

DISCUSSION

The advent of microarray technology is providing an
unprecedented opportunity for investigating complex
genetics underlying inheritance of transcript levels in
segregating populations. One of the statistical chal-
lenges is the eQTL mapping problem that concerns
identification of linkages between thousands of tran-
scripts and markers. We formulated the eQTL mapping
problem as a variable selection problem in a multivar-
iate response regression. We then utilized sparse partial
least squares (Chun and Kelesx 2007) as a simultaneous
variable selection and dimension reduction approach to
identify linkages. This framework, implemented as an
R package named SPLS (File S1), offers offers a com-
putationally fast alternative for analyzing multiple tran-
script and marker data simultaneously to gain power
and avoid multiplicities for good error control.

We demonstrated the advantages of our method with
simulation experiments. These experiments included
eQTL architectures with strong effects on a small
fraction as well as weak effects on a large fraction of
transcripts. These studies showed that as the number of
mapping transcripts increases, the power of M-SPLS
increases whereas its univariate analog with transcript-
level regressions cannot capitalize on this phenomenon.
We illustrated the utility of our approach with an

example from mouse obesity and diabetes research.
This case study highlighted the ability of SPLS regres-
sion to select groups of correlated markers. BAYES, an
alternative variable selection approach to the eQTL
problem, lacks this property and tends to select only one
marker among the group of correlated markers. Our
approach was able to consistently yield similar linkages
for highly correlated transcripts. Furthermore, we were
able to identify a marker that was missed by the previous
analysis of the same data set but could potentially be
important since it relates to another function of the
leptin protein hormone (Ewart-Toland et al. 1999).

In this article, we allowed the markers to appear as
main terms in the regression model. Identifying inter-
actions among markers is a challenging problem. With
an appropriate prescreening of markers, SPLS regres-
sion has the potential to handle a large number of
interactions. In Chun and Kelesx (2007), this property is
illustrated with as many as 5000 variables. Another
important research question in eQTL mapping is
allowing for linkages with locations between markers
using interval mapping (Chen and Kendziorski 2007).
Our current formulation allows for mapping only at
exact marker locations. However, a first pass with our
approach and then a more focused traditional interval
mapping (Sen and Churchill 2001) based on the
selected markers might be a viable strategy.
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FIGURE S1.—Top: Pairwise correlations for 17 markers on chromosome 2. First marker starts at 0cM and the last one is at 

121.6cM. Bottom: Pairwise correlations for 9 markers (starting at 0cM and ending at 90.1cM) on chromosome 5 (left) and 7 
markers (starting at 0cm and ending at 70.6cM) on chromosome 15 (right). 
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FIGURE S2.—Pair plots of the expression of three lipid metabolism transcripts across 60 mice. 
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FILE S1 
 
Software: R package SPLS is available on http://cran.r-project.org/web/packages/spls/. 
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TABLE S1 

Parameters for simulation B 

 
 B-1 B-2 

Nonzero comp. of 

the direction vector 

(w20, w31, w39, w78, w90, w110) 

= (0.343, 0.343, 0.514, 0.514, –0.343, –0.343) 

(w19, w20, w45, w46, w118, w119) 

= (0.343, 0.343, 0.514, 0.514, –0.343, –0.343) 

Control Size transcripts 1-5: (3,3.2,2.5,2,5) 

Yi = γi Y3 + ϵi, i = 6 . . . 30 

Yi = γi Y5 + ϵi, i = 31 . . . 50 

γi ∼ N (0.8, 0.1), ϵi ∼ N (0, 0.04) 
Expression measurement of transcript i is represented by Yi . Transcripts 1-5 are directly controlled by an architecture, and the 

remaining are trans-regulated by other transcripts. 
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TABLE S2 

Components of the direction vectors for simulation C-1 

r = 3  r = 10 

wj= 0.577, j = 11, . . . , 13. 

wj= 0, j = 1, . . . , 10, 14, . . . , 145 

wj = 0.316, j = 11, . . . , 13, 40, . . . , 43, 74, 136, . . . , 137. 

wj = 0, everywhere else. 

The final marker-specific regression coefficients are obtained by multiplying the direction vectors with weak 

(c = 1) or strong (c = 2) control sizes.  



H. Chun and S. Keles 7 SI 

 

TABLE S3 

Components of the direction vectors for simulations C-2 and C-3 

 
 w1 c2 w2 c2 

C-2.1 wj1 = 0.577, 

j = 11, 12, 13.   

wj1 = 0 

j = 1, . . . , 10, 14, . . . , 145. 

0.5 wj2 = 0.707, 

j = 136, 137.   

wj2 = 0 

j = 1, . . . , 135, 138, . . . , 145. 

1.5 

C-2.2 same as above 1 same as above 3 

C-3 same as above ~ Unif (– 0.3, 0.3)* same as above 1.5 

Direction vectors for the first and second hidden components (i.e., eQTL mechanisms) are represented by 

w1 and w2 and the corresponding control sizes are by c1 and c2, respectively. ∗: The control size is set to 0.5 for 

transcript number 30.  

 
 


