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The heart must adapt its mechanical activity to the prevailing hemodynamic demands. When
an increased demand is brought about by sustained stimuli such as growth and development,
pressure overload, or mutations in sarcomeric proteins, the heart will typically undergo an
increase in size caused by myocyte hypertrophy. Underlying this hypertrophic response is the
coordinated interaction of distinct signaling modules capable of transmitting and executing
modifications in gene expression that lead to alterations in myocyte physiology and long-term
cardiac adaptation.1

One of the more intriguing characteristics of the hypertrophic response is that despite the ability
of a wide variety of both pathologic and physiologic stimuli to induce cardiac hypertrophy,
distinct cytoplasmic signaling cascades that initiate changes in gene expression converge on a
common set of nuclear factors. These factors will then transactivate or repress cardiac genes
through cis-regulatory elements. One of these transcription factors, myocardin, that appears to
be capable of relaying hypertrophic signals to the genome is the subject of the studies performed
by Xing et al2 detailed below.

An important hypertrophic transcriptional regulator is the zinc finger– containing transcription
factor, GATA4. GATA4 is widely expressed and has been identified as a pivotal regulator of
developmental and stress-induced changes in cardiac gene expression.3,4 GATA4 has been
shown to activate numerous genes in the heart by divergent signaling molecules including
protein kinase C, calcineurin, and members of the mitogen-activated protein kinase signaling
axis.1 Although GATA4-null embryos arrest before birth,5 a point mutation in GATA4 results
in septation and coronary vasculature defects,6 whereas GATA4 mutations are linked to
congenital heart defects in humans.7 GATA4 has also been shown to activate a cardiac
enhancer/promoter construct in nonmuscle cells.8

Another central transcriptional regulator of cardiac gene expression is serum response factor
(SRF), which is also widely expressed in many cell types and binds to a DNA consensus
sequence known as the CArG (CC[A/T]6GG) box.9,10 SRF belongs to the MADS (MCM1,
Agamous, Deficiens, SRF) family of transcription factors that includes myocyte enhancer
factor 2 (MEF2).11 Highlighting the importance of SRF is the fact that many cardiac muscle
genes require CArG boxes for proper expression,12 and disruption of SRF DNA binding by
cardiac overexpression of SRF that contains 2 mutations located within the domain important
for SRF dimerization leads to an early postnatal death (12 days) from a severe dilated
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cardiomyopathy.13 In addition, cardiac-specific ablation of SRF is embryonic lethal because
of cardiac insufficiency,14 whereas cardiac overexpression of wild-type SRF results in
hypertrophic cardiomyopathy.15 Apart from its role in cardiac development and hypertrophy,
SRF also mediates the expression of numerous growth-inducible developmental genes and is
critical for smooth muscle development.16 Moreover, activation of SRF is induced by
numerous hypertrophic signals, many of which overlap with GATA4, including calcineurin-
dependent signaling17 and the alpha-adrenergic agonist, phenylephrine (PE).18,19 In fact,
GATA4 can interact with SRF, and it has been suggested that they may act synergistically
through recruitment of each other to bind DNA20,21

More recently, a novel and potent SRF transcriptional coactivator, myocardin, was discovered
and subsequently shown to transactivate CArG box-dependent cardiac promoters. 22
Myocardin belongs to the SAP (scaffold-attachment factor A/B, Acinus, PIAS) domain family
of nuclear proteins, which are implicated in chromatin remodeling.23 It has been shown to be
necessary and sufficient for both cardiac and smooth muscle differentiation.22,24 Interestingly,
GATA4 modulates myocardin transcriptional activity either positively on genes such as
Nkx2.5 or negatively such as ANF.21 Moreover, forced expression of myocardin can induce
both cardiac and smooth muscle genes in nonmuscle cells.25,26 As mentioned above, GATA4
can activate a transfected cardiac promoter but its ability to activate endogenous genes is
unknown. Although GATA4 and SRF null mice have early developmental myocardial defects,
myocardin null mice show no myocardial defects at midgestation. However, the role of
myocardin in the adult heart has not yet been evaluated because of embryonic lethality caused
by vascular abnormalities. 27 It will be necessary to evaluate adult cardiac-specific ablation
of myocardin before it is possible to determine its role in the adult heart. Inconsistent with the
observation in mice is the finding that morpholino knockdowns of myocardin in Xenopus
embryos inhibit cardiac development, so future experiments need to be aimed at these
differences in the two species.26

In this issue of Circulation Research, Xing et al2 address and confirm a role for myocardin in
the hypertrophic response of cardiac myocytes and in the intact heart. In this study, both
myocardin mRNA and protein were upregulated by two hypertrophic agonists, fetal bovine
serum or PE, in cultured cardiac myocytes. In two mouse models of cardiac hypertrophy,
thoracic aortic banding and calcineurin overexpression, myocardin expression levels in the
heart were significantly upregulated with concomitant elevations in fetal genes. Finally, the
translation of these data to human diseased hearts was validated by demonstrating increased
myocardin expression in protein extracts from patients with idiopathic dilated cardiomyopathy.
The necessity of myocardin in the hypertrophic response was supported by studies in which
myocardin was introduced into cardiac myocytes by adenoviral delivery and subsequently
exhibited a hypertrophic phenotype. In contrast, cardiac myocytes expressing a dominant
negative myocardin that maintains the ability to interact with SRF but lacks the transcriptional
activity domain showed a small decrease in size and were unable to respond to hypertrophic
stimuli. The authors demonstrated an additional level of myocardin regulation by the
attenuation of myocardin-induced hypertrophy by histone deacetylase, HDAC5.

Given that hypertrophic stimuli initiate a reexpression of fetal gene isoforms in the heart28 and
that myocardin is necessary for cardiac development in Xenopus, it is tempting to conclude
that myocardin causes the reappearance of these fetal genes in the pathological heart. However,
the developing heart does not progress to a decompensated state as occurs with persistent
pathological stimuli such as hypertension. This fact alone highlights the importance of temporal
activation of these signaling intermediates and the necessity for additional “players” that may
impart selectivity to gene target activation by posttranslational modification of specific
transcription factors and cofactors by intracellular signals. For example, it was recently shown
that the transcriptional activity of myocardin is regulated by site-specific phosphorylation by
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glycogen synthase kinase-3β.29 A schematic of the transcriptional regulatory network is
illustrated in the Figure. Another looming question is whether myocardin mediates hypertrophy
attributable to alternative physiological hypertrophic stimuli such as exercise. Consequently,
the emerging picture is that, although distinct hypertrophic and developmental stimuli appear
to converge on common transcription factors such as GATA4 and SRF, activation of these
factors does not result in indiscriminate expression of GATA4 or SRF-dependent genes.
Simultaneous activation of cofactors is required but, in addition, there are many indications
that one or more additional levels of regulation exist that allow a cell to further distinguish
between different stimuli.
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Figure 1.
Schematic representation of GATA4- and SRF-dependent gene regulation. Hypertrophic
stimuli initiate a signaling cascade that converges on the transcriptional regulators GATA4 and
SRF in the heart. The activation and/or repression of gene expression by GATA4 and SRF
depend on the interaction with specific cofactors that are spatially and temporally activated.
MRTF indicates myocardin-related transcription factor; TCF, ternary complex factor; HDAC5,
histone deacetylase 5; GSK-3β, glycogen synthase kinase 3β; MEF2, myocyte enhancer factor
2; NFAT, nuclear factor of activated T-cells; FOG2, friend of GATA2.
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