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The goal of measurements of the resisting force generated by a
molecular bond as it is being forcibly separated under controlled
conditions is to determine functional characteristics of the bond.
Here, we establish the dependence of force history during unbind-
ing on both those parameters chosen to characterize the bond itself
and the controllable loading parameters. This is pursued for the
practical range of behavior in which unbinding occurs diffusively
rather than ballistically, building on the classic work of Kramers.
For a bond represented by a one-dimensional energy landscape,
modified by a second time-dependent energy profile represent-
ing applied loading, we present a mathematical analysis showing
the dependence of the resistance of the bond-on-bond well shape,
general time dependence of the imposed loading, and stiffness
of the loading apparatus. The quality of the result is established
through comparison with full numerical solutions of the underlying
Smoluchowski equation.

Kramers’ theory | force spectroscopy | bond survival probability

O ver the past decade, a number of reports of direct mea-
surement of the mechanical strength of noncovalent bonds

between adhering bioproteins have appeared. A major step for-
ward was made by Evans and Ritchie (1) with the development
and application of the biomembrane force probe. Other observa-
tions have been based on the atomic force microscope, optically
trapped beads, and magnetically trapped beads. The experiments
are brilliantly conceived but difficult to perform. The data provide
an intriguing glimpse into the nanoscopic realm of material struc-
ture and its evolution. The data also provide a challenge, namely,
to develop a quantitative characterization of bond features that
can account for observed behavior.

The process of protein–protein debonding is described func-
tionally as a transition from one stable configuration of the system
to another, with passage through an unstable intermediate config-
uration in the process. In this development, we adopt the common
point of view whereby the instantaneous state is identified by a sin-
gle configuration variable x, akin to a reaction coordinate, and by
a configurational free energy U(x, t) representing an energy land-
scape to which accessible configurations of the bond are confined.
The present discussion is concerned with landscapes in one space
dimension that may evolve over time. It is tacitly assumed that the
energy landscape incorporates all energy changes which occur in
bond separation and that the landscape for a given bond pair is
indistinguishable from one debonding event to another. Although
the state variable x is treated as a length here, it could be any
configurational parameter that identifies the current energy value.

The general framework adopted for describing bond separa-
tion under force is that pioneered by Kramers (2) for free-bond
dissociation, as summarized in a broader context by Risken (3)
and Hanggi et al. (4). The basic idea is that the bond configura-
tion, as represented by the random variable x, evolves according
to a random walk process. The stimulation inducing the random
motion is a background thermal environment, and the walk pro-
gresses in the energy landscape U(x, t). If the well is deep in some
sense on the scale of the thermal energy unit kT—as usual, k
is the Boltzmann constant and T is absolute temperature—the
likelihood that any particular step in the walk will result in the
configuration escaping the well is very, very small. Under such

circumstances, we can expect that the evolution of the probability
distribution of configurational states can be described as a dif-
fusion process. With the additional assumption that the flux of
states in the ensemble is proportional to a local gradient in chem-
ical potential, this point of view leads to the Smoluchowski partial
differential equation as a description of the microscopic process.
The steps by which the Smoluchowski partial differential equation
is derived as a consequence of an appropriate free-energy func-
tion and an assumed transport equation are summarized in the
supporting information (SI) Appendix. A lucid and concise deriva-
tion of Kramers’ principal result was included in an early review of
stochastic phenomena by Chandrasekhar (5). The circumstances
here are complicated by the additional feature whereby the land-
scape itself is time dependent due to the transient nature of an
external constraint.

Numerous articles in which mathematical models for forced
bond separation have been discussed have appeared in the lit-
erature, beginning with the pioneering observations of Bell (6)
developed on the basis of the classical rate theory representation
of chemical reactions. A microscopic approach based on the sto-
chastic evolution of a reaction coordinate on an energy landscape
was introduced by Evans and Ritchie (1) by adding the influence of
an external force to the picture of bond dissociation introduced by
Kramers (2). More recently, the capabilities to represent experi-
mental observations have been advanced significantly through the
work of Hummer and Szabo (7) and Dudko et al. (8, 9). There
are two particular aspects of these recent articles, as well as most
earlier contributions, to note here. First, nearly all of these ear-
lier articles were based on assumptions of bond separation under
constant force and/or under constant force rate and/or under con-
stant applied loading rate. Any one of these constraints is a fairly
severe restriction and imposition of more than one for any partic-
ular case is fundamentally inconsistent. Second, the starting point
for developments in refs. 7–9 has been an assumed form of a dif-
ferential equation governing the survival probability of the bond
as a first-order rate equation. It is shown here that such a rate
equation emerges naturally in the course of a thermodynamic
approach. In addition, the quality of the mathematical approxi-
mations introduced in this development is tested by comparison
of its implications with a numerical solution of the corresponding
boundary value problem for the Smoluchowski equation. This is
the solution that the model is presumed to approximate.

In the next section, we describe the features of a generic one-
dimensional energy landscape and the circumstances tending to
induce bond separation in that landscape. There are two aspects
of this description that we regard as being essential, namely, an
external deterministic constraint tending to induce separation of
the bond and an energy landscape that admits a calculation of
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force (as opposed to a priori specification of force) transmitted by
the bond.

Model
The response of a molecular bond to an applied force of increasing
magnitude can be described only in probabilistic terms, because
of the susceptibility of relatively weak material bonds to fluctu-
ations in state at this size scale, arising from the thermal envi-
ronment in which protein bonds typically are immersed. If many
observations of response are made under nominally identical cir-
cumstances, behavior can be described in the following way. In
each instance, the clock is set to time t = 0 as the externally
applied load begins to act on a particular bond. Then, the mag-
nitude of the applied force is increased in a manner made more
precise below, and the time at which bond separation occurs (the
instant at which maximum resisting force is achieved, for exam-
ple) is recorded. Within an ensemble of nominally identical bonds,
response is understood to be represented by the fraction of all
bonds observed, say R(t), which remain intact after the elapsed
time t. Equivalently, R(t) is the probability that any particular bond
will remain intact after elapsed time t. This quantity has the initial
value R(0) = 1, has the asymptotic behavior R(t) → 0 as time
becomes large in some sense, and undergoes a transition between
these limiting behaviors in a way controlled by the features of the
bond.

Expecting that a bond responds in more or less the same way
each time a force acting in a particular direction is applied to it,
the bond can be characterized by an energy cb and a length a (6).
The energy represents the net work that is done on the bond in the
direction of the external force to induce separation in the absence
of thermal stimulation, and the length a represents the distance
over which that work must be done. To consider the process of
separation, this leads to a depiction of a bond as an energy well,
as illustrated in the upper portion of Fig. 1. The state of the bond
is represented by the random position x that is measured in the
direction of the force. The bond energy profile is given by the
dimensionless function Ub(x) as a multiple of the thermal energy
unit kT . A detailed specification of shape can be postponed until
an example is considered quantitatively.

In developing probabilistic models of the response of a mol-
ecular bond to force, a common approach has been to replace
the Boltzmann factor e−Ub(x) with e−Ub(x)−fx/kT , where f is the
instantaneous value of the force acting in the direction of x.
But if the quantity of interest is the resisting force of the bond,
then an approach based on describing the confinement of the
bond state in terms of force is fraught with difficulty. Instead,
we describe confinement in terms of a variable that is work-
conjugate to force with respect to system energy. The external
coordinate concept of Gibbs (10) provides the conceptual basis for
doing so.

Loading is taken into account here by introducing a second
energy profile, say Uf (x, t), which is fixed in shape but which trans-
lates in the x direction with respect toUb(x). We assume thatUf (x, t)
has a unique value defined by the condition Uf (y(t), t) = 0, which
is satisfied identically in time for some position history y(t). The
relative position can then be specified by the external coordinate
y(t) as illustrated in the lower portion of Fig. 1. For example, if
the total compliance of the molecules themselves and of the load-
ing apparatus can be represented by an equivalent linear spring,
then this profile would be parabolic with its apex corresponding
to x = y(t) and with its curvature being the stiffness of the equiv-
alent spring. In general, applied “loading” is prescribed through
the deterministic coordinate y(t), thereby influencing the accessi-
bility of states of the random variable. The total energy landscape
or profile representing the system energy is the sum

U(x, t) = Ub(x) + Uf (x, t). [1]

Fig. 1. The interaction energy landscape (Upper) Typical bond energy pro-
file characterized by a well depth cb with dimensions of energy and a width
a with dimension of length. This profile is time-independent. (Lower) Force
potential profile that is fixed in shape and translates in the x direction in a
way prescribed by y(t).

This accounts for the compliance of all aspects of the configu-
ration, including the molecules themselves as well as a loading
apparatus.

State of the Bond. A large ensemble of nominally identical systems
under identical input y(t) is described by means of the probabil-
ity density ρ(x, t); the value of ρ(x, t) is the probability of finding
the system of interest in position x at time t. It is the evolution of
this probability distribution for given y(t) that determines the sur-
vival probability R(t). Beginning with Kramers (2), a framework
was established for describing the evolution of probability density
ρ(x, t) for the case of a time-independent energy landscape. This
general framework is adopted here, and it is generalized to account
for the time dependence of the energy landscape. Denote the flux
of states in the x direction at time t by j(x, t). Local conservation
of states requires that

∂tρ(x, t) + ∂xj(x, t) = 0. [2]

The associated transport equation follows from the constitutive
assumption that the flux of states is proportional to the gradient
in the local chemical potential, the latter being a feature of the
underlying free-energy function for the system; see SI Appendix.
In the present circumstances, the flux of states can be related
to the probability distribution and the interaction energy field
according to

j(x, t) = −D(∂xρ(x, t) + ρ(x, t)∂xU(x, t)), [3]

where D is a diffusivity for the underlying diffusion process. Its
value is not known a priori, and it joins cb and a as the third
unknown characterizing parameter.

The corresponding force acting on the ensemble is then deter-
mined as the time-dependent quantity which is work conjugate
to the external coordinate y(t) with respect to the free-energy
function,

f (t) = −kT
∫ x2

x1

ρ(x, t)∂y(t)U(x, t)dx [4]

where the derivative appearing under the integral sign is the ordi-
nary derivative of U(x, t) with respect to y for fixed values of x and t.
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Fig. 2. Time evolution of the energy landscape U(x, t). The value Uf (0, t) is
subtracted from each graph to keep the individual plots within a reasonable
field of view. The locations of the local maximum and minimum of each curve
are represented by x+(t) and x−(t), respectively, at any time t.

The extraction of f (t), exact within the thermodynamic framework,
is described in the SI Appendix. Technically, the limits of integra-
tion are x1 → −∞ and x2 → ∞. However, the density is expected
to be negligibly small at points far from the bond well compared
with a and the integral expressions are expected to be convergent.
Consequently, the limits of integration can be chosen to have finite
magnitudes equal to several times a in either direction without
introducing consequential error.

The expression 4 presumes that a large number of identical
bonds are simultaneously subjected to the imposed constraint
motion y(t) and that each individual bond responds independently
of the response of any other bond in the ensemble. The quan-
tity f (t) is then the total force acting on the ensemble divided by
the number of bonds within the ensemble. As such, it is a statis-
tical characteristic of all responses rather than a representation
of the force on any particular bond. This distinction is relevant
to the strategy adopted by Gaub and coworkers (11) in design-
ing experiments to probe bond characteristics by deforming many
noninteracting but nominally identical bonds simultaneously.

The Bond Survival Probability. The survival probability of the bond
R(t) is the fraction of bonds in the ensemble that remain intact at
time t. In terms of the density of states, it is the fraction of bonds
remaining within the interval x1 < x < x+(t) at time t,

R(t) =
∫ x+

x1

ρ(x, t)dx, [5]

where x+(t) identifies the location of the edge of the bond well
as indicated in Fig. 2. The transport Eq. 3 is readily inverted to
obtain an expression for ρ(x, t) in terms of j(x, t); see SI Appendix.
Following Kramers (2), we assume that x2 is the point of no return
for states diffusing away from the well, and we set ρ(x2, t) = 0. The
inverse expression for ρ(x, t) in terms of j(x, t) is then

ρ(x, t) = D−1e−U(x,t)
∫ x2

x
j(ξ, t)eU(ξ,t)dξ. [6]

Integration of both sides of this equation over x1 < x < x+
leads to

R(t) = D−1
∫ x+

x1

e−U(x,t)
∫ x2

x
j(ξ, t)eU(ξ,t)dξdx. [7]

The integrand of the inner integral on the right side of Eq. 7 has
an exponential peak at ξ = x+(t). Likewise, the integrand of the
outer integral has an exponential peak at x = x−(t), the position
of the bottom of the well. Consequently, the double integral 7 is
ideally suited for approximate evaluation by means of the Laplace
method (12). Although this is an asymptotic method based on the

presumption that cb is large compared with kT (the deep well
assumption of Kramers), it is quite accurate for values of cb as
small as 3 or 4 kT . The quality of the approximations is discussed in
some detail below. Successive application of the Laplace method
yields

R(t) ≈ j(x+, t)
2πeU(x+ ,t)−U(x− ,t)

D
√

U11(x−, t)|U11(x+, t)| [8]

as an approximate expression for the survival probability; see
SI Appendix. The quantity U11(x±, t) identifies the curvature of
the landscape profile at point x = x±(t) at time t. The curvature
at x = x+(t) is negative, necessitating use of the absolute value
under the square root operator to properly represent the result of
asymptotic evaluation.

The flux j(x, t) is not known a priori, but its value at x = x+(t) is
precisely −Ṙ(t), the net rate at which states leave the bond well. If
the factor of j(x+, t) in Eq. 8 is denoted by Koff (t)−1 then we obtain
the rate equation

Ṙ(t) + Koff (t)R(t) = 0, R(0) = 1 [9]

for the survival probability. We note that Koff (t) depends explic-
itly on features of the energy landscape, but is independent of the
density of states. The solution of the differential equation 9 is

R(t) = exp
[
−

∫ t

0
Koff (τ)dτ

]
. [10]

The force f (t) acting on the ensemble is defined in Eq. 4. If the
expression for probability density ρ(x, t) in Eq. 6 is substituted into
the expression for force and if the result is evaluated approximately
by means of the asymptotic methods used above (see SI Appendix),
it follows that

f (t) = kTR(t)∂y(t)U(x−, t). [11]

This approximate expression for force as the product of the sur-
vival probability R(t) times the most likely value of force for
individual states within the well is simple and intuitive. The for-
mer factor accounts for the decrease in number of states within the
well over time, whereas the latter factor reflects the increasingly
severe confining influence of the constraint Uf (x, t). It is noted
that no assumption has yet been made about the imposed motion
y(t) that induces bond separation. In particular, the approximate
forms of both survival probability in Eq. 10 and of ensemble force
in Eq. 11 presume neither constant rate of imposed motion nor
constant rate of applied force.

As shown in the foregoing development, the rate equation
Eq. 9 follows directly from the Smoluchowski partial differential
equation governing the probability distribution, which, in turn, is
a consequence of an underlying thermodynamic free energy of
the system at constant temperature. The constraint of constant
temperature arises through the assumption that the debonding
process evolves in a large isolated heat reservoir, with the energy
drawn from the reservoir to stimulate diffusion being immediately
returned through dissipation of the microscopic fluctuations. In
the work of Hummer and Szabo (7) and Dudko et al. (9), the form
of the first-order rate equation (Eq. 9) was assumed as the starting
point for description of bond separation.

Results
To demonstrate the implications of the results in the preceding
sections, representative choices for the features of the system are
required. As a convenient form for the bond potential Ub(x), we
adopt

Ub(x) =

⎧⎪⎨
⎪⎩

cb
kT

(
2 x2

a2 − 1
)

, x1
a < x

a ≤ 1
2

− cb
kT

( x
a − 1

)2 , 1
2 < x

a < 1
0, 1 ≤ x

a <
x2
a

[12]
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which is the expression that was used to generate Figs. 1 and 2.
Numerical results are presented below for the integration range
defined by x1 = −a and x2 = 5a, a range found to be adequate for
the purpose.

For the loading potential Uf (x, t), we assume that the system
compliance is that of a linear spring of stiffness κ in tension. If the
loading system is incapable of exerting compressive force, then

Uf (x, t) =
{

1
2

κ
kT (y(t) − x)2, x1 < x < y(t)

0, y(t) < x < x2
. [13]

The form of the term kT∂y(t)U(x, t) appearing in the definition of
force, Eq. 4, is simply κ(y(t) − x) in this case.

For the interaction potential function U(x, t) defined in this way,
the approximate description of the time dependence of the off-rate
appearing in the rate equation (Eq. 9) takes the explicit form

Koff (t) =
D

√
16c2

b − a4κ2

2πa2kT
e
− cb

kT
(4cb+a2κ−2aκy(t))2

16c2
b−a4κ2

[14]

for arbitrary imposed motion of the constraint y(t). For a force
equal to κy(t) and for cb � aκ, the exponential factor in Eq. 14
reduces to the exponential factor in equation 3 of ref. 8 for ν = 1/2.

This result in Eq. 14 illustrates the significance of the relative
magnitudes of two combinations of system parameters, one of
which is time-dependent. The first of these parameters is 4cb +a2κ
with value usually dominated by the bond strength cb. The second
parameter is 2aκy(t), which is essentially 2a times the nominal
force being transmitted to the bond itself through the combined
effects of compliance of the loading train and the imposed remote
constraint. Early in the loading process, the difference between
these two parameters is dominated by the first parameter and,
consequently, the off-rate is exponentially small. However, as time
goes on, the value of y(t) increases continuously so that, eventually,
the values of the two terms are comparable. When this happens,
the exponent appearing in the expression for off-rate becomes
relatively small and, consequently, the dependence of off-rate
on time increases dramatically. Essentially, this is the transition
reflected in the behavior of the survival probability with increasing
time.

The off-rate factor appearing in Eq. 14 is expressed in terms of
dimensional parameters representing physical quantities. How-
ever, these parameters can be gathered into dimensionless groups
for various purposes. Commonly, we think of the values of κ, kT ,
and y(t) as being specified and the values of cb, a, and D as being
inferred from observations. With this point of view, a convenient
set of nondimensional parameters is c̄b = cb/kT , ā = a

√
kT/κ,

and D̄ = (D/vy)
√

κ/kT , where vy is a constant speed that is char-
acteristic of y(t), possibly an initial speed or a maximum speed or
an average speed, for example.

Constant Imposed Speed. As a specific motion of the load point,
we assume constant speed v > 0, starting at the root of the bond
well at x = 0 at the time t = 0, so that

y(t) = vt. [15]

In this case, the expression for survival probability Eq. 10 can
be evaluated explicitly in terms of the error function; the result is
shown in the SI Appendix, where it is evident that the expression
for R(t) exhibits the time dependence anticipated at the outset. As
an illustration of its behavior, R(t) is evaluated for the parameter
values

cb = 40 pN nm, kT = 4 pN nm, a = 1 nm
κ = 2 pN/nm, D = 1 nm2/ms, v = 1 nm/ms [16]

to produce the solid curve in Fig. 3.
The expression for R(t) was obtained by application of approx-

imate methods of analysis, so it is essential that the quality of

Fig. 3. Results of survival probability versus time. Comparison of the ana-
lytical result for bond R(t) with numerical simulation results for loading rate
v = 1 (in nm/ms) and loading stiffness κ = 0.5 (in pN nm). The former is
defined in Eq. 5 versus time t (in ms). The discrete points are determined by
means of numerical solution of the equivalent boundary value problem for
the Smoluchowski partial differential equation.

the approximation should be examined. Because R(t) reflects a
feature of the solution of the Smoluchowski partial differential
equation for particular initial and boundary conditions, an appro-
priate basis for comparison is a full numerical solution of one and
the same boundary value problem for that differential equation.
This has been carried out by means of the numerical finite-element
method for the same parameter values listed in Eq. 16 and results
are indicated by means of discrete points in Fig. 3. The numerical
procedure leads to discrete values of the probability distribution
ρ(x, t) at 800 equally spaced values of x at discrete times t. At any
particular time, the value of R(t) is extracted by numerical inte-
gration of the probability distribution over those spatial intervals
included within the well x1 < x < x+(t).

In the asymptotic analysis, states were allowed to flow outward
through x = x2. However, rather than assume that they virtually
vanished in the finite-element simulation, these were collected in
an energy reservoir beyond x = x2 that was added to the simula-
tion for this purpose. This was done to verify that states are indeed
conserved continuously in time. The integral of probability den-
sity, including states accumulated in this reservoir, was computed
to be within 0.1% of the theoretical value of one for the entire
time range of interest.

Calculation of the Mean Force. A graph of f (t) versus t for constant
speed constraint motion (Eq. 15), and with values of parameters
as prescribed in Eq. 16, calculated according to the asymptotic
expression (Eq. 11) for force obtained above, is shown in Fig. 4.
The influence of the increase in time due to the increasing severity
of the constraint imposed by the loading and the decrease in time
due to the decreasing fraction of bonds remaining within the well
is evident in the figure.

For purposes of comparison, values of force at several discrete
values of time have been extracted from the numerical solution of
the boundary value problem according to the exact expression for
force given in Eq. 4. The results are included as the discrete points
appearing in Fig. 4. The force history is very well represented by
the asymptotic approximation.

A novel experimental approach toward measuring molecular
bond characteristics has been introduced by Gaub and cowork-
ers (11). They measure the net force acting on many nominally
identical bonds as they are separated simultaneously. Thus, the
result measured is the mean force per bond f (t) across all bonds,
both intact and separated, which differs from the actual force
on a particular bond up to separation ϕ(t) = kTκ(vt − x−(t)),
in general. To illustrate this point, the graph of ϕ(t) is included
in Fig. 4. As is evident from the figure, the two representations
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Fig. 4. Mean force on a bond versus time. The solid line is a plot of the
ensemble force f (t) (in pN) versus time t (in ms) according to Eq. 11 for
the parameter values in Eq. 16. The discrete points show the results of a
detailed numerical solution of the underlying boundary value problem for
the Smoluchowski equation with the same parameter values. The dashed
curve represents the force acting on an individual bond up to the instant of
its separation.

of force are virtually identical as long as the survival probability
is near one, but they diverge markedly as the survival proba-
bility approaches one-half. For the particular case illustrated in
Fig. 4, the most likely force at separation is reached at time
t ∼ 17 ms and, by this time, the difference between f (t) and ϕ(t) is
significant.

Sample Force Probability Distributions. As was noted in ref. 8, the
probability that a particular bond subjected to a particular load-
ing will separate at the force ϕ is related directly to the survival
probability R(t). Suppose that this force probability distribution is
denoted by P(ϕ), where the history of force acting on an individual
bond is ϕ(t). For constant speed loading, the relationship between
R(t) and P(ϕ) is

P(ϕ) = − Ṙ(ϕ/vκ)
vκ

. [17]

This distribution is readily calculated for any particular case, for
example, the case defined by the parameter value set in Eq. 16.

Fig. 5 shows the probability distribution for this particular set
of parameter values, as well as the corresponding distributions for
larger and smaller values of loading speed v (with the other para-
meter values unchanged). In all cases, of course, the area under
the curve is one. The influence of changing the value of loading
stiffness κ to values smaller than or larger than the value included
in the reference parameter set Eq. 16, while leaving other para-
meter values unchanged, is demonstrated in the SI Appendix. It is
evident from the result that the loading apparatus stiffness also has
a marked influence on response, as has been observed by Evans
(14) and Walton et al. (15).

An Illustration of Data Inversion. The main purpose of the fore-
going analysis is to gain insight into the connection between
characterizing properties of a molecular bond and aspects of the
response of the bond to controllable mechanical stimulus. Conse-
quently, the prospect for using the results in the interpretation of
experimental data is of interest.

Suppose that the graphs in Fig. 5 are viewed as “experimen-
tal data” for purposes of discussion in this section. We pre-
tend that these “data” were generated with known values of the
loading parameters v, κ, and kT but unknown values of bond-
characterizing parameters. Then, we ask which values of cb, a, and
D are implied by the theoretical description of survival probability

Fig. 5. Probability distribution of separation force. The distribution of the
probability P that a particular bond will separate at force ϕ for the parameter
values in Eq. 16, along with several examples of this distribution for larger or
smaller values of loading speed v.

R(t) given in Eq. 10 or the corresponding force probability P(ϕ)
given in Eq. 17.

The separation force for each loading rate in Fig. 5 is identi-
fied by a particular value of ϕ, say ϕ∗, corresponding to the local
maximum in distribution P(ϕ). As shown in Eq. 11, the force ϕ(t)
depends on time according to κ(vt − x−(t)) so that a unique time,
say t∗, is identified with ϕ∗ = ϕ(t∗). The attainment of a maximum
value in P(ϕ) occurs nearly (but not exactly) at the instant at which
the survival probability R(t) has been reduced to the value one-
half, that is, R(t∗) ≈ 0.5. The latter seems to be the simplest form
of an equation to be solved for the characterizing parameters.

A simple and seemingly stable solution procedure is as follows.
Values of κ and kT are fixed, the value of v is fixed at one of the
values represented in Fig. 5, and values of cb, a, and D are sought.
It is evident that the equation R(t∗) = 0.5 can be solved for D in
terms of other parameters as

D = ln 2
A(cb, a, v)

[18]

Fig. 6. Level curves of diffusivity D in the plane of bond depth cb and bond
well width a. The values of D are 0.1 (solid), 1 (short dashed), and 10 (long
dashed). The common point represents the values of a and cb underlying the
“data” on which the plots are based.
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where A(cb, a, v) is the coefficient of D in the exponent of the
expression defining R(t) in Eq. 10. Then, we plot level curves of
D as defined by the right side of Eq. 18 in the plane spanned
by coordinates cb and a for each of the values represented in
Fig. 5 to be used in the inversion process. If a point in the plane
at which all level curves for a particular value of D intersect
then the coordinates of this point identify the values of cb and a
underlying the “data.” The corresponding value of D is the value
on these intersecting level curves, which completes the inversion
process.

An illustration of such a contour plot is shown in Fig. 6. The
region represented in the figure is spanned by the parameter
ranges 0.5 < a < 1.5 (in nm) and 25 < cb < 55 (in pN nm). Level
curves are shown for D = 0.1, 1, and 10, conveniently including the
value we know to be correct in this case. It is evident that the level
curves for D = 1 intersect at the point cb ≈ 40, a ≈ 1 which defines
the values of the characterizing parameters being “sought.” An
actual inversion of data will surely begin with a larger range of
parameters in which to search for intersections, followed by sev-
eral refinement steps; a more sophisticated strategy for deciding
when a conjunction of contours actually occurs will also be needed
to account for scatter in the data.

We note that in discussions of extracting these parameter values
it has been common to use Kramers’ off-rate for the undistorted
bond Ub(x) rather than D as the rate parameter in the set to
be determined (9, 11). However, this off-rate is determined by
cb, a, and D together so this difference does not seem to be
consequential.

Discussion
In this report, we have described an analysis that leads to an explicit
relationship between the three parameters commonly thought to
characterize the resistance of a molecular bond and an external
mechanical force under constant rate conditions. The principal
result is an expression for bond survival probability. Furthermore,
an explicit expression for the time-dependent off-rate of a molec-
ular bond for any imposed separation rate is given in Eq. 14. These
results are obtained by asymptotic approximation of an integral
representation of the solution of the underlying Smoluchowski
partial differential equation, and the quality of the approxima-
tion has been confirmed by comparison of its implications with an
accurate numerical solution of the corresponding full boundary
value problem for the Smoluchowski equation. Finally, a means of
extracting actual values of characterizing parameters from exper-
imental data has been suggested for data presented in the form of
a measured force probability distribution as introduced by Evans
and Ritchie (1). Our hope is that readers will also find the way
in which force is handled within the statistical development to be
more versatile than are some of the other treatments that have
appeared in the literature.

Still, there are several lingering questions on which we include
a few observations. For one thing, the main results have been

obtained on the basis of a particular energy landscape U(x, t).
Naturally, this raises a question about the generality of the conclu-
sions. Quantitatively, we have pursued this matter by carrying out
detailed numerical analyses of the boundary value problems for
the Smoluchowski equation for several energy landscapes, which
differ in detail, but which are based on the same values of well
depth, well width, and diffusivity. The results have shown rela-
tively minor variation from case to case. Furthermore, we have
carried out an asymptotic evaluation for an angular energy land-
scape composed of three straight lines but the same values of well
depth and width. Even this extreme shape led to an expected value
of separation force only 10% larger then for the interaction poten-
tial used here. We have no particular concerns on this point, but
the matter requires more thorough study.

When considered from another point of view, there is little
basis on which to pursue the question. It is possible to extract
survival probability versus time for any one-dimensional interac-
tion energy proposed. However, with the current level of under-
standing of the experimental data on the bond characteristics,
there is no basis for discriminating among the results obtained.
When more refined data become available on molecular bond
separation, it will likely lead to further study of details of the
shape of the interaction potential beyond depth, width, and a rate
coefficient.

A second point concerns the quality of the asymptotic approxi-
mation scheme used here. Strictly speaking, the results are correct
asymptotically in the limit as cb/kT → ∞, but this is not a useful
statement on the range of validity of the approximation. Kramers
(2) presented the asymptotic limits of his result for off-rate as the
principal result of his work, and the literature is replete with sug-
gestions that the asymptotic description and the implied restriction
to “deep” wells is somehow too restrictive.

To develop a sense of the range of validity of this approxima-
tion, we considered the integral defining the survival probability
in Eq. 7 but with the factor j(ξ, t)/D set equal to one. As such,
the integral retains precisely those features of the expression that
suggest asymptotic evaluation as a useful approach for its approxi-
mation. The asymptotic approximation of this integral appears on
the right side of Eq. 8 with j(x+, t)/D set equal to one. For para-
meter ranges of interest here, the asymptotic approximation is
found to be virtually indistinguishable from the results of accurate
numerical evaluation for values of cb/kT greater than about 5, and
to be useful approximations for the values of cb/kT as small as 2 or
3. These results are illustrated graphically in the SI Appendix. Con-
sequently, we believe that the fidelity of the asymptotically derived
results is high for a range of system parameter values sufficiently
broad to include most observations.
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