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Abstract
Nonalcoholic fatty liver disease (NAFLD) includes hepatic 
steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, 
and cirrhosis. NAFLD is the most common liver disorder 
in the United States and worldwide. Due to the rapid rise 
of the metabolic syndrome, the prevalence of NAFLD 
has recently dramatically increased and will continue to 
increase. NAFLD has also the potential to progress to 
hepatocellular carcinoma (HCC) or liver failure. NAFLD 
is strongly linked to caloric overconsumption, physical 
inactivity, insulin resistance and genetic factors. Although 
significant progress in understanding the pathogenesis 
of NAFLD has been achieved in years, the primary 
metabolic abnormalities leading to lipid accumulation 
within hepatocytes has remained poorly understood. 
Mitochondria are critical metabolic organelles serving as 
“cellular power plants”. Accumulating evidence indicate 
that hepatic mitochondrial dysfunction is crucial to the 
pathogenesis of NAFLD. This review is focused on the 
significant role of mitochondria in the development of 
NAFLD.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) encompasses a 
disease spectrum ranging from simple hepatic steatosis to 
steatohepatitis (NASH), fibrosis, and cirrhosis. NAFLD 
has a very high prevalence in the US and worldwide[1]. It 
is becoming the leading cause for referral to liver clinics 
in most areas. In the US, it occurs in about 20%-35% of  
the population in over 60 million of  the general adult 
population. Further, NAFLD occurs in about 2.6% of  
children and up to 53% of  obese children are diagnosed 
with NAFLD[2,3]. The prevalence of  NAFLD will likely 
continue to rise. Obesity, hyperglycemia, type 2 diabetes 
and hypertriglyceridemia are most important risk factors. 
Genetic factors undoubtedly predispose to NAFLD, as 
supported by higher prevalence of  steatosis in Hispanics 
than Caucasians and African-Americans[4]. NAFLD has the 
potential to progress to hepatocellular carcinoma (HCC) 
or liver failure, both events that ultimately lead to early 
death. 

DEFINITION AND CHARACTERISTICS OF 
NAFLD
NAFLD is defined as an excess of  fat in the liver in 
which at least 5% of  hepatocytes display lipid droplets[5] 
that exceed 5%-10% of  liver weight[6,7] in patients who 
do not consume significant amounts of  alcohol (140 g  
ethanol/week for men and 70 g ethanol/week) for 
women[8]. However, this definition is still controversial, 
because there is only 1.7% ± 0.2% of  liver fat content 
in some healthy men[9] and liver fatty accumulation is 
absent in hepatic cirrhosis[10]. Morphologically, hepatic 
steatosis manifests as accumulation of  macrovesicular or 
microvesicular intracytoplasmic fat droplets in hepatocytes. 
In macrovesicular steatosis, a large single fat vacuole fills 
the cytoplasm of  hepatocytes and displaces the nucleus 
to the periphery, causing a characteristic signet ring 
appearance. In microvesicular steatosis, numerous small 
lipid droplets occupy the cytoplasm of  hepatocytes and 
do not displace the nucleus to the periphery. Hepatic 
steatosis can be reversible or progress to NASH depending 
on the cessation or persistence of  the underlying 
provocative cause, respectively. NASH represents 
steatosis, inflammation, fibrosis, ballooning hepatocytes, 
apoptotic cells and Mallory’s hyaline. The inflammatory 
extent varies considerably and does not always correlate 
with the degree of  steatosis. Infiltrating inflammatory 
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cells consist of  lymphocytes and polymorphonuclear 
leukocytes. Apoptotic ballooned and Mallory hyaline 
hepatocytes may indicate the onset of  NASH. Liver cell 
death and inflammation activate stellate cells leading to the 
development of  hepatic fibrosis that often commences in 
zone 3 and manifests as perisinusoidal, perivenular (around 
terminal hepatic veins), and pericellular fibrosis. Hepatic 
steatosis, inflammation and aggressive fibrogenesis as well 
as sustained hepatocellular proliferation contribute to the 
development of  liver cirrhosis. 

DIAGNOSIS OF NAFLD
The majority of  patients with NAFLD are asymptomatic or 
may complain of  fatigue, exercise intolerance, or unspecific, 
vague abdominal pain in the right upper quadrant[5]. Physical 
examination can be unremarkable, although a palpable 
enlarged liver is frequent. Liver tests usually show minor 
nonspecific abnormalities. Alanine aminotransferases and 
gamma-glutamyl transpeptidase levels are elevated in most 
cases, but may be normal in some patients with advanced 
NASH and hepatic cirrhosis[11]. Imaging techniques 
including ultrasonography and magnetic resonance imaging 
are useful to detect degrees of  steatosis, but can not 
distinguish inflammatory activity and fibrosis. Liver biopsy 
is still the gold standard for the diagnosis of  NASH and 
fibrotic severity[12-14] which can be used to evaluate the 
degree of  steatosis, inflammation, and fibrosis and also can 
help exclude other causes of  liver disease[15]. 

PATHOGENESIS OF NAFLD
A currently favored hypothesis is that “two hits” are 
required for a subject to develop NASH[16]. The first hit 
leads to hepatic steatosis, and the second to hepatocyte 
injury and inflammation. However, the primary metabolic 
abnormalities leading to lipid accumulation within 
hepatocytes has remained poorly understood. Accumulating 
evidence indicates that mitochondrial dysfunction plays 
a central role in the pathogenesis of  NAFLD, and that 
NAFLD is a mitochondrial disease[17]. 

Liver and metabolism
The liver, as a super metabolic achiever in the body, plays a 
critical role in metabolism of  carbohydrate, protein and fat 
to maintain blood glucose and energy homeostasis.

Hepatic mitochondria: Mitochondria serve as the cellular 
powerhouse that generates ATP or heat by using substrates 
derived from fat and glucose. Hepatocytes are normally 
rich in mitochondria and each hepatocyte contains about 
800 mitochondria occupying about 18% of  the entire 
liver cell volume. Mitochondria play an important role 
in hepatocyte metabolism, being the primary site for the 
oxidation of  fatty acids and oxidative phosphorylation. 
A mitochondrion contains inner and outer membranes 
composed of  phospholipid bilayers and proteins. The 
outer mitochondrial membrane contains numerous integral 
proteins called porins, which contain a relatively large 
internal channel that is permeable to all molecules of  5000 
daltons or less. Larger molecules can only traverse the 

outer membrane by active transport through mitochondrial 
membrane transport proteins. Unlike the outer membrane, 
the inner membrane does not contain porins, and is highly 
impermeable; almost all ions and molecules require special 
membrane transporters to enter or exit the matrix. The 
inner mitochondrial membrane contains proteins with 
four types of  functions: the oxidation reactions of  the 
respiratory chain; ATP synthase; specific transport proteins 
that regulate the passage of  metabolites into and out of  
the matrix; protein import machinery. The matrix contains 
a highly concentrated mixture of  hundreds of  enzymes. 
Of  the enzymes, the major functions include oxidation 
of  pyruvate and fatty acids, and the citric acid cycle. 
The mitochondrial respiratory chain (MRC) is extremely 
important for energy generation and it consists of  multiple 
polypeptides. Most of  the respiratory chain polypeptides 
are encoded by nuclear DNA, but some are encoded by 
mitochondrial DNA (mtDNA). mtDNA is a circular 
double-stranded molecule located in the mitochondrial 
matrix. mtDNA is extremely sensitive to oxidative damage 
due to its proximity to the inner membrane, the absence 
of  protective histones, and the incomplete DNA repair 
mechanisms in mitochondria. Therefore, any factors 
that affect mitochondrial integrate will cause reduced 
mitochondrial function.

Hepatic free fatty acids sources: (a) dietary triglycerides 
(TG) as chylomicron particles from the intestine; (b)  
de novo synthesis in the liver; (c) Free fatty acids (FFA). 
influx into the liver from lipolysis of  adipose tissue; (d) 
diminished export of  lipids from the liver; and (e) reduced 
oxidation of  fatty acids. Imbalance of  these metabolic 
steps will increased TG accumulation within the cytoplasm 
of  hepatocytes.

Hepatic mitochondrial fatty acid oxidation: Fatty 
acid oxidation (FAO) is the major source of  energy for 
skeletal muscle and the heart, while the liver oxidizes 
fatty acids primarily under the conditions of  prolonged 
fasting, during illness, and during periods of  increased 
physical activity. FAO also plays an essential role in the 
intermediary metabolism of  the liver. The oxidation 
of  fatty acids in the liver fuels the synthesis of  ketone 
bodies, 3-hydroxy butyrate and acetoacetate, which are 
utilized as alternative sources of  energy by extrahepatic 
organs, like the brain when blood glucose levels are low. 
FAO occurs in three subcellular organelles, β-oxidation 
in mitochondria and peroxisomes, and ω-oxidation in the 
endoplasmic reticulum[18,19]. Mitochondrial β-oxidation 
is the dominant oxidative pathway for the disposal of  
fatty acids under normal physiologic conditions and is 
primarily involved in the oxidation of  short-chain (< C8), 
medium-chain (C8-C12), and long-chain (C12-C20) fatty 
acids. Short-chain and medium-chain FFAs freely enter 
the mitochondria, while long-chain FFAs entry into the 
mitochondria is regulated by the activity of  the enzyme 
carnitine palmitoyl transferaseⅠ(CPT-Ⅰ). Glycolysis 
generates pyruvate, which is transformed by mitochondria 
into acetyl-CoA, an intermediate that goes through the 
citric acid cycle for the production of  reducing agents 
and ATP. However, when glucose and energy levels are 
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elevated, acetyl-CoA is converted to citrate which can leak 
out of  the mitochondrial matrix into the cytosol through 
the tricarboxylate carrier. In the cytosol, citrate regenerates 
acetyl-CoA which is converted to malonyl-CoA by acetyl-
CoA carboxylase. Malonyl-CoA plays important roles 
in both hepatic fatty acid oxidation and lipid synthesis. 
Malonyl-CoA is the initial component for fatty acid 
synthesis. High malonyl-CoA levels also actively inhibit 
CPT-Ⅰ enzyme activity thus robustly decreasing fatty acid 
oxidation by reducing the rate of  fatty acid entry into the 
mitochondria. Thus, periods of  caloric overconsumption, 
and excessive energy supply, increase malonyl-CoA levels 
which promotes hepatic fatty acid synthesis (storage) and 
suppresses fatty acid oxidation (catabolism). Conversely, 
in the fasting state, hepatic malonyl-CoA levels are low, 
allowing extensive mitochondrial import of  long-chain 
FFAs and high rates of  β-oxidation. Figure 1 depicts 
the pathway for mitochondrial fatty acid oxidation. 
During β-oxidation in mitochondria, FFAs undergo a 
dehydrogenation, then hydration, followed by a second 
dehydrogenation, and finally thiolysis, releasing one 
2-carbon acetyl-CoA molecule and a shortened fatty acid 
(Figure 1). The cycle is repeated to split the fatty acid 
into acetyl-CoA subunits. The acetyl-CoA units enter the 
citric acid cycle to produce reducing agents which can be 
converted to ATP in the electron transport chain. Under 
fasting conditions, acetyl-CoA moieties can be converted 
into ketone bodies (acetoacetate and β-hydroxybutyrate), 
which are released by the liver to be oxidized in peripheral 
tissues by the tricarboxylic acid cycle.

MITOCHONDRIAL DYSFUNCTION IN
NAFLD
Although the mechanisms responsible for fatty liver are 
still not fully elucidated, decreased capacity to oxidize fatty 
acids, increased delivery and transport of  FFAs into the 
liver, and augmented hepatic fatty acid synthesis are likely to 
play a significant role in the pathogenesis of  NAFLD. We 
and others have shown that mitochondrial abnormalities 
are closely related to the pathogenesis of  NAFLD which 
raised the possibility that NAFLD is a mitochondrial 
disease[17,20-22]. The mitochondrial abnormalities associated 
with NAFLD include ultrastructural lesions, depletion 
of  mitochondrial DNA (mtDNA), decreased activity of  
respiratory chain complexes, and impaired mitochondrial 
β-oxidation. Abnormal morphologic changes in liver 
mitochondria have been observed in patients and animal 
models with NASH[18,20-24]. Electronic microscopy revealed 
that mitochondria in NAFLD are big and swelled, 
scarce in number, and that the mitochondrial matrix 
has paracrystalline inclusions and hypodensity. Figure 2  
shows an example of  the ultrastructural changes in the 
mitochondrial in a mouse model with a fatty acid oxidation 
defect and hepatic steatosis that we have generated 
and reported earlier[22]. We have also found similar 
mitochondrial lesions in other rodent models that develop 
hepatic steatosis/NASH (data not shown). These same 
mitochondrial lesions are found in liver biopsy specimens 
from patients treated with 4,4'-diethylaminoethoxyhe
xestrol, a drug that inhibits mitochondrial respiratory 

Figure 1  An illustration of mitochondrial fatty acid β-oxidation. LCFA: long-chain fatty acid; TCA: tricarboxylic acid.
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chain (MRC) activity and mitochondrial β-oxidation[25]. 
Prolonged treatment with this agent is associated with 
hepatic steatosis and steatohepatitis that is histologically 
indistinguishable from NAFLD in humans[25]. The 
ultrastructural mitochondrial defects in patients with 
NAFLD may be indicative of  defective mitochondrial 
functions, e.g. reduced MRC activity[26] and impaired 
ATP synthesis[27]. NAFLD is often found in patients with 
insulin resistance, obesity and type 2 diabetes, the same 
metabolic conditions in which there is decreased oxygen 
consumption and ATP production, reduced total mtDNA 
and mtDNA transcription factor A, and reduced content 
of  respiratory proteins in the fat, muscle and liver[28]. Many 
genes encoding mitochondrial proteins in skeletal muscle 
and fat are negatively correlated with body mass[29-33]. 
mtDNA depletion in hepatocytes impairs mitochondrial 
function and causes hepatic steatosis and other liver 
injury[34,35]. Patients with NASH have decreased expression 
of  mtDNA-encoded polypeptides[36] and low activity of  
complexes Ⅰ, Ⅲ, Ⅳ and Ⅴ[26]. Mice with genetic deletion 
of  NEIL1 DNA glycosylate have increased mtDNA 
damage and deletions and develop fatty liver disease[37].

Multiple enzymes are involved in mitochondrial 
β-oxidation and deficiency of  these enzymes may lead 
to the development of  hepatic steatosis, e.g. mice with 
disrupted medium-chain and very-long-chain acyl-
CoA dehydrogenase genes manifest defects in fatty 
acid oxidation that likely lead to the witnessed micro- 
and macrovascular hepatic steatosis found in these 
mice. Mitochondrial trifunctional protein (MTP) is a 
heterotrimeric protein that consists of  four α-subunits 
and four β-subunits and catalyzes long-chain fatty acid 
oxidation. MTP defects in humans are recessively inherited, 
and children with defects of  any of  the three enzymatic 
activities exhibit mostly microvesicular hepatic steatosis. 
We have generated a mouse model for a null mutation 
causing complete MTP deficiency and demonstrated that 
homozygous mice develop hepatic steatosis immediately 
after birth[38]. In subsequent report, we have documented 
that aging mice heterozygous for the MTP defect also 
become insulin resistant and develop hepatic steatosis as 

shown in Figure 3[22]. Further, the activity of  mitochondrial 
respiratory chain complex is decreased in liver tissue of  
patients and animal models with NAFLD[26,39]. 

A number of  mechanisms can be considered to 
explain the mitochondrial dysfunction found in NAFLD 
patients and animal models. Possible mechanisms include 
(a) excessive reactive oxygen species (ROS) production, 
(b) increased TNF-α expression, and (c) altered PGC-1 
expression.

Reactive oxygen species
MRC dysfunction can directly lead to the production 
of  ROS. If  electron flow is interrupted at any point 
in the respiratory chain, the preceding respiratory 
intermediates can transfer electrons to molecular oxygen 
to produce superoxide anions and hydrogen peroxide[40,41]. 
Malondialdehyde and 4-hydroxynonenal, two byproducts 
of  l ip id peroxidat ion, can inhibi t mitochondr ia l 
cytochrome c oxidase by forming adducts with this 
enzyme. ROS-induced depletion in mtDNA can severely 
lower mitochondrial number and function leading to 
steatosis and liver lesions[34]. Such depletion can impair 
the synthesis of  complexes Ⅰ, Ⅲ, Ⅳ and Ⅴ of  the MRC, 
because mtDNA encodes for 13 of  the MRC polypeptides. 
Evidence of  oxidative stress has been found in patients 
with NASH[21]. Decreased activity of  the MRC in ob/ob 
mice is in part attributable to the oxidative stress, because 
treatment of  ob/ob mice with antioxidant MnTBAP, a 
mimic of  manganese superoxide dismutase, improved the 
activity of  several complexes of  the MRC. Surprisingly, 
activity of  complex Ⅱ, which polypeptides are only 
encoded by nuclear DNA, decreased even more in ob/ob 
mice treated with MnTBAP. Furthermore, liver histology 
improved markedly in mice treated with MnTBAP. MRC 
complexes’ activity was reduced by 30% to 50% versus 
control activity. These complexes’ activity was inversely 
correlated to blood TNF-α levels, body mass index, and 
HOMA index[26]. 

TNF-α
Another important factor to consider in the pathogenesis 
of  mitochondrial dysfunction is TNF-α. High blood 
TNF-α l eve l s have been found in pa t ients wi th 
NASH[26,42,43]. In ob/ob mice TNF-α concentrations in liver 
tissue were some 20-fold higher than in normal mice[39]. 
The likely sources of  the hepatic TNF-α are hepatocytes 
and Kupffer cells[44]. TNF-α induces mitochondrial 
swelling with a lighter matrix and a loss of  septa. In 
addition, TNF-α induced swelling of  the mitochondria 
causes a bursting of  the mitochondrial membrane leading 
to an interference between MRC complexes Ⅰ and Ⅲ[45,46]. 
Anti-TNF-α treatment in ob/ob mice improve complex 
Ⅰ, Ⅱ, Ⅲ and Ⅴ activity, β-oxidation activity, and liver 
histology[39].

PGC-1
Nuclear receptors are pleiotropic regulators of  glycolytic 
and oxidative metabolism[47]. Mitochondrial activity 
is transcriptionally controlled, in part, by the nuclear 
receptors and the peroxisome proliferator-activated 
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Figure 2  Representative electron micrograph of hepatocytes from control wild-
type mice (MTPa+/+) (A) and mice heterozygous for a mitochondrial trifunctional 
protein defect (MTPa+/-) (B) at 11 700 × magnification. The MTPa+/- mice develop 
hepatic steatosis (see Figure 3). The mitochondria from the MTPa+/- mice were 
swollen with hypodense matrix and disrupted cristae. Reproduced with permission 
from Gastroenterology. 2005; 128: 1381-1390.
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receptor-γ coactivator 1 (PGC-1)-related protein family 
such as PGC-1α and PGC-1β[48,49]. PGC-1α and PGC-1β 
are preferentially expressed in tissues with high oxidative 
capacity such as heart, skeletal muscle and brown adipose 
tissue, where they serve critical roles in the regulation 
of  mitochondrial functional capacity and cellular energy 
metabolism[50-53] PGC-1α potently induces the expression 
of  genes implicated in energy homeostasis in almost every 
cell type through known mitochondrial regulators such 
as the estrogen-related receptors (ERRs), peroxisome 
proliferator-activated receptor d, or nuclear respiratory 
factor (NRF-1, 2)[48,49,54,55]. Overexpression of  PGC-
1α in skeletal muscle cells results in an increased energy 
expenditure, mitochondrial biogenesis[52,53], whereas loss of  
PGC-1α results in reduced muscle performance, cardiac 
defects, and other metabolic and behavioral defects[56,57]. 
Liver expresses low levels of  PGC-1α and PGC-1β at 
normal condition, however, their expression is upregulated 
at fasting[58-60]. PGC-1α and PGC-1β activate hepatic 
fatty oxidation by inducing expression of  PPARα[59,60]. 
Hepatocytes from PGC-1α deficient mice have diminished 
FAO activity and mitochondrial respiration rates[49].

CONCLUSION
Genetic, environmental and nutritional factors are involved 
in the pathogenesis of  NAFLD, which is nowadays a 
major public health problem. In the absence of  proven 
pharmacological therapy of  NAFLD, it is critical to explore 
its pathogenesis and novel therapeutic pathways. In this 
Editorial, we have reviewed evidence that implicates 
mitochondrial dysfunction as a primary mechanism for 
development of  NAFLD. Mitochondrial dysfunction may 
not only cause fat accumulation, but also may lead to the 
generation of  ROS and cytokine production contributing to 
progression of  NAFLD by inducing hepatic inflammation 
and fibrosis. 
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