
[Cell Adhesion & Migration 3:1, 129-137; January/February/March 2009]; ©2009 Landes Bioscience

Antipsychotic drugs are divided into two groups: typical and 
atypical. Recent clinical studies show atypical antipsychotics have 
advantages over typical antipsychotics in a wide variety of neurop-
sychiatric conditions, in terms of greater efficacy for positive and 
negative symptoms, beneficial effects on cognitive functioning, 
and fewer extra pyramidal side effects in treating schizophrenia. 
As such, atypical antipsychotics may be effective in the treatment 
of depressive symptoms associated with psychotic and mood disor-
ders, posttraumatic stress disorder and psychosis in Alzheimer 
disease. In this paper, we describe the effects and potential 
neurochemical mechanisms of action of atypical antipsychotics in 
several animal models showing memory impairments and/or non- 
cognitive behavioral changes. The data provide new insights into 
the mechanisms of action of atypical antipsychotics that may 
broaden their clinical applications.

Introduction

Schizophrenia is a severe and chronic mental illness that affects 
about 1% of the world’s population. Antipsychotic drugs having 
therapeutic efficacy in treating schizophrenia are divided into two 
groups: typical (conventional) and atypical (novel). Typical antipsy-
chotics, represented by chlorpromazine and haloperidol, ameliorate 
only the positive symptoms. Atypical antipsychotics, including 
clozapine, olanzapine, quetiapine and risperidone, are effective in 
treating the positive, negative and cognitive symptoms, and have 
a low association with dyskinesia or Parkinsonism.1-5 In clinical 
studies, atypical antipsychotics have shown their efficacy in a wide 
variety of neuropsychiatric conditions and, as such, may be effective 

in the treatment of depressive symptoms associated with psychotic 
and mood disorders,6 in treating posttraumatic stress disorder,7 
psychosis in Alzheimer’s disease8 as well as cognition. Olanzapine, 
quetiapine and risperidone have beneficial effects on neurocognitive 
function in patients with early psychosis;9 quetiapine also improves 
psychotic symptoms and cognition in Parkinson disease.10

Both typical and atypical antipsychotics can bind to dopamine 
receptors, and the blockade of dopamine D2 receptors in the 
mesolimbic region is thought to be the mechanism responsible for 
the reversal of positive symptoms by antipsychotics.11 Atypical antip-
sychotics can also bind to serotonin (5-HT) receptors. The different 
affinities of antipsychotics for brain dopamine D2 and 5-HT2A 
receptors may be helpful in understanding some of the different thera-
peutic effects of atypical antipsychotics;12,13 however, the mechanisms 
underlying their therapeutic effects on negative and cognitive symp-
toms of schizophrenia may be beyond the dopamine and serotonin 
receptor blockade effects and therefore require further investigation.

Neuroanatomical and clinical studies of schizophrenia suggest 
progressive neuropathological changes (such as neuronal atrophy 
and/or cell death) occur over the course of the disease.14-17 Cognitive 
deficits tend to occur early in the course of schizophrenia, and the 
severity of deficits is predictive of the long-term treatment outlook 
for patients.18 Neural injury or neurodegeneration may cause cogni-
tive deficits in schizophrenia.19 Therefore, the beneficial effects of 
atypical antipsychotics on behavior may also relate to their possible 
effects on neuroprotection and/or neurogenesis beyond the dopamine 
and serotonin receptor blockade effects. In in vivo studies using rats, 
atypical antipsychotics attenuated the methamphetamine-induced 
memory impairment and neurotoxicity,20,21 alleviated the amphet-
amine-induced anxiety-like behavioral changes,22 counteracted the 
phencyclidine-induced reference memory impairment and decrease 
of Bcl-XL/Bax ratio in the cortex,23 and reversed the suppression of 
hippocampal neurogenesis caused by repeated restraint stress.24 In  
in vitro studies, atypical antipsychotics were effective in reducing PC12 
cell death induced by serum withdrawal or by addition of hydrogen 
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peroxide, β-amyloid peptide, or N-methyl-4-phenylpyridinium ion 
(MPP+).25-28

This paper reviews the behavioral effects of atypical antipsychotics 
on a number of animal models relevant to schizophrenia and other 
neurodegenerative disorders, and explores the possible working 
mechanisms of atypical antipsychotics behind their beneficial behav-
ioral effects (Table 1). To investigate the possible neuroprotective 
effects of atypical antipsychotics, we review animal models induced 
by a variety of possible neurotoxic consequences.

Effect of Quetiapine on a Neurotoxic Regimen of 
Amphetamine-Induced Anxiety-Like Behavioral Change

The most widely studied class of drug-induced models of schizo-
phrenia is based on the behavioral effects of psychostimulant drugs, 
such as amphetamine. One aspect of the psychostimulant model 
that has generated considerable interest involves the dosage regi-
mens required for amphetamine to produce psychotic-like behavior. 
Most preclinical studies show anxiogenic-like effects at low doses of 
amphetamine (0.5–5 mg/kg).29-32 Conversely, studies by Dawson  
et al. show anxiolytic-like effects of d-amphetamine (0.75, 1.5 mg/
kg) in rats,33 while Lister reports no effects of d-amphetamine 
(1, 2 and 4 mg/kg) on anxiety-like behavior in mice.34 The long-
term neurotoxic consequences of dl-amphetamine (20 mg/kg/day, 
5 days) induces the decrease of striatal tyrosine hydroxylase (TH) 
immunostaining, and significantly reduces anxiety-like behaviors in 
both the light/dark box and open field tests in rats.22 Striatal TH 
immunoreactivity is one of the neuronal markers used to assess the 
integrity of dopaminergic terminals, and is decreased by toxic doses 
of amphetamine and amphetamine-like compounds;35,36 structural 
changes, pathognomonic of neuronal damage, have been noted 
using histofluorescent techniques in striatal dopaminergic terminals 
following continuous amphetamine administration.37

Chronic administration of quetiapine normalizes both the 
amphetamine-induced increase in the time spent in the light box 
in the light/dark box test as well as the ratio of ambulation inside 
the inner circle to total ambulation in the open field test in rats  
(Fig. 1).22 This suggests therapeutic effects of quetiapine on amphet-
amine-induced anxiety-like behavioral changes. Clearly, this finding 
has clinical relevance, recognizing the abuse potential of amphet-
amine and its capacity for exacerbating or inducing mood and 
psychiatric disturbances in humans.38,39 Quetiapine’s mechanism of 
effect on amphetamine-induced anxiety-like behavioral changes may 

be related to its effect on dopaminergic and/or 5-HT receptors and 
its neuroprotective effects.

The modulation effects of quetiapine on dopaminergic and/or 
5-HT receptors may be involved in its therapeutic effects on the 
amphetamine-induced changes of anxiety-like behavior. Behavioral 
pharmacology experiments suggest atypical antipsychotic drugs, 
which are mixed dopamine D2 and 5-HT2 antagonists effective in 
the treatment of schizophrenia, can attenuate some behavioral effects 
induced by amphetamine.40-43 Animal studies show a dopaminergic 
mechanism is involved in the change of anxiety-like consequences 
of amphetamine, and that an increase in dopaminergic transmis-
sion may be responsible for its anxiogenic effect.29,32 Therefore, the 
effects of quetiapine on dopaminergic receptors may be involved 
in its therapeutic effects on amphetamine-induced changes in  

Table 1  Effects of atypical antipsychotics on animal models relevant to schizophrenia and other neurodegenerative 
disorders

Damage factors Impairments (Animals) Clinical relevance Atypical antipsychotics Drug effects 
    (Reference)
Amphetamine Anxiety-like behavior (Rats) Schizophrenia Quetiapine Attenuation (22)
Methamphetamine Memory, Tyrosine hydroxylase in caudate putamen Schizophrenia Quetiapine Attenuation (20, 21) 
 (Rats)  Olanzapine
Phencyclidine Memory, Cortex Bcl-XL/Bax ratio (Rats) Schizophrenia Quetiapine Attenuation (23)
Okadaic acid Memory, Hippocampal cell death (Rats) Neurodegeneration Olanzapine Attenuation (99)
Cerebral ischemia Memory, Depressive and anxiety-like behaviors,  Stroke Quetiapine Attenuation 
 Hippocampal neurodegeneration (Mice)   (122, 123)

Figure 1. Chronic administration of quetiapine (QUE, 10 mg/kg/day, for 33 
days) normalized the increased time spent in the light box (A) in the light/
dark box test and attenuated the increased ratio of ambulation distance 
inside the inner circle over the total ambulation distance (%) (B) in the open 
field test induced by chronic administration of dl-amphetamine (AMP, 20 
mg/kg/day, five days) in rats. Results are expressed as means ± S.E.M.  
(n = 5 in the CON group, n = 6 in each of the other three groups). *p < 
0.05 vs CON, #p < 0.05 vs AMP.
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Effect of Quetiapine on Methamphetamine-Induced Memory 
Impairment and Neurotoxicity

Methamphetamine (METH) is a psychomotor stimulant that 
can cause neuropsychiatric complications.57 In addition to acute 
neurochemical and behavioral effects, repeated moderate dose 
 administration of this stimulant produces long-term neurotoxicity 
to dopaminergic and serotonergic nerve terminals, hyperthermia and 
high mortality.58-60 Hyperthermia accompanies the neuronal damage 
produced by METH.52,53 Tyrosine hydroxylase (TH) immunoreac-
tivity in striatum, one of neuronal markers used to assess the integrity 
of dopaminergic terminals, is decreased by toxic doses of METH.35,36 
The administration of METH also caused cognitive impairment in 
clinical study,61 and induced recognition memory impairment in 
rats.62,63 The METH-induced disruption of the striatal dopaminergic 
terminals may contribute to the object recognition impairment.63

Chronic administration of quetiapine after METH injections 
reverses the METH-induced recognition memory impairment in 
an object recognition task21 (Fig. 2A). The object recognition task 
measures non-spatial memory in the rat, takes advantage of the rat’s 
unprompted nature to explore its surroundings, and requires the rats 
to recall to which of two small objects they have had prior expo-
sure.21 In addition, quetiapine (Fig. 2B) and olanzapine attenuate 
the METH-induced dopaminergic terminal neurotoxicity, shown 
as a decrease of TH immunostaining in the caudate putamen (CPu) 
of striatum in rats.20,21 The memory improvement is parallel to the 
attenuating effect of quetiapine on the METH-induced neurotox-
icity, suggesting an association between both the neuroprotective 
and memory improving effects exerted by quetiapine. The ability of 
quetiapine to reverse METH-induced object recognition impairment 
may be associated with therapeutic effects of quetiapine on METH-
induced striatal neurotoxicity.21

The ability of chronic administration of quetiapine to counteract 
METH-induced dopaminergic terminal neurotoxicity in the CPu 
suggests a neuroprotective action of quetiapine. METH can induce 
significant increases in the pro-death Bcl-2 gene family (Bad, Bax and 
Bid), and decreases in the anti-death genes, Bcl-2 and Bcl-XL.64 Bcl-2 
protects METH-induced dose-dependent apoptosis in immortalized 
neural cells.65 In addition, a possible mechanism of METH neuro-
toxicity is the formation of reactive oxygen species and oxidative 
stress.66 The elevation of oxidizable dopamine concentrations may 
be primarily responsible for METH-induced dopaminergic terminal 
injury.60 Bcl-2 protects against generators of reactive oxygen species, 
increases antioxidant defenses, and decreases levels of reactive oxygen 
species and oxidative damage.67 Therefore, the neuroprotective 
effects of chronic administration of quetiapine on METH-induced 
neurotoxicity may involve the modulation of the Bcl-2 family,23,28 
the upregulation of the neuroprotective protein, Bcl-2,20,49,50 and 
the prevention of oxidative stress and stress-related damages.68 
Furthermore, the attenuating effect of quetiapine on METH-induced 
hyperthermia may be responsible for the neuroprotective effects of 
quetiapine.20,22 Correlating with the METH-induced decrease of 
striatal dopamine content and the striatal terminal degeneration, 
hyperthermia may play an important role in METH neurotox-
icity.52,69 The critical determinant of METH-induced neurotoxicity 
is METH-induced hyperthermia;70 attenuation of the hyperthermia 
induced by METH affords a protective role against neurochemical 
depletions and striatal TH activity.53

anxiety-like behavior. On the other hand, the lower affinity and 
faster dissociation of quetiapine for dopamine D2 receptor44 
suggests the involvement of neurotransmitter systems other than the 
dopaminergic system. Among possible candidates, the 5-HT system 
is the most likely to be involved, as quetiapine has a high affinity for 
5-HT receptors.45 Reports show decreased 5-HT function results in 
an apparent anxiolytic effect in rodents.46-48 Therefore, the effects of 
quetiapine on 5-HT receptors may also be involved in its therapeutic 
effects on amphetamine-induced changes in anxiety-like behavior.

The neuroprotective effects of quetiapine affecting dopaminergic 
and/or 5-HT system damage may also be involved in its therapeutic 
action, as evident in changes of anxiety-like behavior induced by 
a neurotoxic regimen of amphetamine. Chronic pre-treatment  
and/or post-treatment of atypical antipsychotic drugs upregulates 
neuroprotective proteins [such as B cell lymphoma protein-2 
(Bcl-2) and brain-derived neurotrophic factor (BDNF)] in the 
brain, normalizes the stress-induced decrease of Bcl-2 and BDNF 
in the hippocampus, and exerts neuroprotective effects on metham-
phetamine-induced neurotoxicity.20,49-51 In particular, quetiapine 
attenuates the amphetamine-induced hyperthermia22 shown to accom-
pany neuronal damage produced by various amphetamine-like 
compounds.52-56

Figure 2. (A) METH (5 mg/kg x 4, 2 hr intervals) and chronic administration 
of quetiapine (QUE, 10 mg/kg/day, 28 days) had no effect on the explor-
atory preference during the training session; chronic administration of quetia-
pine reversed the METH-induced decrease of exploratory preference in rats 
during the retention session (1 hr and 24 hr) of the object recognition task 
(n = 8 in CON and QUE, n = 11 in METH and METH + QUE). (B) Chronic 
administration of quetiapine (10 mg/kg/day, 28 days) reversed the METH 
(5 mg/kg x 4, 2 hr intervals)-induced decrease of DS (difference score) in 
optical density of TH immunostaining in the caudate putamen of rats (n = 4 
in CON and QUE, n = 5 in METH and METH + QUE). Rats were sacrificed 
24 hr after the object recognition task. Results are expressed as means ± 
S.E.M. *p < 0.05 vs CON, #p < 0.05 vs METH.
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filament-like phosphorylation of tau protein, and the formation of β/
A4-amyloid containing plaque-like structures in gray and white matter 
areas.94-98 A unilateral microinjection of OA (100 ng) into the dorsal 
hippocampus induces spatial working and reference memory impair-
ment, decreases the number of the surviving  pyramidal neurons in 
the CA1 region of the hippocampus, and causes hippocampal apop-
tosis, as revealed by terminal deoxynucleutidyl transferase-mediated 
biotinylated UTP nick end labeling (TUNEL) staining in rats.99 
Because an intact hippocampus is required for recall, item recog-
nition and associative recognition memory in animals,100,101 the 
OA-induced spatial memory impairment may partially be attributed 
to the hippocampal cell death it causes.

Chronic administration of olanzapine significantly attenuates the 
OA-induced spatial memory impairment (Fig. 4) in the radial arm 
maze task and cell death evaluated by TUNEL (Fig. 5) and Nissl 
staining in the hippocampus of rats.99 The neuroprotective effect 
on hippocampal cell death is associated with the memory improving 
effect exerted by olanzapine.99 The attenuating effect of olanzapine 
on the OA-induced neurodegeneration and apoptosis provides 
direct evidence supporting the neuroprotective action of olanzapine. 
Olanzapine can regulate the translocation and expression of pro- and 
anti-apoptotic proteins Bcl-XL and Bcl-2 in PC12 cells.28 In animal 
studies, olanzapine upregulates the expression of Bcl-2 and BDNF 
in the hippocampus49,89 and helps restore the repeated restraint 
stress-induced decrease in these two neuroprotective proteins in 

Effect of Quetiapine on Phencyclidine-Induced Memory 
Impairment and Neurotoxicity

Phencyclidine (PCP), an N-methyl-D-aspartate (NMDA) 
receptor antagonist, can cause psychoses and negative symptoms, 
and is used as a pharmacological model of schizophrenia.71 PCP 
impairs learning and memory performance in rats.23,72-74 PCP 
also induces neurodegeneration75-77 and apoptosis78 in rat brain, 
and can decrease Bcl-XL and increase Bax in the frontal cortex of 
perinatal rats.79 A single dose (50 mg/kg) of PCP causes reference 
spatial memory impairment in the radial maze task and a decrease in 
the ratio of Bcl-XL (an anti-apoptotic Bcl-2 family member) to Bax  
(a pro-apoptotic analogue) in the posterior cingulate cortex in rats.23 
The Bcl-2 protein family, which contains pro- and anti-apoptotic 
proteins, represents some of the most well-defined regulators of the 
neurodegenerative process.80 The Bcl-XL/Bax ratio is an index that 
can determine whether an apoptotic stimulus results in the life or 
death of a cell.81 The PCP-induced lower ratio of Bcl-XL/Bax indi-
cates PCP may decrease the survival of cells in the posterior cingulate 
cortex. The posterior cingulate plays an important role in analyzing 
the significance of objects within a topographical representation and 
in passing this representation to the hippocampal system for memory 
formation.82 The posterior cingulate cortex, per se, plays a role in 
spatial learning in animals;83 therefore, the PCP-induced reference 
spatial memory impairment is likely associated, at least in part, with 
the neurotoxicity in the posterior cingulate cortex caused by PCP.

Chronic administration of quetiapine counteracts the PCP-induced 
reference memory impairment in an eight-arm radial maze task and 
attenuates the PCP-induced decrease of the Bcl-XL/Bax ratio in the 
posterior cingulate cortex23 (Fig. 3). In all training trials of the radial 
maze task, the same four arms were baited (one bait per arm), while 
the other four arms were never baited. Reference memory is regarded 
as a long-term memory for information that remains constant over 
repeated trials (memory for the positions of baited arms), while 
working memory is considered as a short-term memory in which the 
information to be remembered changes in every trial (memory for 
the positions of arms that have already been visited in each trial).23 
The memory improvement due to quetiapine is parallel to the alle-
viating effect of quetiapine on the PCP-induced decrease of Bcl-XL/
Bax ratio in the posterior cingulate cortex, suggesting an association 
between both the neuroprotective and the memory improving effects 
exerted by quetiapine. Because evidence suggests excessive dopamin-
ergic transmission could contribute to the PCP-induced cell injury in 
the brain,84,85 quetiapine may attenuate PCP-induced neurotoxicity 
by acting on dopamine receptors as do other antipsychotic agents, 
such as clozapine and olanzapine.86-88 Like olanzapine,49,50,89 the 
neuroprotective effects of chronic administration of quetiapine may 
also involve the upregulation of neuroprotective proteins such as 
Bcl-2 and BDNF.

Effect of Olanzapine on Okadaic Acid-Induced Memory 
Impairment and Hippocampal Cell Death

Okadaic acid (OA), a selective and potent inhibitor of the serine/
threonine phosphatases 1 and 2A,90,91 causes neuronal cell death in 
vitro92 and in vivo.93,94 Infusion of OA into rat brain results in severe 
memory impairment, accompanied by remarkable neuropathological 
changes including hippocampal neurodegeneration, a paired helical 
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Figure 3. (A) Chronic administration of quetiapine (QUE, 10 mg/kg/day,  
16 days) counteracted the PCP (50 mg/kg)-induced spatial reference 
memory formation impairment of rats in the radial arm maze task. (B) 
Representative western blot bands of Bcl-XL and Bax in the posterior cingulate 
cortex of rats. (C) Chronic administration of quetiapine (10 mg/kg/day, 16 
days) counteracted the PCP (50 mg/kg)-induced decrease of Bcl-XL/Bax ratio 
in the posterior cingulate cortex. Results are expressed as means ± S.E.M. (n 
= 6–8 in each group). *p < 0.05 vs CON, #p < 0.05 vs PCP.
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Figure 5. (A–D, A’–D’) Representative photomicrographs of TUNEL staining 
in the injected hippocampus of rats in the CON (A and A’), OA (B and B’), 
OLA0.5 + OA (C and C’) and OLA2.0 + OA (D and D’) groups. The high 
magnification of right photomicrographs (A’–D’) are enlargement of selected 
sections of (A–D), respectively. Arrows on the low magnification panels 
indicate the location of the high magnification images. In the hippocampi 
of OA-injected groups (B, B’; C, C’; and D, D’), the TUNEL-positive cells are 
visible in different frequency, whereas almost no TUNEL-positive cells are 
evident in the hippocampus of the control group (A and A’). The scale bar 
represents 300 μm in (A–D) and 30 μm in (A’–D’). (E) Quantitative analysis 
of the effect of olanzapine on the OA-induced increase of TUNEL-positive 
cells in the injected hippocampus. The number of TUNEL-positive cells in the 
hippocampus was counted at 400x magnification. Results are expressed as 
means ± S.E.M. (n = 6–7 in each group). *p < 0.05 vs CON, #p < 0.01 vs 
OA and +p <0 .05 vs OLA0.5 + OA.

hippocampal neurons.50 OA-induced apoptosis is associated with 
downregulation of Bcl-2 and can be prevented by upregulation of 
Bcl-2.102-104 Therefore, Bcl-2 may play an important role in the 
neuroprotective effects of olanzapine on OA-induced neurodegen-
eration and apoptosis. Olanzapine may also attenuate OA-induced 
neurotoxicity by upregulating superoxide dismutase105-107 and 
perform protective effects on OA-induced apoptotic cell death by 
modulating the expression of pro- and anti-apoptotic proteins, such 
as Bax and Bcl-XL.28,103 However, further studies are necessary to 
elucidate whether olanzapine attenuates OA-induced neurotoxicity 
by directly affecting the activation of phosphatases or caspases.

OA-induced spatial memory impairment in the present paradigm 
is likely due to the secondary effect of OA-induced hippocampal cell 
death.94 The ability of olanzapine to improve OA-induced spatial 
memory impairment in rats may be subsequent to its attenuating 
effects on OA-induced hippocampal cell death.99 Olanzapine in rats 
induces an increase of acetylcholine release in the medial prefrontal 
cortex and hippocampus, a possible contributing factor to cogni-
tive improvement in schizophrenia.108,109 Therefore, the effects of 
olanzapine on acetylcholine may be an additional contributor to its 
ability to improve OA-induced memory impairment.

Effect of Quetiapine on Global Cerebral Ischemia-Induced 
Cognitive and Non-Cognitive Behavioral Impairments and 
Hippocampal Neurodegeneration

Cerebral ischemia is one of the major leading causes of morbidity 
and mortality worldwide. Cognitive deficits, neuropsychiatric disor-
ders and brain damages occur in global cerebral ischemia (GCI) 
subjects.110-113 Post-stroke depression, following cerebrovascular 
lesions, along with post-stroke anxiety, inhibit physical and cognitive 
recovery.112-117 The ischemia-induced brain damage is believed to 
be associated with cognitive and memory dysfunction.114,115,118-120 
In animal studies, GCI induced by transient occlusion of common 
carotid arteries causes spatial memory impairment and hippocampal 
neurodegeneration, and induces changes in depressive and anxiety-
like behaviors.121-123

Our study shows the administration of quetiapine attenuates 
GCI-induced spatial memory impairment in a water maze test and 
neurodegeneration in the hilus of hippocampus in mice, suggesting 
quetiapine’s neuroprotective effects may contribute to its beneficial 
effect on memory impairment.122 In this study, quetiapine is pre-
administrated two weeks before GCI, so it may act to attenuate cell 
death rather than “improve memory” after disease onset. Quetiapine 

Figure 4. Olanzapine (OLA) significantly attenuated the OA-induced impair-
ment in working (A) and reference (B) memory measured by the radial arm 
maze task 1 week after the microinjection of OA or saline into the right 
hippocampus of rats. Olanzapine did not affect the spatial working and 
reference memory formation before OA or saline microinjection. Results are 
expressed as means ± S.E.M. (n = 6–7 in each group). *p < 0.05 vs CON, 
#p < 0.05 vs OA and +p < 0.05 vs OLA0.5 + OA.
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reactive oxygen species, attenuate Aβ-induced activity changes of 
the antioxidant enzymes (SOD1, catalase and glutathione peroxi-
dase), and block Aβ-induced decrease in mitochondrial membrane 
potential in PC12 cells.68 Furthermore, atypical antipsychotics may 
demonstrate other aspects of neuroprotective effect. For example, the 
treatment effect of olanzapine may be associated with its effects on 
brain gray matter volume and psychopathology in schizophrenia.131

Atypical Antipsychotics Upregulate Brain Neurogenesis

Neurogenesis (neuronal regeneration) is a process of generating 
functionally integrated neurons from progenitor cells.132 Atypical 
antipsychotics can increase cell proliferation and neurogenesis in 
adult rat brain.133,134 In addition, quetiapine reverses the suppression 
of hippocampal neurogenesis caused by repeated restraint stress.24 
Although the function of neurogenesis in the hippocampus of trans-
genic mice under physiological or pathological conditions is unknown, 
new neurons from the adult human hippocampus have shown some 
function.135 The formation of some types of memory relies on the 
continuous production of new hippocampal neurons throughout 
adulthood.136 Therefore, the beneficial behavioral effects of atypical 
antipsychotics may be linked to their upregulation of neurogenesis. 
However, the effect of atypical antipsychotics on the hippocampal 
neurogenesis is still controversial. Other labs using different dosages and 
schedules show atypical antipsychotics have no effect on hippocampal 
neurogenesis (as reviewed by Newton and Duman137).

Summary

Atypical antipsychotics attenuate both cognitive and non-cognitive 
behavioral impairments in different animal models of neurotoxicity. 
Their beneficial behavioral effects are not only related to their 
dopamine and serotonin receptor blockade effects, but also to their 
effects on neuroprotection, neurotrophins and neurogenesis. The 
neuroprotective potential of atypical antipsychotics may contribute 
to their therapeutic effects in treating cognitive and non-cognitive 
impairments in schizophrenia and other neurodegenerative diseases.
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may attenuate GCI-induced neurotoxicity by upregulating neuro-
protective proteins or regulating NMDA receptors, thus leading to 
the downregulation of oxidative stress.122

Quetiapine effectively attenuates GCI-induced changes in 
depressive and anxiety-like behaviors in mice.123 Dysfunction of 
neurotransmitter systems is the major cause of the depressive-like 
behavior in ischemic mice, and these depressive-like behaviors are rele-
vant to the low levels of norepinephrine and dopamine.124 Serotonin 
deficiency is also postulated to be relevant to the pathophysiology 
of depression after stroke.125,126 In addition, GCI-induced injury of 
dopaminergic and serotoninergic systems in mice may cause anxiety-
like behavioral changes;123 therefore, the neuroprotective effects of 
quetiapine on dopaminergic and serotoninergic system damage may 
be involved in its action to regulate the depressive- and anxiety-like 
behaviors. In fact, quetiapine can alleviate the GCI-induced neuro-
degeneration and neuron loss as well as attenuate the GCI-induced 
decrease of striatal TH immunostaining.122,123

Neuroprotective Mechanisms of Atypical Antipsychotics

Atypical antipsychotics upregulate the level of BDNF, an impor-
tant neurotrophin mainly expressed and distributed in brain neurons. 
Neurotrophins are growth factors that act directly on neurons 
to support their growth, differentiation and survival.127 Chronic 
administration (28 days) of clozapine (10 mg/kg) and olanzapine  
(2.7 mg/kg) upregulates BDNF mRNA expression in the hippocampus 
of rats.89 Quetiapine attenuates the immobilization stress-induced 
decrease of BDNF expression in rat hippocampus51 and chronic 
administration of olanzapine accelerates the restoration of BDNF in 
hippocampal neurons from decrease induced by repeated restraint 
stress.50 Atypical antipsychotics also modulate the levels of other 
growth factors, such as fibroblast growth factor 2 (FGF-2) and nerve 
growth factor (NGF), that may play important roles in changing 
synaptic plasticity, normalizing cognitive deficits, and preventing cell 
degeneration.128,129

Atypical antipsychotics upregulate the level of Bcl-2 and modu-
late the Bcl-XL/Bax ratio in brain. Bcl-2, a neuroprotective protein, 
inhibits apoptosis by sequestering proforms of death-driving caspases 
and preventing the release of mitochondrial apoptotic factors into 
the cytoplasm.49,80,130 The mRNA and protein expression of Bcl-2 
in rat frontal cortex and hippocampus are increased after chronic 
atypical antipsychotic treatment.49 Olanzapine prevents METH-
induced Bcl-2 decrease and accelerates the restoration of Bcl-2 in 
hippocampal neurons from the repeated restraint stress-induced 
decrease.20,50 Atypical antipsychotics attenuate neurotoxicity of 
β-amyloid by modulating Bax and Bcl-XL/S expression and localiza-
tion in PC12 cells.28 In animal studies, quetiapine attenuates the 
phencyclidine-induced decrease in the Bcl-XL/Bax ratio in the poste-
rior cingulate cortex in rats.23

Atypical antipsychotics have an antioxidant capacity. Clozapine, 
olanzapine, quetiapine and risperidone increase the gene expression 
of superoxide dismutase (SOD1) in PC12 cells, and prevent cell 
death after serum withdrawal.25,106 As such, atypical antipsychotics 
may have a common antioxidant action responsible for their cyto-
protective effects in reducing PC12 cell death induced by serum 
withdrawal or by addition of hydrogen peroxide, β-amyloid peptide, 
or MPP+.25-28 Olanzapine and quetiapine prevent PC12 cells from 
Aβ-induced apoptosis and the overproduction of intracellular 
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