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Abstract
Oxidative modifications are a hallmark of oxidative imbalance in the brains of individuals with
Alzheimer’s, Parkinson’s and prion diseases and their respective animal models. While the causes
of oxidative stress are relatively well-documented, the effects of chronically reducing oxidative stress
on cognition, pathology and biochemistry require further clarification. To address this, young and
aged control and amyloid-β protein precursor-over-expressing mice were fed a diet with added R-
alpha lipoic acid for 10 months to determine the effect of chronic antioxidant administration on the
cognition and neuropathology and biochemistry of the brain. Both wild type and transgenic mice
treated with R-alpha lipoic acid displayed significant reductions in markers of oxidative
modifications. On the other hand, R-alpha lipoic acid had little effect on Y-maze performance
throughout the study and did not decrease end-point amyloid-β load. These results suggest that,
despite the clear role of oxidative stress in mediating amyloid pathology and cognitive decline in
ageing and AβPP-transgenic mice, long-term antioxidant therapy, at levels within tolerable
nutritional guidelines and which reduce oxidative modifications, have limited benefit.
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Introduction
Oxidative modifications have been proposed as one biochemical change that could lead to the
neuropathology and neuronal dysfunction and death found in Alzheimer’s disease (AD) [1–
3]. Early work focused on late stage oxidative damage, such as advanced glycation end-
products [4] and carboxymethyllysine [5] as the first oxidative modifications found in
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neurofibrillary tangles (NFT) and plaques containing tau and amyloid-β fibrils (Aβ),
respectively. Later studies showed tau phosphorylation, notably the Alz-50 epitope often
regarded as an ‘early’ marker of NFT development [6], occurring coincident with markers of
oxidative stress [7,8] and led to the notion that oxidative modification, particularly lipid
peroxidation products, such as 4-hydroxynonenal (HNE) and related compounds [8], were
involved in the fibrillization and aggregation of tau [9,10]. Consistent with this, HNE-protein
adducts are present at higher levels within pyramidal neurons of AD as compared to controls
[11]. Of note, damage to neuronal nucleic acids, in particular RNA, is significantly increased
in AD, with the highest levels seen before the development of large numbers of NFT and
amyloid plaques, suggesting oxidative damage as one of the earliest events in disease
pathogenesis [12–15].

Of clear importance is the fact that oxidative imbalance is found at all stages of AD [16,17].
Diseased neurons can remain viable for 10 years or longer [18,19] and as such must have
sufficient protective mechanisms to maintain normal homeostasis. However, as a
neurodegenerative disorder, at some point in the disease, the oxidative insults may overwhelm
cellular antioxidant defense systems leading to cellular dysfunction and death. Unfortunately,
antioxidant therapy studies to date have focused on either administering antioxidants to patients
well into the disease course or for shorter durations and have resulted in clinically equivocal
or slight measurable benefit [20–22]. On the other hand, while a comprehensive review of
many trials utilizing antioxidants for various disorders has shown that, as a group, there was
no adverse effect, certain compounds under specific circumstances were correlated with higher
mortality rates [23]. One reason may be that phenolic antioxidants, as well as others, produce
pro-oxidant intermediates while scavenging free radicals, which can be counterproductive
[24]. We hypothesize that the effects of antioxidant therapy work to help cellular function and
survival, but only with selected antioxidants and at levels and timepoints in the disease course
that will augment endogenous oxidative responses [25].

The antioxidant R-alpha lipoic acid (LA) has been suggested as a therapeutic that might act to
increase the production of acetylcholine or as a chelator of redox-active metals or even to
combat the accumulation of lipid peroxidation products [26,27]. In this respect, LA used in
conjunction with acetyl carnitine protects neuronal cells in vitro from the effects of HNE-
toxicity [28] and, at least in some cases, this was shown to be protective via cell signalling
mechanisms including the extracellular signal-related kinase pathways, which are dysregulated
in AD [29–31]. Importantly, the antioxidant capacity of lipoic acid and its readily reduced form
dihydrolipoic acid have been shown to fully attenuate the deleterious phenotype of vitamin E
deficiency in a mouse model [32].

In this study, we found that while the long-term administration of LA in control mice and mice
over-expressing amyloid-β protein precursor (AβPP) did significantly lower the levels of
oxidative markers in both wild type and transgenic mice, there were neither effects on cognition
as measured by the Y-maze nor on Aβ load. Overall, the findings support the efficacy of long-
term antioxidant supplementation to combat the effects of oxidative modifications, but a
functional role of these modifications on normal ageing and diseased states is not supported.

Materials and methods
Animals

Twenty mice (B6SJL) were available for this study, nine wild type and 11 transgenic for
AβPP Tg2576 [33], aged 6.25–11.5 months at the onset of the study. Wild-type and transgenic
mice were divided into groups receiving either normal or an LA supplemented diet (see Table
I). All animals were housed individually in microisolator cages in the same room on a schedule
of 12 h light and dark and offered environmental enrichment. Intake of food, water, weight,
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behaviour and enrichment were all carefully monitored for the 10-month period of study. Body
weights were recorded every month and r-values obtained. No group (normal or LA-enriched
food) showed any significant trend. One animal exhibited very low levels of activity and one
animal exhibited continuous running in circles in his cage while all others appeared normal.
Every other day the animals were observed by either laboratory personnel or animal centre
technicians and veterinarians. All experiments were approved by the institutional animal use
and care committee (Case Western Reserve University IACUC).

Diet
Administration of the supplement through the food was chosen to mimic a routine therapy for
human application and has been shown to cross the blood–brain barrier [34]. LA (98.97%) was
supplied by NeoGen (Lansing, MI) and incorporated into pelleted AIN93M diet (MP
Biomedicals, Solon, OH) at a concentration for an expected dietary intake of 30 mg/kg per
day. The LD50 for rats was found to be ~ 500 mg/kg [35] and studies using between 25–100
mg/kg showed measurable reductions in oxidative stress in other models [26,36]. For this
project, all food was administered by the laboratory personnel. Throughout the study, new food
was routinely administered to all animals. The weight of fresh food and any food remaining,
including any crumbs that could be collected, was recorded. Thus, the approximate amount of
food eaten and thus the true daily dosage of LA was determined. At the same time, all animals
were weighed to note any physical differences resulting from the two diets. Comparing the
beginning and ending weights showed no significant weight changes between any of the groups
or diets.

All animals ate very well and no statistically significant differences were seen between the
animals on the normal diet vs the LA diet (p = 0.85 for the transgenic and p = 0.35 for the wild-
type mice). It was determined that the animals actually ingested, on average, 4.2 ± 0.7 grams
of food per day, slightly less than the proposed 5 g/day.

Toxicity test
Since this project was a long-term study, a toxicity test was designed to test any ill-effects of
the LA supplemented diet. Using reported LD50 rates of 400–500 mg/kg body weight in rats,
two additional mice were fed 5 × and 15 × the experimental dosage or 150 mg/kg and 450 mg/
kg for 2 weeks. The mice ate the food normally and showed no behavioural or physical ill
effects, up to an additional 6 weeks.

Behaviour testing
Y-maze analysis has been shown to be a reliable, noninvasive test to determine cognitive
changes in the Tg2576 mouse [37–39]. The Y-maze apparatus consisted of three arms 32 cm
(long) × 10 cm (wide) with 26-cm walls [40]. All animals were tested in a randomized order
at the start and end of the experimental protocol. Testing was performed in the same room and
at the same time (between 8–10 am) to ensure environmental consistency. Briefly, each animal
was placed into the centre of the Y-maze and each arm entry was recorded. An entry into an
arm was considered valid if all four paws entered the arm. An alternation was defined as three
consecutive entries in three different arms (i.e. 1, 2, 3 or 2, 3, 1, etc). The percentage alternation
score was calculated using the following formula: Total alternation number/Total number of
entries − 2)*100. Furthermore, total number of arm entries was used as a measure of general
activity in the animals. The maze was wiped clean with 70% ethanol between each animal to
minimize odour cues.

Statistical analysis
Student’s t-test and ANOVA were used for statistical evaluation.
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Immunohistochemistry
At the end of the study, all mice were euthanized with an overdose of pentobarbital and the
brain removed. The brains were immediately dissected sagitally, with one hemisphere fixed in
methacarn (methanol:chloroform: acetic acid; 6:3:1) and the other frozen in liquid nitrogen.
After 16 h the fixed tissue was transferred to 70% ethanol and embedded in paraffin.
Immunostaining of the 6 µm paraffin sections was performed using the peroxidase–anti-
peroxidase method with DAB as the chromogen. Assessment was made either qualitatively or
quantitatively by measuring the percentage area covered in the hippocampal and cortical region
for Ab and for protein-bound HNE analysis by measuring the cellular densitometric levels
using image analysis software (Axiovision Rel 4.5, Zeiss) [39,41].

Dot-blot analysis
Frozen brain samples were homogenized in Trisbuffered saline (TBS, 50 mM Tris, 150 mM

NaCl, pH = 7.6) and protein concentrations were determined using the BCA method (Pierce).
Dot blot analysis of homogenized protein samples for all mice was performed in two separate
experiments and in triplicate each time. Five micrograms of each mouse brain homogenate was
dotted onto Immobilon (Millipore) and dried. Following a blocking step in 10% non-fat milk,
primary antibodies were incubated overnight followed by peroxidase labelled secondary
antibodies and developed using enhanced chemiluminescence (Hyperfilm, Amersham).
Results were scanned and densitometric values were obtained using Axiovision 4.5 (Zeiss) and
expressed as the mean of all trials using the Student’s t-test to compare groups.

Antibodies used for all studies included rabbit antisera directed against Aβ1–42 (Biosource),
heme oxygenase-1 (HO-1) [7,42], HNE [11], carboxymethyllysine [5], nitrotyrosine [43],
monoclonal antibodies specific for Aβ1–40 and Aβ1–42 (gift of Fukumoto, H., Takeda Chemical
Industries), as well as 4G8 (Pierce-Endogen) and the assay for redox active iron [44,45].

Results
Markers of oxidative modification but not amyloid-β load are decreased with LA

A significant decrease in the expression of HO-1 (Figure 1A) as well as protein-bound HNE
(Figure 1B) was observed in both wild-type and transgenic mice treated with LA using
immunoblot analysis of brain homogenates. No differences were detected in either
nitrotyrosine or carboxymethyllysine levels following LA treatment (data not shown) in control
or transgenic mice. In AβPP transgenic mice, the Aβ load was not significantly changed in
either control or transgenic mice by the LA diet (Figure 1C).

Immunocytochemistry
Supporting the immunoblot analyses, HO-1, which is expressed specifically in the regions
surrounding the amyloid plaques in the Tg2576 mice on control diet (Figure 2A), was decreased
around the amyloid plaques in mice receiving LA (Figure 2C). Similarly, the LA diet decreased
protein-bound HNE expression surrounding Aβ plaques (Figure 2D) in mice compared to those
on control diet (Figure 2B).

Redox active iron accumulation was specifically colocalized with Aβ plaques in all Tg2576
mice on the normal diet (Figure 3B) in the hippocampus and cortical regions as well as in all
mice receiving the chronic LA diet (Figure 3A). Aβ load showed no change either qualitatively
or after quantitative analysis of the area immunostained in the entire cortical and hippocampal
area (Figure 4). Age at commencement of study did not impact amyloid load in LA-treated
animals (data not shown).
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Lipoic acid does not alter cognition
Behavioural testing using the Y-maze was carried out at day 0 to establish a baseline
measurement and at the end of the study to determine the effects of LA diet in all groups.
Tg2576 mice, as expected, showed fewer spontaneous alternations, a difference which was not
statistically significant using ANOVA (p > 0.05). At day 298, neither the control nor LA diet
group showed any significant difference in alternation behaviour from the beginning of the
study (Figure 5B).

Using ANOVA analysis, no significant differences (p > 0.05) were noted in either the number
of entries or percentage alternations between the groups of mice aged 6–8 or 11–12 months of
age at the beginning of the study (data not shown).

Discussion
In this study, we show that chronic administration of the antioxidant LA decreased the
expression of protein and lipid peroxidation markers of oxidative modification within the brains
of both control and AβPP-transgenic mice. In a related study [46], LA treatment improved
Morris water maze performance in the Tg2576 mouse model, but was ineffective at modulating
cognition in the Y-maze test or in the wild-type group for both tests. Significantly, the present
work expands upon this by showing that administration of the antioxidant at timepoints well
before the onset of plaque development and increasing the duration of treatment to 10 months
neither improves cognition nor reduces amyloid deposition. Importantly, despite the small
number of animals per group in our study, the Y-maze data for the control and Tg2576 mice
at Day 0 is very similar to a previous study [37]. Nevertheless, we did not find differences in
general activity across groups, as has been indicated previously for this task [38].

In addition to finding no change in Aβ protein levels or plaque load in the brains of Tg2576
following long-term administration of LA, no changes in nitrotyrosine or carboxymethyllysine
levels following LA treatment were detected. However, substantial decreases in both HO-1
and protein-bound HNE levels following LA were evident in both the wild-type and Tg2576
mice. Studies measuring HO-1 in AβPP transgenic mice to date have looked at immunohisto-
chemical localization of oxidative stress markers, where there is a striking accumulation of
HO-1 around amyloid deposits [47]. Yet, HO-1 is readily detectable in wild-type mice by
western blot analysis [48]. Further, strong induction of HO-1, detectable with western blot
analysis, is usually highest at time points less than 24 h after stress (hyperthermia, ischemia,
etc.) [49,50]. Therefore, the finding in the present study, that HO-1 dot blot analysis of total
brain homogenate from aged animals undergoing chronic rather than acute stress shows
insignificant differences, is not unexpected. Importantly, the focal accumulation of HO-1
around the amyloid deposits (Figure 2) is similar to what has been previously reported [47].
The significance of the results presented here is that both HO-1 levels and accumulation around
amyloid deposits were dramatically lowered following LA dietary supplementation. Similarly,
while the levels of HNE are higher in the AβPP transgenic mice when the total brain
homogenate is assayed, future studies using larger groups should show significance. Again,
however, the specific localization of HNE protein adducts accumulating around amyloid
deposits is similar to previous reports and is also attenuated following antioxidant
administration.

In the Tg2576 model, the significant development of Aβ deposits does not result in the
extensive neuronal degeneration or loss as is found in AD [18,51]. The behavioural changes,
which are well-documented in this model, are not associated with Aβ load [38]. The fact that
Aβ deposition does not correlate well with AD severity [52] and occurs in many normal aged
individuals [53,54], as well as in many other species [55,56], suggests Aβ is not a direct cause
of the disease [18,57,58]. Many reports have even suggested that Aβ, as well as other fibrillar
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proteins in other neurodegenerative diseases, may accumulate as a protective response [59–
64]. LA, however, while not decreasing Aβ deposition, has been shown to counteract the
inflammation responses seen in mice following Aβ vaccination [65]. The present study, and
others showing significant cognitive improvements following antioxidant therapies [66,67] yet
no Aβ load attenuation, provides further evidence for the idea that amyloid is not a direct cause
of the clinical manifestations of AD [68–70].

These studies may be applied to other non-Aβ expressing models of neurodegeneration,
including the tauopathy models which display striking NFT accumulations. Increased reactive
oxygen species, which are specifically localized in the NFT in AD, have also been found in
the tauopathy mice [71]. In fact, some antioxidant therapies have been shown to delay the onset
of the tau pathology which develops in these mice [72]. In another mouse model of
neurodegeneration, using chronic systemic d-galactose exposure, treatment with LA
effectively ameliorated neurodegeneration and cognitive function [73]. Further, in models of
apolipoprotein E deficiency that result in intraneuronal amyloid inclusions, administration of
combination antioxidant therapy both increased longevity and reduced inclusion formation in
the hippocampus [74]. Antioxidants, therefore, attenuate oxidative damage in the Tg2576
mouse, in tauopathy models and in metabolic models and further work is needed to analyse
the effects of LA on neurodegeneration involvement and cognitive decline in these and other
models.

Restoring or maintaining the homeostatic balance between oxidative stressors and cellular
responses is crucial to neuronal survival in both ageing and neurodegeneration [75].
Antioxidant therapy, either via nutritional guidelines [76] or pharmacological involvement, is
often considered a low risk therapeutic strategy [77]. LA and other antioxidants have been used
both in cell culture and animal models, most often showing significant and specific effects
[78], though when applied to AD patients have only minor results including slowing the
progression of the disease [22,79,80]. In a previous study with Tg2576 mice, administering
vitamin E prior to but not after 5 months of age reduced Aβ deposition, yet the vitamin E
attenuated lipid peroxidation in all groups [81]. These studies, taken together with the present
work, suggest the action of LA may be targeting mitochondria, the most affected organelle
responsible for AD development. Indeed, it has been shown that mitochondria are damaged in
AD, structurally and functionally [82–84] and, therefore, antioxidants that easily penetrate not
only the cell, but the mitochondria, may provide the greatest protection. To this end, compounds
other than the naturally occurring antioxidants have much greater access to and provide
protection to mitochondria from oxidative stressors [85,86].

The present study only augments both the safety and potential benefits of applying antioxidants
long-term for healthy human ageing. Further studies using LA in conjunction with other
antioxidants or at different concentrations is warranted. The one remarkable result from this
long-term study is that chronic, low-dose antioxidant therapy, specifically LA in this case, is
both safe and effective for lowering accumulations of oxidative stress products in both wild-
type and transgenic aged mice. However, the lack of effect on cognitive decline or amyloid
load by this therapy is not insignificant and provides evidence that antioxidants may be
beneficial for healthy, normal ageing but should be used as a safe addition to other therapies
aimed at stopping the neurodegeneration of AD.

Abbreviations
AD, Alzheimer’s disease; Aβ, amyloid-β; AβPP, amyloid-β protein precursor; HO-1, heme
oxygenase-1; HNE, 4-hydroxynonenal; NFT, neurofibrillary tangles; LA, R-alpha lipoic acid;
TBS, Tris-buffered saline.
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Figure 1.
Dot-blot analysis of total brain homogenate reveals striking differences in markers of oxidative
damage. Specifically, in both wild-type and Tg2576 mice who received the LA-enriched diet,
levels of HO-1 (A) and HNE (B) were reduced, in some cases significantly. Using this method,
the amount of Aβ was also determined. In the Tg2576 mice, Aβ levels remained unchanged
following the chronic LA diet (C).
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Figure 2.
Immunohistochemical analysis suggests accumulation of markers of oxidative damage in the
brain is attenuated following chronic LA administration. HO-1, which accumulates around the
Aβ depositions in the Tg2576 mice on normal diet (A), is reduced in the mice on the LA diet
(C). Similarly, in the normal diet group, HNE accumulation surrounding the large Aβ plaques
is evident (B), while essentially absent from all animals in the LA group (D). Scale bar = 50
µm.
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Figure 3.
Redox-active iron, detected using a histochemical technique on paraffin embedded tissue
sections, specifically accumulates with Aβ in Tg2576 mice on normal diet (B) and is present
at the same levels even in mice on the LA diet in Aβ plaques in the hippocampus and cortex
(A).
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Figure 4.
Immunohistochemical analysis of Aβ density in the cortex and hippocampus, expressed as the
percentage area covered by Aβ, as detected with antibody 4G8 in the Tg2576 mice. While the
older mice have expectedly higher levels of Aβ deposition, those mice administered the LA-
enriched diet for 10 months show no less Aβ deposition. Significantly, even in those mice
beginning the diet at age 6–8 months, presumably before visible Aβ plaque development, by
the end of the experiment after 10 months, Aβ deposition was also not attenuated.
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Figure 5.
Behaviour analysis, in this case administration of the Y-maze task, showed little change
between the groups of mice on normal or LA-enriched diet. The number of arm entries, while
higher in the Tg mice at the beginning of study in accordance with previous reports, decreased
by the end of the study in all groups. No significant differences were noted between the mice
on normal or LA-enriched diet (A). The percentage alternations, defined as entries into an arm
different than the previous two choices, did not show any significant changes in any group (B).
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Table I
Transgenic status, diet type, age at onset of experimental diet and age at the end of the study for the mice used.

Mouse type Diet
Age at onset

(months)
Age at end
(months)

Wild-type Normal 6.25 16.25

Wild-type Normal 6.25 16.25

Wild-type Normal 7 17

Wild-type Normal 11.5 21.5

Wild-type Lipoic acid 7 17

Wild-type Lipoic acid 7 17

Wild-type Lipoic acid 8.5 16†

Wild-type Lipoic acid 11 21

Wild-type Lipoic acid 11.5 21.5

Tg2576 Normal 6.25 16.25

Tg2576 Normal 6.25 16.25

Tg2576 Normal 7 14.5†

Tg2576 Normal 8.5 18.5

Tg2576 Normal 11.5 21.5

Tg2576 Normal 12 22

Tg2576 Lipoic acid 6.25 16.25*

Tg2576 Lipoic acid 6.25 16.25

Tg2576 Lipoic acid 7 17

Tg2576 Lipoic acid 11.5 21.5

Tg2576 Lipoic acid 11.5 21.5

*
mouse not included in behaviour testing due to inactivity.

†
died before the end of the study.
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