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Molecular fingerprinting techniques offer great promise for analyzing changes in microbial community
structure, especially when dealing with large number of samples. However, a serious limitation has been the
lack of quantification offered by such techniques since the relative abundances of the identified operational
taxonomic units (OTUs) in the original samples are not measured. A quantitative fingerprinting approach
designated “qfingerprinting” is proposed here. This method involves serial dilutions of the sample of interest
and further systematic fingerprinting of all dilution series. Using the ultimate dilutions for which OTU are still
PCR amplifiable and taking into account peak size inaccuracy and peak reproducibility, the relative abundance
of each OTU is then simultaneously determined over a scale spanning several orders of magnitude. The
approach was illustrated by using a quantitative version of automated ribosomal intergenic spacer analysis
(ARISA), here called qARISA. After validating the concept with a synthetic mixture of known DNA targets,
qfingerprinting was applied to well-studied marine sediment samples to examine specific changes in OTU
abundance associated with sediment depth. The new strategy represents a major advance for the detailed
quantitative description of specific OTUs within complex communities. Further ecological applications of the
new strategy are also proposed.

Central questions in microbial ecology are related to eco-
logical processes and to spatiotemporal patterns of microbial
communities over various scales (29, 36, 39). Despite the per-
sisting difficulty in accurately measuring the vast microbial
diversity, microbial ecologists seek to determine the distribu-
tion and abundance of microbes, compare the structure of
microbial communities, and explain their patterns where con-
textual parameters are available (37). Although microbial di-
versity surveys are generally based on the direct sequencing of
rRNA genes from environmental samples to assess community
composition, this strategy is practically limited by the number
of samples and sequences that need to be simultaneously pro-
cessed to answer medium- to large-scale ecological questions.
As an alternative to systematic sequencing, molecular finger-
printing techniques such as denaturing gradient gel electro-
phoresis (30), terminal restriction fragment length polymor-
phism (T-RFLP) (24), amplified ribosomal intergenic spacer
analysis (ARISA) (8), or single-strand conformation polymor-
phism (SSCP) (43), which are culture independent, highly re-
producible, and robust, have proven useful for time-efficient
sample processing and comparative analysis of microbial com-
munity structure (1, 25). However, these techniques cannot
answer questions about operational taxonomic unit (OTU)
richness or about OTU relative abundances (1).

When using community fingerprinting methods, the sizes and
the fluorescence intensities of labeled DNA fragments can be
analyzed by using an automated sequencer (e.g., in T-RFLP,

SSCP, and ARISA). DNA fragments of different sizes are
thereafter commonly classified into OTUs (see, for example,
references 1, 29, and 44). Often the relative peak areas, i.e.,
relative to the sample total peak area (54), are used as an
indicator of OTU abundance, although it is known that PCR-
based fingerprinting methods cannot yield a true representa-
tion of the original DNA ratios because of preferential and
nonspecific amplifications (11, 46, 51) and of heterogeneity in
rrn copy number (7). However, it is generally accepted that the
intersample variation in relative peak areas should not be
affected by the biased PCR conditions because they similarly
apply to all OTUs and samples (2, 42). However, using peak
areas as an indicator for absolute abundance has been con-
firmed to be a fruitless exercise, even when using simplified
microbial communities (4, 10, 55). However, when experiments
are performed under well-defined laboratory conditions or on
simplified communities whose rrs copy numbers per genome
are known, quantitative estimates of each target organism may
be successfully obtained via community fingerprinting methods
(27, 41). A corollary of the lack of quantitativeness in commu-
nity fingerprinting methods is that they may not be appropriate
to assess the richness of microbial communities or to be used
with diversity metrics because of their underestimation of the
actual richness and because of their limited detection thresh-
old and dynamic range (reviewed in reference 1). These meth-
ods are merely strategies designed to screen samples for OTU
presence, in contrast to rrs sequencing approaches that are
meant to actually sample microbial diversity.

The goal of the present study was to describe a new strategy,
called qfingerprinting (for “quantitative fingerprinting”), which
provides quantitative estimates of each detected OTU over a
scale of several orders of magnitude. In brief, the strategy may
be understood as a combination of two techniques, i.e., dilu-
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tion endpoint PCR (a variant of most-probable-number–PCR
[MPN-PCR]) (38) and traditional community fingerprinting
analysis. First, the development and subsequent validation of
the strategy were performed on a model community composed
of a mixture of known sequences. Second, the approach was
applied to environmental microbial communities from deep-
sea sediment samples for which quantitative estimates of mi-
crobial communities were already available (20). Changes in
OTU abundance as a function of depth, as well as rare, dom-
inant, and common OTUs, were then determined. Standard
ARISA and quantitative ARISA (qARISA) were compared
regarding both overall community patterns and the distribu-
tion of individual OTUs. Further ecological applications of the
new strategy are also proposed.

MATERIALS AND METHODS

Standard ARISA protocol. The ARISA-PCR mixture (50 �l) contained 1�
PCR buffer (Promega, Madison, WI); 2.5 mM MgCl2 (Promega); 0.25 mM
deoxynucleoside triphosphate mix (Promega); bovine serum albumin (3 �g
�l�1); 20 ng of extracted DNA (quantified by a ND-1000 Nanodrop; Peqlab
Biotechnology, Erlangen, Germany); 400 nM universal primer ITSF (5�-GTCG
TAACAAGGTAGCCGTA-3�) and eubacterial ITSReub (5�-GCCAAGGCAT
CCACC-3�) (4), the latter being labeled with the phosphoramidite dye HEX; and
0.05 U of GoTaq polymerase (Promega). PCR primers were chosen based on
their ability to yield reproducible and even peaks in the range 100 to 1,000 bp
when used in ARISA (unpublished results) compared to other available ARISA
primers (8, 40). PCR was carried out in an Eppendorf MasterCycler (Eppendorf,
Hamburg, Germany) with an initial denaturation at 94°C for 3 min, followed by
30 cycles of 94°C for 45 s, 55°C for 45 s, 72°C for 90 s, with a final extension at
72°C for 5 min. PCR products were purified utilizing Sephadex G-50 Superfine
(Sigma-Aldrich, Germany), and samples were prepared prior to submitting to
capillary electrophoresis on a 80-cm-capillary ABI Prism 3130xl genetic analyzer
(Applied Biosystems) as follows. A standardized amount of DNA (100 ng of
DNA, as determined spectrophotometrically) was added to a separation cocktail
containing 0.5 �l of internal size standard Map Marker 1000 ROX (50–1000 bp)
(BioVentures, Inc., Washington, DC), 0.5 �l of tracking dye (BioVentures), and
14 �l of deionized Hi-Di formamide (Applied Biosystems, Foster City, CA). The
preparation was denatured 3 min at 95°C and kept on ice at least 5 min before
being further processed by the sequencer. Separation of the PCR-amplified
fragments via capillary electrophoresis was carried out with the following run
parameters: 14.6 kV (run voltage), 2.4 kV (injection voltage), 20 s (injection
time), and 60°C (oven temperature). Raw profiles were checked for stable base-
lines and voltage, and peak sizes and absolute areas were then determined by
using GeneMapper software v 3.7 (Applied Biosystems) with minimum peak
heights of 50 fluorescence units for all dyes. The best-fit size calling curves were
built by using a second-order least-squares method (this compensates for any
anomalously running fragments in the standard) and the local Southern method.
A perfect fit for the calibration curves on the range 100 to 1,000 bp was always
checked before further processing the samples.

Binning. From GeneMapper output tables, conversions to sample-by-frag-
ment tables and subsequently to sample-by-binned-OTU tables were performed
by using custom R binning scripts. The algorithm rearranges the data and
calculates the relative fluorescence intensity (RFI) of each peak by dividing
individual peak areas by the total peak area for the respective sample. All peaks
with RFI values of �0.09% were not included in further analyses since they
consisted of background peaks. To include the maximum number of peaks while
excluding background fluorescence, only fragments above a threshold of 50
fluorescence units and ranging between 100 and 1,000 bp were taken into con-
sideration.

In order to take into account the technical variability in peak size calling (due
to computer interpolation of peak sizes) (12), dye migration discrepancies (48),
and run-to-run variations (24, 31), all peaks within a range of sizes (a window)
can be combined (i.e., binned) into bin window frames, where the window is as
wide as the imprecision of the OTU size calling. The window size (WS) must be
estimated empirically for each fingerprinting pipeline by running appropriate
controls at different times, for instance. Binning has a significant effect on the
obtained sample similarities and must thus be accounted for to avoid falsely
describing ecological differences that would be only due to technical variability
(12). Besides, binning is important because fragment sizes produced by the

fingerprinting strategy may later be compared to databases or to sequences from
clone libraries (3, 18, 28). In our case, the ARISA imprecision was �1 bp (i.e.,
WS � 2 bp) as determined by running known target sequences at different times
on the same sequencer under the same analytical conditions (data not shown).

A shifting window size binning strategy was used since it offers the possibility
to optimally aligned electrophoretic profiles and to deal with different window
starting positions (12). The binning frame that offers the highest similarity among
samples is identified out of all binning frames starting at a given position. The
distance between two consecutive binning frames is defined as the shift (Sh)
value. In the original description of the binning approach (12), only integer
values were considered as “true” values to which peaks needed to be assigned to
by taking the appropriate technical inaccuracy, resulting in Sh � 1 bp. This would
mean that the two bin frames (WS � 2) would start, in our case, at 100 and at
101, respectively. Due to dye migration discrepancies, however, the actual, true
(but unknown) size value may be different from integer values (i.e., a decimal
value could be also representing a “true” size) and may actually change over the
range of sizes being examined due to sequence-specific migration discrepancies
(17). For this reason, Sh values must also be variable and a good, but the
computing-demanding value may be 0.1 bp. For WS � 2 bp, there would there-
fore be 20 bin window frames to be calculated and evaluated. The current
implementation of the window shifting algorithm enables a user-defined choice
of the WS and Sh values, as well as the range size and RFI cutoff value, to
calculate the best binning frame for a given data set. The interactive script then
reports the best frame among all calculated as the one that maximizes sample
similarities.

Another script allows for an automatic calculation of a series of WS values
(e.g., 0.5, 1, 2, 3, 4, and 5 bp) for a given Sh value (e.g., 0.1 bp). This enables an
optimal determination of the best binning strategy for a data set without a priori
knowing the ideal WS value. A compromise between high resolution (low WS)
and high similarity among samples (high WS) must be found based on the output
of the scanning mode script. The interactive and automatic binning algorithms
are implemented in the free, R programming language (The R Foundation for
Statistical Computing [http://cran.r-project.org/]) and are available with their
respective manuals and examples online (http://www.ecology-research.com). Af-
ter proper, platform-specific installation of the R base program, the scripts run
on Windows, Mac OS, Solaris, and Linux platforms.

Description of the qARISA strategy. Each DNA sample was serially diluted
with sterile PCR-grade water in triplicates, and this is done by transferring few
microliters of DNA (typically 1 or 2 �l) from one well to the next by using a single
pipette with a new tip each time to avoid carrying DNA over (Fig. 1). Dilutions
were directly performed in PCR microtubes each containing, for instance, 9 or 18
�l (in accordance with the volume of DNA transferred) of sterile PCR-grade
water if decimal dilutions are chosen. Using a multichannel pipette instead of a
single pipette led to more systematic variation due, most likely, to variation in
individual volumes that are more difficult to detect when 8 or 12 pipette tips are
simultaneously used (unpublished data). Negative controls consisted of PCR-
grade water instead of DNA template. The standard ARISA protocol was then
applied to a common volume (e.g., 2 �l) from each dilution well, and all reactions
were processed at the same time to avoid introducing additional experimental
variability between dilution series and replicates. After capillary electrophoresis
and peak sizing, binning was also performed on all replicates and dilution series
together. Using a combination of the automatic and the interactive binning
algorithms was then necessary to obtain the best-fitting binning approach for the
data set at hand. The binned table that contained RFI values for the dilution
series and for the sample replicates was then converted to a sample-by-OTU
table, where OTU abundance values were calculated based on the dilution factor
for each sample and on two rules (i.e., the consensus and continuity rules) to
determine whether a binned OTU was reliably present. With the consensus rule,
a peak is considered present if it appears at least twice among three replicates of
the sample for a given dilution level. The continuity rule states that the highest
dilution level recorded is the highest one for a continuous series of successful
amplifications from undiluted to more diluted DNA preparations. The abun-
dance was then expressed as log10 values for a decimal dilution series. The table
conversion that takes into account the dilution levels and the continuity and
consensus rules is performed automatically with the qfingerprinting algorithm
(provided at http://www.ecology-research.com).

To illustrate the continuity rule, we can imagine two OTUs that produce the
following series of amplification results, 1101010 and 1100000, with from left to
right, PCR success and failure scored as 1 and 0, respectively, for a dilution series
from undiluted to 10�6 levels. We may assume for simplicity that a success
already satisfies the consensus rule. In those two cases, the calculated log10 values
would be 2, i.e., only the highest dilution (i.e., 10�1) that satisfies the consensus
rule and that is continuously positive from the undiluted level was kept for
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estimating abundances. Noticeably, the relative peak areas (RFI) are therefore
not taken into consideration but just converted to binary data for the calcula-
tions. In our example, up to 7 orders of magnitude in target concentrations may
thus be conjointly determined (Fig. 1).

Model community experiments. The qARISA strategy was applied to a model
community consisting of known DNA sequences. Those sequences originate
from a sequencing project from deep sea sediments to be reported elsewhere
(sequences available upon request). Four plasmids containing cloned partial 16S
and ITS sequences were chosen for yielding defined peak sizes of 601, 654, 504,
and 681 bp when analyzed by ARISA. They were prepared to obtain the respec-
tive decreasing concentrations of 0.2, 0.02, 0.02, and 0.002 ng/�l when mixed
together in a total volume of 12 �l. Decimal dilutions were done in triplicates by
transferring 1 �l of DNA solution into 9 �l of sterile water until the decimal
dilution 10�6 was reached. From each DNA preparation (undiluted and diluted),
2 �l was then used per 50-�l ARISA reaction. After this procedure, the initial
amount of DNA for peak 601 bp was 0.4 ng at the undiluted level. The subse-
quent qARISA steps were as described above. The model community experi-
ment was repeated at three independent times and yielded highly consistent
results. Here, the results of only one experiment are presented.

Environmental sample analysis. Microbiological and geochemical data ob-
tained from the sediment samples of reference core 51-1 used in the present
study have been described previously (20). The core was sampled on 1 August
2000 by deploying a video-guided multicorer at the crest of southern Hydrate
Ridge (44°34.198�N, 125°08.858�W, 775-m depth) of the Cascadia convergent
margin off the coast of Oregon. The core was not enriched in methane in the
surface sediments, but parallel cores contained specimens of the chemosynthetic
bivalve Acharax, indicating that it was sampled from a site influenced by low
seepage below the 15-cm sediment depth (20). DNA was extracted from 1 g of
homogenized sediment sample by using an UltraClean soil DNA isolation kit
(MO BIO Laboratories, Inc., Carlsbad, CA) according to the manufacturer’s
instructions. The qARISA was performed as indicated above in triplicate deci-
mal dilution series with a starting DNA concentration of 20 ng per reaction
(undiluted level). A total of eight negative controls (PCR water was used instead
of DNA) were included in the 2.5 96-well plates processed by the automated
sequencer in order to guarantee that no contamination occurred. All samples
were analyzed together from DNA extraction to the final capillary electrophore-
sis separation, so as to limit additional sources of experimental variation.

Statistical analyses. The nonparametric Kolmogorov-Smirnov two-sample test
was used to compare the abundance distributions derived from ARISA and
qARISA. The significance of the two-sided test was determined by performing
1,000 permutations of the non-null values of the data set. The Mantel’s test was
used to determine the level of correlation between the Bray-Curtis similarity
matrices among samples inferred from the binned table derived from ARISA
and from qARISA. The significance of the correlation value was assessed by
1,000 permutations. Overall, patterns in sample dissimilarity were explored via
nonmetric multidimensional scaling (NMDS). NMDS places the samples in a
two-dimensional coordinate system so that ranked dissimilarities between the
samples are preserved. A stress function assesses the goodness-of-fit of the
ordination compared to the original sample ranking (23). Procrustes analysis was

used to determine how similar the final sample ordinations deriving from ARISA
versus qARISA could be (23). The method estimates the concordance of scores
between two ordinations after rotating, translating, and dilating them in order to
obtain the best fit. A permutation procedure is then used to test for the signif-
icance of the concordance (34).

Detrended correspondence analysis (14) was applied to determine whether
linear or unimodal OTU models better fitted the current data set (37). Principal
component analysis (PCA) was done on ARISA tables that were first Hellinger
transformed (2, 22, 37). To determine whether depth as an environmental pa-
rameter could significantly explain the variation in bacterial community struc-
ture, a canonical redundancy analysis (RDA) was used, and its significance was
assessed by 999 Monte Carlo permutation tests. After a significant RDA, non-
parametric Spearman tests were used to detect significant positive or negative
correlations of each OTU abundance distribution with depth. All statistical tests
and graphics (e.g., heatmap) were produced by using R packages (Stats, Vegan,
MASS) and CANOCO for Windows 4.5 (47).

RESULTS AND DISCUSSION

Model community experiment. The idea of the qfingerprint-
ing approach is to apply a standard fingerprinting strategy to
dilution series of the target samples, in order to identify the
highest dilution at which an OTU is still PCR amplifiable (Fig.
1). The qfingerprinting strategy was applied to a mixture of
four plasmids harboring cloned ITS inserts whose individual
lengths and concentrations (Fig. 2, 3) were known beforehand
in order to test the validity of the concept. Capillary electro-
phoresis separation of the defined samples produced 24 elec-
tropherograms (21 dilution samples and 3 negative controls)
for the same plasmid mixture (Fig. 2). A clear difference in
peak height and a gradual peak loss at dilutions 10�4 to 10�6

were observed as a function of the initial plasmid concentra-
tions.

Following the straightforward binning of the data (WS � 2,
Sh � 0.1), the binned table (series of diluted replicated sam-
ples by OTUs) was then converted to log10 values by following
the consensus and the continuity rules (see Materials and
Methods). The consensus rule can be illustrated, for instance,
by OTUs 524, 525, and 534 (Fig. 3). Indeed, the corresponding
peaks were considered present only for the latter two OTUs,
because a peak was identified in two of three replicates at a
given dilution level. An example of the continuity rule may be
found with OTU 537 for which peaks satisfying the consensus

FIG. 1. qfingerprinting strategy. See the text for details.
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rule were detected at dilution 100 and at 10�2, but not at 10�1.
In that case the peak presence was established only for the
undiluted sample at 100 (Fig. 3). Using those two rules, OTU
presence until the highest dilutions was recorded and trans-
formed into log10 abundance values.

Interestingly, the RFI values did not proportionally change
with the dilution factor (Fig. 3). At the undiluted level (i.e.,
standard ARISA conditions), the RFI values ranging from 13
to 31% did not even reflect the fact that the concentration of
each target sequence was initially consisting of 10-fold differ-
ences. Indeed, RFI values are obtained by standardizing the
individual peak areas per sample (see, for example, references
44 and 54). It is thus not surprising that these values do not
follow the dilution trend imposed in the study because their
magnitude is directly related to the behavior of the other peaks
present in the given sample (see also reference 4). Conse-
quently, the final calculations of abundance values from the

dilution series should take the occurrence of the OTUs into
account, instead of their RFI values.

On the electropherograms (Fig. 2) and in the resulting sam-
ple-by-OTU table (Fig. 3), several OTUs were associated with
small peaks, some of which satisfied both the consensus and
the continuity rules (e.g., OTUs 522, 525, and 534). Peaks that
did not correspond to one of the target sequences in the mix-
ture were always found at low abundances. This may be due to
the fact that because few targets were present in the artificial
mixture, the background level of false-positive peaks was
higher. Thus, unspecific, but weak amplifications were more
likely to be detected. When more sequences are present in the
DNA mixture, as with environment samples, the small, incon-
sistent peaks may be diluted out by the presence of more
numerous and highly dominant peaks. In a standard ARISA,
however, these small peaks would have been considered as real
OTUs, whereas here the difference in magnitude reveals that
they may most likely be considered PCR artifacts.

By taking the initial insert concentrations and the respective
dilution factors into consideration, the theoretical detection
limit of the technique can be estimated. By taking the most
abundant OTU (601 bp) at the initial concentration of 0.4 ng
per reaction at the undiluted level, and assuming 660 g/mol per
bp (thus, 6.59 � 10�19 g per fragment), a total of 	6 � 108

fragment copies of the target sequence were then initially
present in the reaction. The highest dilutions where amplifica-
tions still occurred were between 10�5 and 10�6 (Fig. 2 and 3),
indicating that a minimum of 600 to 6,000 target sequences
were needed for a successful amplification to occur under our
experimental conditions. This is in accordance with the de-
tection thresholds of 103 cells per ml of sample generally
reached when molecular community fingerprinting methods
are used (6).

Overall, the qfingerprinting concept and analysis pipeline
worked well on the mixture of known ITS sequences. The
difference in the magnitude of the initial target ratios was
maintained because the derived abundances obtained via qfin-
gerprinting are not based on the final, biased quantitative es-
timate of PCR success, but rather on the qualitative outcome
of the PCR amplification at different dilution levels. The test
on plasmids also illustrates the need to apply advanced numer-
ical methods to identify the best binning frames so as to iden-
tify the most likely dilution levels for OTU occurrence. Indeed,
misclassification of OTUs between replicates at a given dilu-
tion level could lead to a false rejection or acceptance of the
consensus or continuity rules by altering the continuity of the
series of positive amplifications.

Application to environmental samples. Samples originating
from deep marine sediments forming a natural depth gradient
were chosen to illustrate the advantages of the new method. A
total of nine successive 1-cm sediment layers were subjected to
qARISA, thus producing a total of 189 reactions (nine layers �
seven dilution levels � three replicates). A total of 15,361
peaks were retained after capillary electrophoresis, which
ranged from 100 to 1,000 bp and whose absolute peak areas
were over 50 fluorescence units. No peaks satisfying the afore-
mentioned criteria were observed for the eight negative con-
trols. Due to the large number of peaks, using an automatic
binning technique was very important because OTU identifi-

FIG. 2. Electropherograms obtained for the qARISA approach
performed on a model community. The decimal dilution factor is
indicated in each panel by a figure (0 for undiluted, �1 for 0.1, �2 for
0.02, etc.) and the letter K (no DNA control). Only one replicate
electropherogram per dilution level is shown (see Fig. 3 for a complete
overview). The initial DNA concentrations of individual fragments
504, 601, 654, and 681 bp were 0.02, 0.2, 0.02, and 0.002 ng/�l, respec-
tively.
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cation and quantification had to satisfy both the consensus and
the continuity rules, which could not be performed manually.

After the scanning mode of the binning algorithm was ap-
plied, the correlation coefficients between samples were all
0.46 for window sizes 2, 3, 4, and 5 bp and corresponded to
total OTU numbers of 438, 298, 225, and 181, respectively. For
window sizes of 0.5 and 1 bp, the correlation coefficients were
smaller (r � 0.32 and 0.38, respectively), but the OTU numbers
were much higher, with 789 and 815 OTUs identified, respec-
tively. These findings are not surprising since increasing the
window size leads to lumping more peaks together, hence to a
smaller number of OTUs finally identified. As a compromise
between high correlation among samples and high OTU num-
ber, the binning results of window size 2 were chosen for
subsequent analyses. A total of 437 bins (OTUs) were thus
obtained out of the 15,361 initial peaks detected when all
replicated samples were considered. After the qfingerprinting
function was applied to convert the binned table into a log10

abundance table (i.e., by taking the dilution series into account,
as well as the consensus and continuity rules), a total of 332
OTUs were finally obtained for the nine environmental sam-
ples. For each OTU, an abundance value that ranged from 0
(absent) to 7 (present at abundance levels 7 orders of magni-
tude higher than at the undiluted level) was obtained, and this
produced on average 173 � 20 (standard deviation) OTUs per
sample.

The variability in the quantitative estimates obtained via
qfingerprinting was already taken into consideration at the
levels of peak size calling and interexperimental variability by

using the appropriate binning method and consensus rules.
However, the current implementation does not enable the
calculation of confidence intervals for those estimates. Alter-
natively, the MPN (5) approach could be used to analyze the
data in a probabilistic framework. MPN-PCR and direct dilu-
tion calculations provide slightly different estimations of abun-
dances, but they are mostly linearly related to each other (see,
for example, references 35 and 38). The direct dilution calcu-
lation was chosen here for its ease of implementation when
simultaneously dealing with hundreds of OTUs. It should be
noted that the accuracy of the quantification depends on the
number of replicates and dilution rates, with more accuracy
obtained when more replicates are used per dilution level. The
average accuracy has been shown to be almost identical for
dilution rates between 2 and 10, but coefficients of variation
are more stable and slightly lower for twofold dilution assays
(5). The dilution rate may obviously be adapted by taking
previous knowledge, specific needs, or available resources into
account.

Based on the detection limit calculated in the model com-
munity experiment (see above), a specific OTU may be de-
tected if its number of copies is at least in the range 600 to
6,000 copies at the undiluted level, under ideal amplification
conditions (i.e., if we assume that DNA from the synthetic
community has the same properties as that from environmen-
tal communities). This would be indicated by an abundance
value of 1 log10 in the result table. Consequently, when values
of 7 log10 abundance are obtained (see Fig. 5), this corresponds
to at least 6 � 108 target copies detected for the specific OTUs.

FIG. 3. Calculations of abundance values for each OTU present in the model community. After binning, the RFI (in percentages of total
sample intensity) for each OTU is indicated when present at the corresponding dilution and replicate levels. Using the qARISA strategy, the
abundance of each OTU was then calculated by taking the consensus and continuity rules into consideration, as well as the information from all
replicates and dilution levels (see text for details). The resulting abundance values for the model community are then expressed in log10 (bottom
of the figure).
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Noticeably, this number is very close to the reported estimates
of highest cell number found in those samples, which ranged
from 1.0 � 109 to 6.0 � 109 cells/cm3 (20). Despite this inter-
esting correspondence in abundance estimates, it should be
noted that the abundance values obtained via qfingerprinting are
difficult to convert to cell densities or biomass because such con-
version would require knowledge of the copy number per genome
and the genome size, and both numbers can be very variable
(9, 19).

Comparison of qARISA and standard ARISA. The distribu-
tions of RFI values and log10 values obtained from standard
ARISA and qARISA, respectively, could not be considered as
drawn from the same data distribution (Fig. 4A), as also con-
firmed by a significant Kolmogorov-Smirnov test (D � 0.8878,
P � 0.001; based on 1,560 nonzero values in each case). The
latter test takes into account differences in both location and
shape of the two empirical cumulative distribution functions.
The same conclusions were also obtained if the respective
abundance data were first split into frequencies of occurrence
per sample and then compared between the standard ARISA
and the qARISA approaches (D � 0.77 to 0.98; all P � 0.001).

At the level of sample similarities, the standard ARISA
versus qARISA approaches, however, produced significantly
linearly related distance matrices (Mantel r � 0.73, P � 0.001
as determined by 1,000 permutations; Fig. 4B), although a low
coefficient of determination (R2 � 0.54) indicated the existence
of strong disagreement between the two approaches. As noted
from the two abundance distributions, using RFI values from
the standard ARISA instead of qARISA-derived values would
generally lead to lower dissimilarities among samples, i.e., to
concluding that samples are more similar than they really are.
The slope coefficient of the linear regression, beta, was esti-
mated to be 0.81 � 0.129 (standard error), leading to a 95%
confidence interval ranging from 0.55 to 1.08 (assuming 34

degrees of freedom for the Student t distribution). This indi-
cates that beta was not significantly different from 1, i.e., that
the two methods give related estimates of dissimilarities among
samples. Finally, NMDS ordinations based on the two ap-
proaches, although displaying substantial deviations from each
other (Fig. 4C), were nevertheless significantly correlated
(symmetric Procrustes rotation correlation of 0.88; P � 0.001).

In conclusion, using qARISA versus ARISA led to various
levels of discrepancies for data distribution, estimation of sam-
ple dissimilarities, and ordination results. The significant cor-
relation between sample ordinations implies that the standard
ARISA would still be robust for inferring changes in commu-
nity structure, despite its inability to accurately estimate OTU
abundance. This may originate from the DNA normalization
steps common to both procedures, i.e., before the initial PCR,
but also before separating DNA fragments by capillary elec-
trophoresis. In addition, it has been shown that normalized
ARISA peak area may relate well to quantitative relative abun-
dance, as determined by flow cytometry (3), and this also
explains why the standard ARISA has been successfully used
thus far to describe community dynamics over spatial and tem-
poral gradients in a variety of ecosystems (13, 44, 54). Despite
the apparent limited differences between the two approaches,
it is not yet known whether the two techniques would (i) still
yield comparable sample ordinations when more samples are
included in the analyses and (ii) offer the same ecological
conclusions when contextual interpretations (i.e., when addi-
tional environmental, spatial, or temporal variables are avail-
able to explain diversity patterns) of the two sample ordina-
tions are undertaken. Those important points will need
particular attention in future qfingerprinting applications.

Validity of the continuity rule. One of the main assumptions
used in the qfingerprinting approach is that, for each OTU,
PCR success is monotonically related to the concentration of

FIG. 4. Comparison of the distribution of abundance values and of their effects on sample dissimilarities when ARISA versus qARISA is used
on a set of environmental samples. (A) Comparison of all non-null values (1,560 values) from the two distributions (standard versus qARISA) when
the two fingerprinting strategies were applied to a gradient of nine environmental samples. (B) Comparison of Bray-Curtis dissimilarities obtained
for pairs of samples based either on qARISA (log10 abundance) values or on RFI values obtained from a standard ARISA approach (n � 36
pairwise comparisons). The dotted line corresponds to the case where both approaches provide the same dissimilarities among samples (y � x).
(C) Comparison of the ordination results obtained with the two strategies by Procrustean superimposition. Open circles correspond to samples in
the ordination derived from the standard ARISA, and the tips of the arrows correspond to the positions of the samples in the ordination when
the qARISA procedure is used. The dotted line indicates the axis rotation needed to best superimpose the two ordinations.
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the OTU target sequence in the sample. It is, however, known
that PCR yield may be optimal (i) at high dilution levels of the
DNA solution because impurities or PCR inhibitors may be
diluted out or (ii) in the middle of a target DNA concentration
range because a trade-off between DNA concentration and a
low level of contaminants must be found to obtain a successful
PCR amplification, thus producing a unimodal distribution of
amplification success for a given OTU. The first consideration
should not be a major issue if we assume that, in the case of
impurities, PCR inhibition would apply to all OTUs at the
same time because it is the efficiency of the DNA polymerase
that is mostly affected and not a specific OTU amplification.
Note that this point could be further debated because it is
highly likely that impurities selectively trap DNA sequences
based on sequence composition (see, for example, references
45 and 49), but this goes beyond the scope of the present study.

The second hypothesis deserves more attention because it
will directly entail a modification of how the algorithm cur-
rently assesses OTU presence and calculates the final OTU
abundance table. By examining the raw data for each OTU
before applying the qfingerprinting calculations, on average
86% � 10% of the OTUs were present at dilution 100, and for
the existing OTUs whose amplification patterns did not start at
the undiluted level (i.e., presenting unimodal rather than linear
patterns) they consisted more than 61% of the time of OTUs
appearing only once at one dilution level, suggesting that they

may be considered as unreliable peaks. Thus, it seems that the
continuity rule used in OTU quantification represents a valid
hypothesis to describe the behavior of OTU amplification
across the dilution series. It must be noted that this conclusion,
although being valid for this data set, could be inappropriate if
more impurities are present (e.g., if different samples or ex-
traction protocols are used) or if particular PCR conditions are
more sensitive to suboptimal conditions.

Relationship between OTU distribution patterns and depth.
The environmental samples were coming from nine 1-cm-thick
layers from the same core, and it was particularly interesting to
look at the OTU distribution patterns and abundance changes
across this natural depth gradient. The overall community be-
havior with respect to depth when determined by detrended
correspondence analysis revealed that a short gradient length
of 1.74 was associated with the qARISA data set, suggesting
that most OTUs were linearly responding to environmental
gradients (37). This was confirmed by RDA, indicating that
depth significantly explained the variation in the data set (P �
0.001, based on 1,000 permutations of the multivariate model).

A detailed analysis of individual OTU abundance was per-
formed by using two-way cluster analysis and heatmap plot
representations (Fig. 5), which allow a display of OTU abun-
dance relationships as a function of depth (the sample order
with depth was kept fixed).

To allow for comparisons of abundance classes between RFI

FIG. 5. Two-way clustering of OTU abundances obtained by standard ARISA and by qARISA. A complete linkage algorithm was used to
perform a cluster analysis of the Euclidean-based dissimilarity matrices inferred from RFI values (standard ARISA) and log10 values (qARISA)
for the same set of 332 OTUs. Major clusters are indicated by filled circles in the qARISA dendrogram and designated by the letters A to D (see
the text for a description of the clusters). This arbitrary cutoff roughly corresponds to 65% similarity.
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and log10 values, RFI values that ranged from 0 to 13% were
first converted into a discrete 0 to 7 scale. Therefore, although
the ranges of color codes (0 to 7) were the same for standard
and quantitative ARISAs, their meaning was different: for
standard ARISA they corresponded to fluctuations of 	1 log10

value difference [log10(13) � 1.11], whereas for qARISA the
variation corresponds to 7-order-of-magnitude changes (deci-
mal logarithmic scale). Clustering RFI values from standard
ARISA produced overall a very different picture of inter-OTU
relationships and of abundance changes with depth compared
to the outcome of qARISA log10 abundance values (Fig. 5).
Noticeably, OTUs in standard ARISA seemed to fall into two
main clusters, whereas four, more variable clusters (designated
by the letters A to D) could be identified with qARISA data for
a similar cutoff level (Fig. 5). It is important to note that
clustering RFI values from standard ARISA could lead to very
unpredictable patterns because, as mentioned above, these
values cannot truly represent OTU abundances from a sample
since they are derived from the overall peak abundances from
a given electrophoretic profile. For instance, the two most
abundant OTUs in standard ARISA were located in cluster A
or B when qARISA was used, i.e., clusters associated with low
abundant OTUs.

The four main clusters obtained with qARISA data reflected
different patterns of OTU occurrence among samples and dif-
ferent OTU abundance categories, i.e., high, average, or low
abundance. Nonparametric Spearman correlation tests were
subsequently used to determine significant OTU relationships
with depth. Among the 199 OTUs (60% of total OTUs) of
cluster A, the abundances of 17 and 2 OTUs significantly
decreased and increased with depth, respectively, and contrib-
uted to 9.5% of all OTUs in the cluster. Since the highest OTU
abundance was 4 log10, cluster A may be qualified as composed
of “rare OTUs with low abundance.” Cluster B consisted of 84
OTUs (25% of the whole data set). Among them, two and one
OTU, respectively, significantly decreased and increased with
depth, representing 3.5% of the OTUs in the cluster. As such,
the OTUs in cluster B may be designated as “common, but
generally not affected by depth.” Cluster C consisted of 40
OTUs (12% of all OTUs), with 24 OTUs significantly increas-
ing with depth (i.e., 60% of the OTUs of the cluster), leading
to the most “depth-associated” cluster. Finally, cluster D with
only nine OTUs (3% of all OTUs) consisted of OTUs that
were present in several samples and at high abundance (rang-
ing from 5 to 7 log10) but whose abundance overall displayed
no trend with depth. This cluster may be designated as that of
“common and dominant” OTUs.

Only 27 OTUs (8% of the total OTUs) were present in all
nine samples with an average abundance over 2 log10 (mean
abundance for all nonzero values), and 20 OTUs (6%) were
present in all samples, but with abundances lower than 2. A
total of 57 (17%) rare OTUs (i.e., occurring in one sample
only) were all found with an average abundance below 2 log10.
The large majority (69% or 228 OTUs) of all OTUs were thus
not classified as either dominant or rare. It may thus be con-
cluded that qARISA did not only amplify the most common
OTUs present in the samples, since the most abundant only
consisted of 8% of all OTUs detected. The large majority
(85%) was found to be composed of rare or average OTUs
with generally low abundance and with weak relationships with

depth. It must be noted that the finding of well-represented
OTU categories from our environmental samples has a lot to
do with the choice of the primer pairs. The ARISA primers in
the present study were chosen for their ability to evenly amplify
different OTUs in the same sample compared to other primer
sets (4; unpublished results). Therefore, the finding of various
OTU categories should not directly be attributed to the qfin-
gerprinting approach but to the choice of PCR primers and
amplification conditions.

The finding of a substantial proportion of rare or average
OTUs is contrary to the common belief that fingerprinting
methods only detect the most abundant microbes in a sample
(reviewed in reference 1) and suggests that qfingerprinting may
also be useful for studying the dynamics of the “rare bio-
sphere” (16, 33). It is, however, difficult to attribute the very
rare types either to PCR artifacts, as could be suggested by the
low-abundance peaks detected in our model community exper-
iments, or to a true representation of the community compo-
sition. It has previously been suggested that rare OTUs (often
associated with small peak sizes) may be artifacts of finger-
printing methods (2), thus resulting in fallacious description of
microbial community structure (see, for example, reference
55). Using the consensus rule as a conservative way to validate
the presence of a given OTU may be one step toward rejecting
trivial PCR artifacts. Caution is therefore required at this stage
to avoid overinterpreting the presence of rare types in the data,
especially when additional molecular proofs are not available,
at least for some of the rare OTUs. Alternatively, cutoff abun-
dance values may also be used to remove the low-abundant
OTUs if one considers their presence as artifactual.

Inter-OTU relationships. In most microbial diversity analy-
ses, biotic interactions between components of the microbial
community are overlooked, despite the fact that they may be
extremely important in determining community dynamics and
changes in ecosystem processes, as evidenced from macroeco-
logical studies (53). Here, the qfingerprinting approach en-
abled interrelationships between OTUs to be further examined
in contrast to the traditional fingerprinting approaches that
only offer a qualitative description of OTU presence or ab-
sence. To facilitate the depiction of the relationships, PCA was
chosen since it helps identify OTUs whose abundance profiles
covary positively, negatively, or neutrally with respect to each
other (Fig. 6), insights that cannot be easily deduced from Fig.
5, for instance. In the ordination plot, OTU vectors that are
orthogonal to each other may be considered as behaving inde-
pendently, whereas the ones that are colinear may be seen as
positively or negatively covarying, depending on the angles
between the vectors being compared (see, for example, refer-
ences 23 and 37 for further interpretation of PCA ordination
plots). Noticeably, individual OTU patterns were clearly span-
ning all directions in the PCA ordination plot (Fig. 6) and
therefore revealed the existence of much more individual vari-
ability than what could have been assumed within a single
sediment core.

Interestingly, it is also possible to determine the number of
OTUs sharing the exact same abundance profile, i.e., being
present in the same samples and displaying the same abun-
dance values. The number of OTU patterns occurring only
once was 237 (i.e., 90.5% of the 262 abundance patterns), the
numbers of those occurring two and three times were 16
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(6.1%) and 4 (1.5%), respectively, and those occurring 4, 11,
12, and 20 times were each found at less than 1% of the total
patterns (i.e., 1 or 2 patterns) (Fig. 6), thus suggesting that the
large majority of OTUs had distinct abundance patterns. Pat-
terns shared by more than two OTUs were mostly associated
with low-abundant OTUs found in one or two samples, thus
suggesting that the main structure in the data set was created
by specific variation in the individual OTU abundances rather
by common OTU behaviors. As previously seen (Fig. 5), most
OTU distributions did not follow the depth gradient, and this
is confirmed here by the finding of only a few OTU vectors
being correlated to the depth vector superimposed in the or-
dination plot (Fig. 6). It therefore seems that some other
unmeasured factor(s) may be responsible for the observed
patterns, if we opt for a deterministic explanation, and/or that
stochastic (random) processes may be at play in the current
system.

Advantages and limitations of the quantitative approach.
The present study demonstrates the usefulness of using the
qfingerprinting strategy to simultaneously determine the rela-
tive abundance of hundreds of OTUs, and this could readily be
applied to tens to hundreds of samples. This quantitative ap-
proach represents a major improvement for the understanding

of microbial diversity patterns at the level of individual OTUs
in contrast to standard community fingerprinting methods that
merely qualitatively screen for OTU presence or absence in
samples. At the level of whole community ordination, i.e., not
comparing individual OTUs but sample similarity based on
OTU abundances, patterns retrieved by the two approaches
were slightly different but still consistent with each other.
Hence, if detailed information about each OTU abundance is
required in a given study, the new, quantitative strategy should
be preferred over the standard strategy. If the study merely
focuses on overall patterns of sample similarities and accurate
determination of OTU abundance is not needed, then the
standard fingerprinting method with the necessary DNA stan-
dardization and normalization steps described in the present
study should be favored. However, caution must be taken when
interpreting diversity patterns based on qualitative measures of

 diversity since this has been shown to lead to different eco-
logical insights concerning the factors that structure microbial
communities (26).

An additional advantage of the new strategy is the fact that
there is no need to design individual PCR primers for each
OTU, as would be required for a difficult, multi-OTU quanti-
tative PCR approach. Because it is straightforward, the tech-

FIG. 6. PCA of OTU distribution patterns. PCA with scaling focusing on inter-OTU distances for the 332 OTU distribution patterns was chosen to
illustrate how inter-OTU relationships could be deduced from qARISA-derived abundance values. The percentages of explained variations for the first
two axes were 36 and 20%, respectively (gray panel). Depth is represented as a supplementary variable in the PCA plot. Panels A, B, C, and D represent
separate projections of the specific OTUs defined in the four clusters of Fig. 5, respectively. Arrowheads depicted as empty circles indicate OTU
distribution patterns that are shared by multiple OTUs (i.e., 22 patterns in panel A, 1 pattern in panel B, and 3 patterns in panel C).

VOL. 75, 2009 QUANTITATIVE COMMUNITY FINGERPRINTING 2503



nique will easily complement the existing applications of
ARISA, T-RFLP, and SSCP, and any other fingerprinting
methods based on ribosomal or functional genes if the latter
are based on high-throughput sorting of the fragments (e.g., via
capillary electrophoresis) and if internal size standards are
included in every sample. These last conditions are important in
order to make sure that a high reliability is associated with peak
size calling and that further correction of size calling inaccuracy is
possible without losing sensitivity in signal detection.

Despite the considerable advantages of the new strategy, the
same weaknesses and limitations as found with fingerprinting
methods and more generally with any PCR-based methods
may be predicted. For instance, the method also relies on
correct DNA extraction methods to obtain a good representa-
tion of the original sample diversity and is affected by primer
biases, the generation of chimeric sequences, etc., and all of
those issues have been extensively reviewed (50). The specific-
ity of the strategy is directly related to the choice of the PCR
primers, and this fact may be used to narrow or to expand the
range of targeted OTUs (this may be thus seen as a strength or
a weakness). Diversity under- or overestimation common to
many fragment-based fingerprinting techniques may also be
problematic (for a review, see references 1 and 8). Finally,
because many PCRs are done in parallel for the dilution series,
higher risk of contaminations and cost increase have to be
considered. However, because dilution rates can be adapted to
the specific needs of the study and as access to sequencing
facilities and automatic pipetting devices becomes easier
and cheaper, large-scale, high-throughput applications of
the technique should become more feasible and affordable
in the future.

Foreseen applications. Future applications of the qfinger-
printing strategy should provide datasets that will help estab-
lish better mathematical models of intracommunity dynamics
and more generally datasets on which microbial ecological
theories and community assembly rules can be further devel-
oped (15, 21, 39). Detailed analyses of OTU distribution and
abundance may also be foreseen when additional contextual
parameters are available. For instance, OTU indicator analysis
could be performed to determine whether various microbial
OTUs are influenced by the same environmental factors or are
indicative of specific community status, since microbes may
play a major role in detecting and characterizing changes in
environmental conditions (32). In addition, density-dependent
processes such as quorum-sensing mediated microbial re-
sponses (52) may be monitored using qfingerprinting, and this
will help us to better understand the relationships between
community structure and function in complex ecosystems.
Other examples of application should be found in the descrip-
tion of the allelic diversity associated with functional genes so
as to quantify specific groups of microorganisms involved in
biogeochemical processes, bioremediation, or plant protection
and to identify their interactions and behavior under specific
environmental conditions.
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